首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
王鑫  杨磊  赵倩  张钦弟 《生态学报》2020,40(8):2691-2697
植物功能性状可以响应生境的变化并决定生态系统的功能,探究植物功能性状间的关系及其随土壤有效水分梯度的变化规律,对认识不同水分条件下植被在群落水平碳水代谢关系和维持水分平衡的生理生态学机制具有重要意义。以甘肃定西典型半干旱黄土小流域草地群落为研究对象,采用排序分析和回归拟合方法,分析了30个代表性草地样地中7个植物功能性状加权均值对土壤有效水分的响应以及响应性状间的相关关系。结果显示:(1)7个性状中,除叶宽与土壤有效水分无明显相关外,叶长、株高、叶面积、比叶面积、叶厚和叶干物质含量均与土壤有效水分显著性相关,可识别为草地在群落水平对土壤水分的响应性状。(2)草地群落通过降低株高,减小叶长、叶面积和比叶面积,增加叶厚和叶干物质含量以适应土壤有效水分减少;其中叶干物质含量的解释度最大,是土壤水分的最优响应性状。(3)除叶厚与叶长无显著相关外,其余功能性状均存在显著相关,说明草地群落的功能性状在土壤水分梯度上已基本形成了一个相互权衡或协同变化的功能性状组合。  相似文献   

3.
4.
5.
Despite several decades of study in community ecology, the relative importance of the ecological processes that determine species co‐occurrence across spatial scales remains uncertain. Some of this uncertainty may be reduced by studying the scale dependency of community assembly in the light of environmental variation. Phylogenetic information and functional trait information are often used to provide potentially valuable insights into the drivers of community assembly. Here, we combined phylogenetic and trait‐based tests to gain insights into community processes at four spatial scales in a large stem‐mapped subtropical forest dynamics plot in central China. We found that all of the six leaf economic traits measured in this study had weak, but significant, phylogenetic signal. Nonrandom phylogenetic and trait‐based patterns associated with topographic variables indicate that deterministic processes tend to dominate community assembly in this plot. Specifically, we found that, on average, co‐occurring species were more phylogenetically and functionally similar than expected throughout the plot at most spatial scales and assemblages of less similar than expected species could only be found on finer spatial scales. In sum, our results suggest that the trait‐based effects on community assembly change with spatial scale in a predictable manner and the association of these patterns with topographic variables, indicates the importance of deterministic processes in community assembly relatively to random processes.  相似文献   

6.

Questions

Predicting which newly arrived species will establish and become invasive is a problem that has long vexed researchers. In a study of cold temperate oak forest stands, we examined two contrasting hypotheses regarding plant functional traits to explain the success of certain non‐native species. Under the “join the locals” hypothesis, successful invaders are expected to share traits with resident species because they employ successful growth strategies under light‐limited understorey conditions. Instead, under the “try harder” hypothesis, successful invaders are expected to have traits different from native species in order to take advantage of unused niche space.

Location

Minnesota, USA.

Methods

We examined these two theories using 109 native and 11 non‐native plants in 68 oak forest stands. We focused on traits related to plant establishment and growth, including specific leaf area (SLA), leaf carbon‐to‐nitrogen ratio (C:N), wood density, plant maximum height, mycorrhizal type, seed mass and growth form. We compared traits of native and non‐native species using ordinations in multidimensional trait space and compared community‐weighted mean (CWM) trait values across sites.

Results

We found few differences between trait spaces occupied by native and non‐native species. Non‐native species occupied smaller areas of trait space than natives, yet were within that of the native species, indicating similar growth strategies. We observed a higher proportion of non‐native species in sites with higher native woody species CWM SLA and lower CWM C:N. Higher woody CWM SLA was observed in sites with higher soil pH, while lower CWM C:N was found in sites with higher light levels.

Conclusions

Non‐native plants in this system have functional traits similar to natives and are therefore “joining the locals.” However, non‐native plants may possess traits toward the acquisitive end of the native plant trait range, as evidenced by higher non‐native plant abundance in high‐resource environments.
  相似文献   

7.
Recent investigations have shown that two components of community trait composition are important for key ecosystem processes: (i) the community‐weighted mean trait value (CWM), related to the mass ratio hypothesis and dominant trait values in the community, and (ii) functional diversity (FD), related to the complementarity hypothesis and the divergence of trait values. However, no experiments controlling for the inherent dependence between CWM and FD have been conducted so far. We used a novel experimental framework to disentangle the unique and shared effects of CWM and FD in a leaf litter‐macrodetritivore model system. We manipulated isopod assemblages varying in species number, CWM and FD of litter consumption rate to test the relative contribution of these community parameters in the decomposition process. We showed that CWM, but also the combination of CWM and FD, is a main factor controlling litter decomposition. When we tested individual biodiversity components separately, CWM of litter consumption rate showed a significant effect on decomposition, while FD and species richness alone did not. Our study demonstrated that (i) trait composition rather than species diversity drives litter decomposition, (ii) dominant trait values in the community (CWM) play a chief role in driving ecosystem processes, corroborating the mass ratio hypothesis, and (iii) trait dissimilarity can contribute in modulating the overall biodiversity effects. Future challenge is to assess whether the generality of our finding, that is, that dominant trait values (CWM) predominate over trait dissimilarity (FD), holds for other ecosystem processes, environmental conditions and different spatial and temporal scales.  相似文献   

