首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An organism tentatively identified as Ralstonia eutropha was isolated from enrichment cultures containing tetrahydrofurfuryl alcohol (THFA) as the sole source of carbon and energy. The strain was able to tolerate up to 200 mM THFA in mineral salt medium. The degradation was initiated by an inducible ferricyanide-dependent alcohol dehydrogenase (ADH) which was detected in the soluble fraction of cell extracts. The enzyme catalyzed the oxidation of THFA to the corresponding tetrahydrofuran-2-carboxylic acid. Studies with n-pentanol as the substrate revealed that the corresponding aldehyde was released as a free intermediate. The enzyme was purified 211-fold to apparent homogeneity and could be identified as a quinohemoprotein containing one pyrroloquinoline quinone and one covalently bound heme c per monomer. It was a monomer of 73 kDa and had an isoelectric point of 9.1. A broad substrate spectrum was obtained for the enzyme, which converted different primary alcohols, starting from C2 compounds, secondary alcohols, diols, polyethylene glycol 6000, and aldehydes, including formaldehyde. A sequence identity of 65% with a quinohemoprotein ADH from Comamonas testosteroni was found by comparing 36 N-terminal amino acids. The ferricyanide-dependent ADH activity was induced during growth on different alcohols except ethanol. In addition to this activity, an NAD-dependent ADH was present depending on the alcohol used as the carbon source.  相似文献   

2.
We report the molecular characterization and physiological function of a novel L-aspartate dehydrogenase (AspDH). The purified enzyme was a 28-kDa dimeric protein, exhibiting high catalytic activity for L-aspartate (L-Asp) oxidation using NAD and/or NADP as cofactors. Quantitative real-time PCR analysis indicated that the genes involved in the AspDH gene cluster, poly-3-hydroxyalkanoate (PHA) biosynthesis, and the TCA cycle were substantially induced by L-Asp in wild-type cells. In contrast, expression of the aspartase and aspartate aminotransferase genes was substantially induced in the AspDH gene knockout mutant (ΔB3576) but not in the wild type. GC-MS analyses revealed that the wild-type strain synthesized poly-3-hydroxybutyrate from fructose or L-Asp, whereas the ΔB3576 mutant did not synthesize PHA from L-Asp. AspDH gene cluster products might be involved in the biosynthesis of the PHA precursor, revealing that AspDH was a non-NadB type enzyme, and thus entirely different from the previously reported NadB type enzymes working in NAD biosynthesis.  相似文献   

3.
The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha H16 catalyzes the H2-driven reduction of NAD+, as well as reverse electron transfer from NADH to H+, in the presence of O2. It comprises six subunits, HoxHYFUI2, and incorporates a [NiFe] H+/H2 cycling catalytic centre, two non-covalently bound flavin mononucleotide (FMN) groups and an iron-sulfur cluster relay for electron transfer. This study provides the first characterization of the diaphorase sub-complex made up of HoxF and HoxU. Sequence comparisons with the closely related peripheral subunits of Complex I in combination with UV/Vis spectroscopy and the quantification of the metal and FMN content revealed that HoxFU accommodates a [2Fe2S] cluster, FMN and a series of [4Fe4S] clusters. Protein film electrochemistry (PFE) experiments show clear electrocatalytic activity for both NAD+ reduction and NADH oxidation with minimal overpotential relative to the potential of the NAD+/NADH couple. Michaelis-Menten constants of 56 µM and 197 µM were determined for NADH and NAD+, respectively. Catalysis in both directions is product inhibited with K I values of around 0.2 mM. In PFE experiments, the electrocatalytic current was unaffected by O2, however in aerobic solution assays, a moderate superoxide production rate of 54 nmol per mg of protein was observed, meaning that the formation of reactive oxygen species (ROS) observed for the native SH can be attributed mainly to HoxFU. The results are discussed in terms of their implications for aerobic functioning of the SH and possible control mechanism for the direction of catalysis.  相似文献   

