首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
  1. Most predators eat only a subset of possible prey. However, studies evaluating diet selection rarely measure prey availability in a manner that accounts for temporal–spatial overlap with predators, the sensory mechanisms employed to detect prey, and constraints on prey capture.
  2. We evaluated the diet selection of cutthroat trout (Oncorhynchus clarkii) feeding on a diverse planktivore assemblage in Lake Washington to test the hypothesis that the diet selection of piscivores would reflect random (opportunistic) as opposed to non‐random (targeted) feeding, after accounting for predator–prey overlap, visual detection and capture constraints.
  3. Diets of cutthroat trout were sampled in autumn 2005, when the abundance of transparent, age‐0 longfin smelt (Spirinchus thaleichthys) was low, and 2006, when the abundance of smelt was nearly seven times higher. Diet selection was evaluated separately using depth‐integrated and depth‐specific (accounted for predator–prey overlap) prey abundance. The abundance of different prey was then adjusted for differences in detectability and vulnerability to predation to see whether these factors could explain diet selection.
  4. In 2005, cutthroat trout fed non‐randomly by selecting against the smaller, transparent age‐0 longfin smelt, but for the larger age‐1 longfin smelt. After adjusting prey abundance for visual detection and capture, cutthroat trout fed randomly. In 2006, depth‐integrated and depth‐specific abundance explained the diets of cutthroat trout well, indicating random feeding. Feeding became non‐random after adjusting for visual detection and capture. Cutthroat trout selected strongly for age‐0 longfin smelt, but against similar sized threespine stickleback (Gasterosteus aculeatus) and larger age‐1 longfin smelt in 2006. Overlap with juvenile sockeye salmon (O. nerka) was minimal in both years, and sockeye salmon were rare in the diets of cutthroat trout.
  5. The direction of the shift between random and non‐random selection depended on the presence of a weak versus a strong year class of age‐0 longfin smelt. These fish were easy to catch, but hard to see. When their density was low, poor detection could explain their rarity in the diet. When their density was high, poor detection was compensated by higher encounter rates with cutthroat trout, sufficient to elicit a targeted feeding response. The nature of the feeding selectivity of a predator can be highly dependent on fluctuations in the abundance and suitability of key prey.
  相似文献   

2.
    
Kadri Moks  Vallo Tilgar 《Ibis》2014,156(2):452-456
In birds, little is known about how the presence of predators alters parental food distribution decisions among nestlings. We found that experimentally increasing perceived predation risk changed parental care in female but not in male Great Tits Parus major. Females fed the lightest and average nestlings at similar rates under control conditions when predation risk was not manipulated but ignored the lightest nestling under increased perceived predation risk. Moreover, females reduced the duration of nest visits greatly after encountering a model predator, suggesting that the perception of predators may facilitate brood reduction mechanisms.  相似文献   

3.
    
Ruff Philomachus pugnax staging in the Netherlands forage in agricultural grasslands, where they mainly eat earthworms (Lumbricidae). Food intake and the surface availability of earthworms were studied in dairy farmland of southwest Friesland in March–April 2011. Daily changes in earthworm availability were quantified by counting visible earthworms. No earthworms were seen on the surface during daytime, but their numbers sharply increased after sunset and remained high during the night. Nevertheless, intake rates of individual Ruff in different grasslands measured during daytime showed the typical Holling type II functional response relationship with the surfacing earthworm densities measured at night. Radiotagging of Ruff in spring 2007 revealed that most, if not all, feeding occurs during the day, with the Ruff assembling at shoreline roosts at night. This raises the question of why Ruff do not feed at night, if prey can be caught more easily than during daytime. In March–May 2013 we experimentally examined the visual and auditory sensory modalities used by Ruff to find and capture earthworms. Five males were kept in an indoor aviary and we recorded them individually foraging on trays with 10 earthworms mixed with soil under various standardized light and white noise conditions. The number of earthworms discovered and eaten by Ruff increased with light level, but only when white noise was played, suggesting that although they can detect earthworms by sight, Ruff also use auditory cues. We suggest that although surfacing numbers of earthworms are highest during the night, diurnal intake rates are probably sufficient to avoid nocturnal foraging on a resource that is more available but perhaps less detectable at that time.  相似文献   

4.
    