8.
Aim To investigate whether trait–habitat relations in biological communities converge across three global regions. The goal is to assess the role of habitat templets in shaping trait assemblages when different assembly mechanisms are operating and to test whether trait–habitat relations reflect a common evolutionary history or environmental trait filters. Location Guiana Shield, South America; Upper Guinea Forest Block, West Africa; Borneo rain forests, Southeast Asia. Methods We compared large anuran amphibian data sets at both the regional and cross‐continental scale. We applied a combination of three‐table ordinations (RLQ) and permutation model‐based multivariate fourth‐corner statistics to test for trait–habitat relationships at both scales and used phylogenetic comparative methods to quantify phylogenetic signal in traits that enter these analyses. Results Despite the existence of significant trait–habitat links and congruent trait patterns, we did not find evidence for the existence of a universal trait–habitat relationship at the assemblage level and no clear sign for cross‐continental convergence of trait–habitat relations. Patterns rather varied between continents. Despite the fact that a number of traits were conserved across phylogenies, the phylogenetic signal varied between regions. Trait–habitat relations therefore not only reflect a common evolutionary history, but also more recently operating environmental trait filters that ultimately determine the trait composition in regional assemblages. Main conclusions Integrating trait–habitat links into analyses of biological assemblages can enhance the predictive power and general application of species assembly rules in community and macroecology, particularly when phylogenetic comparative methods are simultaneously applied. However, in order to predict trait composition based on habitat templets, trait–habitat links cannot be assumed to be universal but rather have to be individually established in different regions prior to model building. Only then can direct trait‐based approaches be useful tools for predicting fundamental community patterns.  相似文献   

9.
10.
Functional trait databases are powerful tools in ecology, though most of them contain large amounts of missing values. The goal of this study was to test the effect of imputation methods on the evaluation of trait values at species level and on the subsequent calculation of functional diversity indices at community level using functional trait databases. Two simple imputation methods (average and median), two methods based on ecological hypotheses, and one multiple imputation method were tested using a large plant trait database, together with the influence of the percentage of missing data and differences between functional traits. At community level, the complete‐case approach and three functional diversity indices calculated from grassland plant communities were included. At the species level, one of the methods based on ecological hypothesis was for all traits more accurate than imputation with average or median values, but the multiple imputation method was superior for most of the traits. The method based on functional proximity between species was the best method for traits with an unbalanced distribution, while the method based on the existence of relationships between traits was the best for traits with a balanced distribution. The ranking of the grassland communities for their functional diversity indices was not robust with the complete‐case approach, even for low percentages of missing data. With the imputation methods based on ecological hypotheses, functional diversity indices could be computed with a maximum of 30% of missing data, without affecting the ranking between grassland communities. The multiple imputation method performed well, but not better than single imputation based on ecological hypothesis and adapted to the distribution of the trait values for the functional identity and range of the communities. Ecological studies using functional trait databases have to deal with missing data using imputation methods corresponding to their specific needs and making the most out of the information available in the databases. Within this framework, this study indicates the possibilities and limits of single imputation methods based on ecological hypothesis and concludes that they could be useful when studying the ranking of communities for their functional diversity indices.  相似文献   

11.
12.
Andrew Siefert  Cyrille Violle  Loïc Chalmandrier  Cécile H. Albert  Adrien Taudiere  Alex Fajardo  Lonnie W. Aarssen  Christopher Baraloto  Marcos B. Carlucci  Marcus V. Cianciaruso  Vinícius de L. Dantas  Francesco de Bello  Leandro D. S. Duarte  Carlos R. Fonseca  Grégoire T. Freschet  Stéphanie Gaucherand  Nicolas Gross  Kouki Hikosaka  Benjamin Jackson  Vincent Jung  Chiho Kamiyama  Masatoshi Katabuchi  Steven W. Kembel  Emilie Kichenin  Nathan J. B. Kraft  Anna Lagerström  Yoann Le Bagousse‐Pinguet  Yuanzhi Li  Norman Mason  Julie Messier  Tohru Nakashizuka  Jacob McC. Overton  Duane A. Peltzer  I. M. Pérez‐Ramos  Valério D. Pillar  Honor C. Prentice  Sarah Richardson  Takehiro Sasaki  Brandon S. Schamp  Christian Schöb  Bill Shipley  Maja Sundqvist  Martin T. Sykes  Marie Vandewalle  David A. Wardle 《Ecology letters》2015,18(12):1406-1419
Recent studies have shown that accounting for intraspecific trait variation (ITV) may better address major questions in community ecology. However, a general picture of the relative extent of ITV compared to interspecific trait variation in plant communities is still missing. Here, we conducted a meta‐analysis of the relative extent of ITV within and among plant communities worldwide, using a data set encompassing 629 communities (plots) and 36 functional traits. Overall, ITV accounted for 25% of the total trait variation within communities and 32% of the total trait variation among communities on average. The relative extent of ITV tended to be greater for whole‐plant (e.g. plant height) vs. organ‐level traits and for leaf chemical (e.g. leaf N and P concentration) vs. leaf morphological (e.g. leaf area and thickness) traits. The relative amount of ITV decreased with increasing species richness and spatial extent, but did not vary with plant growth form or climate. These results highlight global patterns in the relative importance of ITV in plant communities, providing practical guidelines for when researchers should include ITV in trait‐based community and ecosystem studies.  相似文献   