4.
Paracoccus denitrificans produces two primary enzymes for the amine oxidation, tryptophan-tryptophylquinone (TTQ)-containing methylamine dehydrogenase (MADH) and quinohemoprotein amine dehydrogenase (QH-AmDH). QH-AmDH has a novel cofactor, cysteine tryptophylquinone (CTQ) and two hemes c. In this work, the redox potentials of three redox centers in QH-AmDH were determined by a mediator-assisted continuous-flow column electrolytic spectroelectrochemical technique. Kinetics of the electron transfer from QH-AmDH to three kinds of metalloproteins, amicyanin, cytochrome c(550), and horse heart cytochrome c were examined on the basis of the theory of mediated-bioelectrocatalysis. All these metalloproteins work as a good electron acceptor of QH-AmDH and donate the electron to the terminal oxidase of P. denitrificans, which was revealed by reconstitution of the respiratory chain. These properties are in marked contrast with those of MADH, which shows high specificity to amicyanin. These electron transfer kinetics are discussed in terms of thermodynamics and structural property.  相似文献   

5.
Catalytic properties of human liver alcohol dehydrogenase isoenzymes   总被引:2,自引:0,他引:2  
W F Bosron  T K Li 《Enzyme》1987,37(1-2):19-28
Human liver alcohol dehydrogenase (ADH) exists in multiple molecular forms which arise from the association of eight different types of subunits, alpha, beta 1, beta 2, beta 3, gamma 1, gamma 2, pi, and chi, into active dimeric molecules. A genetic model accounts for this multiplicity as products of five gene loci, ADH1 through ADH5. Polymorphism occurs at two loci, ADH2 and ADH3, which encode the beta and gamma subunits. All of the known homodimeric and heterodimeric isoenzymes have been isolated and purified to homogeneity. Analysis of the steady-state kinetic properties and substrate and inhibitor specificities has shown substantial differences in the catalytic properties of the isoenzymes. For example, the Km values for NAD+ and ethanol vary as much as 1,000-fold among the isoenzymes. Some of the differences in catalytic properties can be related to specific amino acid substitutions in the ADH isoenzymes.  相似文献   

6.
Class I polyhydroxyalkanoic acid (PHA) synthase gene (phaC) of Ralstonia eutropha strain B5786 was cloned and characterized. R. eutropha B5786 features the ability to synthesize multicomponent PHAs with short- and medium-chain-length monomers from simple carbohydrate substrate. A correlation was made between the molecular structure of PHA synthase and substrate specificity and the ability of strain-producers to accumulate PHAs of this or that structure. A strong similarity of PHA synthase of R. eutropha strain B5786 with PHA synthase of R. eutropha strain H16, which, as opposed to strain B5786, enables to incorporate medium chain length PHAs if hexanoate is used as carbon source, exhibited 99%. A correlation between the structure of PHA synthase of B5786 strain with synthases of microorganisms which synthesize short and medium chain length PHAs similarly to B5786 strain, showed an identity level from 26 to 41% (homology with synthase of Rhodospirillum rubrum makes 41%, Ectothiorhodospira shaposhnikovii makes 26%, Aeromonas punctata makes 40%, Thiococcus pfennigii makes 28%, Rhodococcus ruber makes 38%, and with PhaCl and PhaC2 synthases of Pseudomonas sp. 61–3 makes 34 and 37%, respectively). This allows for speaking about the absence of a direct connection between the molecular organization of PHA synthases and their functional abilities, namely, the ability to synthesize PHAs of a particular composition.  相似文献   

7.
The type II quinohemoprotein alcohol dehydrogenase of Pseudomonas putida is a periplasmic enzyme that oxidizes substrate alcohols to the aldehyde and transfers electrons first to pyrroloquinoline quinone (PQQ) and then to an internal heme group. The 1.9 A resolution crystal structure reveals that the enzyme contains a large N-terminal eight-stranded beta propeller domain (approximately 60 kDa) similar to methanol dehydrogenase and a small C-terminal c-type cytochrome domain (approximately 10 kDa) similar to the cytochrome subunit of p-cresol methylhydoxylase. The PQQ is bound near the axis of the propeller domain about 14 A from the heme. A molecule of acetone, the product of the oxidation of isopropanol present during crystallization, appears to be bound in the active site cavity.  相似文献   

8.
Stereoselective reduction towards pharmaceutically potent products with multi‐chiral centers is an ongoing hot topic, but up to now catalysts for reductions of bulky aromatic substrates are rare. The NADPH‐dependent alcohol dehydrogenase from Ralstonia sp. (RADH) is an exception as it prefers sterically demanding substrates. Recent studies with this enzyme indicated outstanding potential for the reduction of various alpha‐hydroxy ketones, but were performed with crude cell extract, which hampered its detailed characterization. We have established a procedure for the purification and storage of RADH and found a significantly stabilizing effect by addition of CaCl2. Detailed analysis of the pH‐dependent activity and stability yielded a broad pH‐optimum (pH 6–9.5) for the reduction reaction and a sharp optimum of pH 10–11.5 for the oxidation reaction. The enzyme exhibits highest stability at pH 5.5–8 and 8–15°C; nevertheless, biotransformations can also be carried out at 25°C (half‐life 80 h). Under optimized reaction parameters a thorough study of the substrate range of RADH including the reduction of different aldehydes and ketones and the oxidation of a broad range of alcohols was conducted. In contrast to most other known alcohol dehydrogenases, RADH clearly prefers aromatic and cyclic aliphatic compounds, which makes this enzyme unique for conversion of space demanding substrates. Further, reductions are catalyzed with extremely high stereoselectivity (>99% enantio‐ and diastereomeric excess). In order to identify appropriate substrate and cofactor concentrations for biotransformations, kinetic parameters were determined for NADP(H) and selected substrates. Among these, we studied the reduction of both enantiomers of 2‐hydroxypropiophenone in more detail. Biotechnol. Bioeng. 2013; 110: 1838–1848. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
A succinate semialdehyde dehydrogenase gene (gabD) was identified to be disrupted in a transposon-induced mutant of Ralstonia eutropha exhibiting the phenotype 4-hydroxybutyric acid-leaky. The native gabD gene was cloned by colony hybridization using a homologous gabD-specific DNA probe. DNA sequencing revealed an 1452-bp open reading frame, and the deduced amino acid sequence showed strong similarities to NADP(+)-dependent succinate semialdehyde dehydrogenases from Escherichia coli, Rhizobium sp., Homo sapiens and Rattus norvegicus. The gabD gene was heterologously expressed in a recombinant E. coli strain harboring plasmid pSK::EE6.8. Similar to the molecular organization of the gab cluster in E. coli, additional genes encoding enzymes for the degradation of gamma-aminobutyrate are closely related to gabD in R. eutropha. Enzymatic studies indicated the existence of a second NAD(+)-dependent succinate semialdehyde dehydrogenase in R. eutropha.  相似文献   