13.
14.
Question: Is the assumption of trait independence implied in Westoby's (1998) leaf‐height‐seed (LHS) ecology strategy scheme upheld in a Mediterranean grazing system dominated by annuals? Is the LHS approach applicable at the community level? Location: Northern Israel. Methods: LHS traits (specific leaf area [SLA], plant height and seed mass), and additional leaf traits (leaf dry matter content [LDMC], leaf area, and leaf content of nitrogen [LNC], carbon [LCC], and phosphorus [LPC]), were analyzed at the species and community levels. Treatments included manipulations of grazing intensity (moderate and heavy) and protection from grazing. We focused on species comprising 80% of biomass over all treatments, assuming that these species drive trait relationships and ecosystem processes. Results: At the species level, SLA and seed mass were negatively correlated, and plant height was positively correlated to LCC. SLA, seed mass, and LPC increased with protection from grazing. At the community level, redundancy analysis revealed one principal gradient of variation: SLA, correlated to grazing, versus seed mass and plant height, associated with protection from grazing. We divided community functional parameters into two groups according to grazing response: (1) plant height, seed mass, LDMC, and LCC, associated with protection from grazing, and (2) SLA, associated with grazing. Conclusions: The assumption of independence between LHS traits was not upheld at the species level in this Mediterranean grazing system. At the community level, the LHS approach captured most of the variation associated with protection from grazing, reflecting changes in dominance within the plant community.  相似文献   

15.
16.
17.
Biological communities are shaped by complex interactions between organisms and their environment as well as interactions with other species. Humans are rapidly changing the marine environment through increasing greenhouse gas emissions, resulting in ocean warming and acidification. The first response by animals to environmental change is predominantly through modification of their behaviour, which in turn affects species interactions and ecological processes. Yet, many climate change studies ignore animal behaviour. Furthermore, our current knowledge of how global change alters animal behaviour is mostly restricted to single species, life phases and stressors, leading to an incomplete view of how coinciding climate stressors can affect the ecological interactions that structure biological communities. Here, we first review studies on the effects of warming and acidification on the behaviour of marine animals. We demonstrate how pervasive the effects of global change are on a wide range of critical behaviours that determine the persistence of species and their success in ecological communities. We then evaluate several approaches to studying the ecological effects of warming and acidification, and identify knowledge gaps that need to be filled, to better understand how global change will affect marine populations and communities through altered animal behaviours. Our review provides a synthesis of the far‐reaching consequences that behavioural changes could have for marine ecosystems in a rapidly changing environment. Without considering the pervasive effects of climate change on animal behaviour we will limit our ability to forecast the impacts of ocean change and provide insights that can aid management strategies.  相似文献   

18.
19.
20.
The majority of species in ecosystems are rare, but the ecosystem consequences of losing rare species are poorly known. To understand how rare species may influence ecosystem functioning, this study quantifies the contribution of species based on their relative level of rarity to community functional diversity using a trait‐based approach. Given that rarity can be defined in several different ways, we use four different definitions of rarity: abundance (mean and maximum), geographic range, and habitat specificity. We find that rarer species contribute to functional diversity when rarity is defined by maximum abundance, geographic range, and habitat specificity. However, rarer species are functionally redundant when rarity is defined by mean abundance. Furthermore, when using abundance‐weighted analyses, we find that rare species typically contribute significantly less to functional diversity than common species due to their low abundances. These results suggest that rare species have the potential to play an important role in ecosystem functioning, either by offering novel contributions to functional diversity or via functional redundancy depending on how rare species are defined. Yet, these contributions are likely to be greatest if the abundance of rare species increases due to environmental change. We argue that given the paucity of data on rare species, understanding the contribution of rare species to community functional diversity is an important first step to understanding the potential role of rare species in ecosystem functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号