10.
Alcohol dehydrogenase isozymes from mouse liver (A2 and B2) and stomach (C2) tissues have been purified to homogeneity using triazine-dye affinity chromatography. The enzymes are dimers with similar but distinct subunit sizes, as determined by SDS/polyacrylamide gel electrophoresis: A, 43000; B, 39000, and C, 47000. Zinc analyses and 1,10-phenanthroline inhibition studies indicated that the A and C subunits each contained two atoms of zinc, with at least one being involved catalytically, whereas the B subunit probably contained a single non-catalytic zinc atom. The isozymes exhibited widely divergent kinetic characteristics. A2 exhibited a Km value for ethanol of 0.15 mM and a broad substrate specificity, with Km values decreasing dramatically with an increase in chain length; C2 also exhibited this broad specificity for alcohols but showed a Km value of 232 mM for ethanol. These isozymes also showed broad substrate specificities as aldehyde reductases. In contrast, B2 showed no detectable activity as an aldehyde reductase for the aldehydes examined, and used ethanol as substrate only at very high concentrations (greater than 0.5 M). The isozyme exhibited low Km and high Vmax values, however, with medium-chain alcohols. Immunological studies showed that A2 was immunologically distinct from the B2 and C2 isozymes. In vitro molecular hybridization studies gave no evidence for association between the alcohol dehydrogenase subunits. The results confirm genetic analyses [Holmes, Albanese, Whitehead and Duley (1981) J. Exp. Zool. 215, 151-157] which are consistent with at least three structural genes encoding alcohol dehydrogenase in the mouse and confirm the role of the major liver isozyme (A2) in ethanol metabolism.  相似文献   

11.
12.
Gluconacetobacter xylinus possesses a constitutive membrane-bound oxidase system for the use of ethanol. Its alcohol dehydrogenase complex (ADH) was purified to homogeneity and characterized. It is a 119-kDa heterodimer (68 and 41 kDa subunits). The peroxidase reaction confirmed the presence of haem C in both subunits. Four cytochromes c per enzyme were determined by pyridine hemochrome spectroscopy. Redox titrations of the purified ADH revealed the presence of four haem c redox centers, with apparent mid-point potential values (Em7) of −33, +55, +132 and +310 mV, respectively. The ADH complex contains one mol of pyrroloquinoline quinone as determined by HPLC. The enzyme was purified in full reduced state; oxidation was induced by potassium ferricyanide and substrate restores full reduction. Activity responses to pH were sharp, showing two distinct optimal pH values (i.e. pH 5.5 and 6.5) depending on the electron acceptor used. Purified ADH oxidizes primary alcohols (C2–C6) but not methanol. Noteworthy, aliphatic aldehydes (C1–C4) were also good substrates. Myxothiazol and antymicin A were powerful inhibitors of the purified ADH complex, most likely acting at the ubiquinone acceptor site in subunit II.  相似文献   

13.
Ralstonia eutropha strain H16 is a facultatively chemolithoautotrophic, hydrogen-oxidizing bacterium belonging to the family Burkholderiaceae of the Betaproteobacteria. The genome of R. eutropha H16 consists of two chromosomes (Chr1, Chr2) and one megaplasmid (pHG1), and thus shows a multi-replicon architecture, which is characteristic for all members of the Burkholderiaceae sequenced so far. The genes for housekeeping cell functions are located on Chr1. In contrast, many characteristic traits of R. eutropha H16 such as the ability to switch between alternative lifestyles and to utilize a broad variety of growth substrates are primarily encoded on the smaller replicons Chr2 and pHG1. The latter replicons also differ from Chr1 by carrying a repA-associated origin of replication typically found on plasmids. Relationships between the individual replicons from various Burkholderiaceae genomes were studied by multiple sequence alignments and whole-replicon protein comparisons. While strong conservation of gene content and order among the largest replicons indicate a common ancestor, the resemblance between the smaller replicons is considerably lower, suggesting a species-specific origin of Chr2. The megaplasmids, however, in most cases do not show any taxonomically related similarities. Based on the results of the comparative studies, a hypothesis for the evolution of the multi-replicon genomes of the Burkholderiaceae is proposed.  相似文献   

14.
In this study, a propionate CoA-transferase (H16_A2718; EC 2.8.3.1) from Ralstonia eutropha H16 (Pct Re ) was characterized in detail. Glu342 was identified as catalytically active amino acid residue via site-directed mutagenesis. Activity of Pct Re was irreversibly lost after the treatment with NaBH4 in the presence of acetyl-CoA as it is shown for all CoA-transferases from class I, thereby confirming the formation of the covalent enzyme-CoA intermediate by Pct Re . In addition to already known CoA acceptors for Pct Re such as 3-hydroxypropionate, 3-hydroxybutyrate, acrylate, succinate, lactate, butyrate, crotonate and 4-hydroxybutyrate, it was found that glycolate, chloropropionate, acetoacetate, valerate, trans-2,3-pentenoate, isovalerate, hexanoate, octanoate and trans-2,3-octenoate formed also corresponding CoA-thioesters after incubation with acetyl-CoA and Pct Re . Isobutyrate was found to be preferentially used as CoA acceptor amongst other carboxylates tested in this study. In contrast, no products were detected with acetyl-CoA and formiate, bromopropionate, glycine, pyruvate, 2-hydroxybutyrate, malonate, fumarate, itaconate, β-alanine, γ-aminobutyrate, levulate, glutarate or adipate as potential CoA acceptor. Amongst CoA donors, butyryl-CoA, crotonyl-CoA, 3-hydroxybutyryl-CoA, isobutyryl-CoA, succinyl-CoA and valeryl-CoA apart from already known propionyl-CoA and acetyl-CoA could also donate CoA to acetate. The highest rate of the reaction was observed with 3-hydroxybutyryl-CoA (2.5 μmol mg?1 min?1). K m values for propionyl-CoA, acetyl-CoA, acetate and 3-hydroxybutyrate were 0.3, 0.6, 4.5 and 4.3 mM, respectively. The rather broad substrate range might be a good starting point for enzyme engineering approaches and for the application of Pct Re in biotechnological polyester production.  相似文献   

15.
Polyhydroxybutyrate (PHB) was produced by Ralstonia eutropha DSM 11348 (formerly Alicaligenes eutrophus) in media containing 20–30 g l−1 casein peptone or casamino acids as sole sources of nitrogen. In fermentations using media based on casein peptone, permanent growth up to a cell dry mass of 65 g l−1 was observed. PHB accumulated in cells up to 60%–80% of dry weight. The lowest yields were found in media without any trace elements or with casamino acids added only. The residual cell dry masses were limited to 10–15 g l−1 and did not contain PHB. The highest productivity amounted to 1.2 g PHB l−1 h−1. The mean molecular mass of the biopolymer was determined as 750 kDa. The proportion of polyhydroxyvalerate was less than 0.2% in PHB. The bioprocess was scaled up to a 300-l plant. During a fermentation time of 39 h the cells accumulated PHB to 78% w/w. The productivity was 0.98 g PHB l−1 h1. Received: 8 July 1998 / Accepted: 26 August 1998  相似文献   

16.
Quinoprotein alcohol dehydrogenases are redox enzymes that participate in distinctive catabolic pathways that enable bacteria to grow on various alcohols as the sole source of carbon and energy. The x-ray structure of the quinohemoprotein alcohol dehydrogenase from Comamonas testosteroni has been determined at 1.44 A resolution. It comprises two domains. The N-terminal domain has a beta-propeller fold and binds one pyrroloquinoline quinone cofactor and one calcium ion in the active site. A tetrahydrofuran-2-carboxylic acid molecule is present in the substrate-binding cleft. The position of this oxidation product provides valuable information on the amino acid residues involved in the reaction mechanism and their function. The C-terminal domain is an alpha-helical type I cytochrome c with His(608) and Met(647) as heme-iron ligands. This is the first reported structure of an electron transfer system between a quinoprotein alcohol dehydrogenase and cytochrome c. The shortest distance between pyrroloquinoline quinone and heme c is 12.9 A, one of the longest physiological edge-to-edge distances yet determined between two redox centers. A highly unusual disulfide bond between two adjacent cysteines bridges the redox centers. It appears essential for electron transfer. A water channel delineates a possible pathway for proton transfer from the active site to the solvent.  相似文献   

17.
Alcohol dehydrogenase from horse liver was immobilized by covalent attachment to CNBr-Sepharose and by adsorption to octyl-Sepharose CL-4B, a hydrophobic analog of Sepharose. In each case, rate constants for the binding and release of coenzyme and for the oxidation of substrates were measured based on the concentration of accessible active-site zinc atoms determined by titration with a paramagnetic inhibitor. All rate constants were substantially reduced upon immobilization; however, the rate constant of immobilized enzyme for ethanol oxidation was independent of the immobilization method, whereas the rate constant for cyclohexanol oxidation was lower for enzyme immobilized to octyl-Sepharose. Consequently, the substrate specificity of the two immobilized enzyme samples differed by an order of magnitude. Moreover, EPR spectroscopy studies and computer graphic analyses of spin labels occupying three defined regions of the active-site domain indicated that the active-site conformation adjacent to the catalytic zinc atom was similar in the two samples while the conformation slightly further from the zinc atom was different. This result may explain why the two immobilized enzyme preparations exhibited the same rate constant toward a small substrate (ethanol) yet different rate constants toward a larger substrate (cyclohexanol), whose rate constant is expected to be sensitive to a larger portion of the active site.  相似文献   

18.
Different aldehyde dehydrogenases (AlDHs) were formed during growth of Ralstonia eutropha Bo on tetrahydrofurfuryl alcohol (THFA). One of these enzymes, AlDH 4, was purified and characterized as a homodimer containing no prosthetic groups, showing a strong substrate inhibition, and having an N-terminal sequence similar to those of various NAD(P)-dependent AlDHs. The conversion rate of THFA by the quinohemoprotein THFA dehydrogenase was increased by AlDH 4.  相似文献   

19.
A blue copper protein was purified together with a type II quinohemoprotein alcohol dehydrogenase (ADH IIB) from the soluble fraction of Pseudomonas putida HK5 grown on n-butanol. The purified blue copper protein was shown to be azurin, on the basis of several properties such as its absorption maximum (623 nm), its low molecular mass (17 500 Da), its acidic nature (pI of 4.1), its relatively high redox potential (306 mV), the presence of an intramolecular disulfide bond, and N-terminal amino acid sequence homology with respect to azurins from other sources, especially from P. putida NCIB 9869 and Pseudomonas fluorescens. Direct electron transfer from ADH IIB to azurin was shown to occur at a rate of 48-70 s-1. The apparent Km value of ADH IIB for azurin, determined by steady-state kinetics, was decreased several-fold by increasing the ionic strength. Furthermore, the extent of fluorescence quenching of ADH IIB due to the interaction with azurin was increased by increasing the ionic strength, but the binding constant for binding between ADH IIB and azurin was unchanged. The redox potential of azurin was increased 12 mV by incubation with ADH but not vice versa. Furthermore, the redox potential gap between ADH and azurin was increased from 102 to 126 mV by increasing the ionic strength. It is conceivable that a hydrophobic interaction is involved in the electron transfer between both proteins, and it is also suggested that the electron transfer may occur by a freely reversible on and off binding process but may not be related to the global binding process of both proteins. Thus, the results presented here strongly suggest that azurin works as an electron-transfer mediator in a PQQ-dependent alcohol oxidase respiratory chain in P. putida HK5.  相似文献   

20.
Yeast alcohol dehydrogenase (Y-ADH) is widely studied for its biotechnological importance and various attempts to improve its catalytic properties have been made. In this paper, a catalytically active metal-substituted Y-ADH was prepared in vitro by substituting one zinc atom with copper. EPR and Raman spectroscopy suggest that copper maintains the same co-ordination geometry as zinc in native Y-ADH. The active Cu-ADH shows lower substrate affinity and lower specific activity (SA) than native ADH, but greater than a previously obtained Co-ADH. Furthermore, Cu-ADH maintains its catalytic efficiency in a wider pH range than native enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号