Analysis of predator–prey interactions is a core concept of animal ecology, explaining structure and dynamics of animal food webs. Measuring the functional response, i.e. the intake rate of a consumer as a function of prey density, is a powerful method to predict the strength of trophic links and assess motives of prey choice, particularly in arthropod communities. However, due to their reductionist set‐up, functional responses, which are based on laboratory feeding experiments, may not display field conditions, possibly leading to skewed results. Here, we tested the validity of functional responses of centipede predators and their prey by comparing them with empirical gut content data from field‐collected predators. Our predator–prey system included lithobiid and geophilomorph centipedes, abundant and widespread predators of forest soils and their soil‐dwelling prey. First, we calculated the body size‐dependent functional responses of centipedes using a published functional response model in which we included natural prey abundances and animal body masses. This allowed us to calculate relative proportions of specific prey taxa in the centipede diet. In a second step, we screened field‐collected centipedes for DNA of eight abundant soil‐living prey taxa and estimated their body size‐dependent proportion of feeding events. We subsequently compared empirical data for each of the eight prey taxa, on proportional feeding events with functional response‐derived data on prey proportions expected in the gut, showing that both approaches significantly correlate in five out of eight predator–prey links for lithobiid centipedes but only in one case for geophilomorph centipedes. Our findings suggest that purely allometric functional response models, which are based on predator–prey body size ratios are too simple to explain predator–prey interactions in a complex system such as soil. We therefore stress that specific prey traits, such as defence mechanisms, must be considered for accurate predictions.  相似文献   

5.
    
Complex coevolutionary relationships among competitors, predators, and prey have shaped taxa diversity, life history strategies, and even the avian migratory patterns we see today. Consequently, accurate documentation of prey selection is often critical for understanding these ecological and evolutionary processes. Conventional diet study methods lack the ability to document the diet of inconspicuous or difficult‐to‐study predators, such as those with large home ranges and those that move vast distances over short amounts of time, leaving gaps in our knowledge of trophic interactions in many systems. Migratory raptors represent one such group of predators where detailed diet studies have been logistically challenging. To address knowledge gaps in the foraging ecology of migrant raptors and provide a broadly applicable tool for the study of enigmatic predators, we developed a minimally invasive method to collect dietary information by swabbing beaks and talons of raptors to collect trace prey DNA. Using previously published COI primers, we were able to isolate and reference gene sequences in an open‐access barcode database to identify prey to species. This method creates a novel avenue to use trace molecular evidence to study prey selection of migrating raptors and will ultimately lead to a better understanding of raptor migration ecology. In addition, this technique has broad applicability and can be used with any wildlife species where even trace amounts of prey debris remain on the exterior of the predator after feeding.  相似文献   

6.
Characterization of energy flow in ecosystems is one of the primary goals of ecology, and the analysis of trophic interactions and food web dynamics is key to quantifying energy flow. Predator‐prey interactions define the majority of trophic interactions and food web dynamics, and visual analysis of stomach, gut or fecal content composition is the technique traditionally used to quantify predator‐prey interactions. Unfortunately such techniques may be biased and inaccurate due to variation in digestion rates ( Sheppard & Hardwood 2005 ); however, those limitations can be largely overcome with new technology. In the last 20 years, the use of molecular genetic techniques in ecology has exploded ( King et al. 2008 ). The growing availability of molecular genetic methods and data has fostered the use of PCR‐based techniques to accurately distinguish and identify prey items in stomach, gut and fecal samples. In this month’s issue of Molecular Ecology Resources, Corse et al. (2010) describe and apply a new approach to quantifying predator‐prey relationships using an ecosystem‐level genetic characterization of available and consumed prey in European freshwater habitats ( Fig. 1a ). In this issue of Molecular Ecology, Hardy et al. (2010) marry the molecular genetic analysis of prey with a stable isotope (SI) analysis of trophic interactions in an Australian reservoir community ( Fig. 1b ). Both papers demonstrate novel and innovative approaches to an old problem – how do we effectively explore food webs and energy movement in ecosystems?
Figure 1 Open in figure viewer PowerPoint The aquatic habitats used for two studies of diet and trophic interactions that employed molecular genetic and stable isotope analyses. Panel a: Example of Rhone basin habitat (France) where fish diet was determined using PCR to classify prey to a series of ecological clades (photo by Emmanuel Corse). Panel b: A weir pool on the lower Murray River (Australia) where food web and prey use was evaluated using a combination of advanced molecular genetic and stable isotope analyses (photo credit: CSIRO).  相似文献   

7.
    
On coral reefs in New Caledonia, the eggs of demersal‐spawning fishes are consumed by turtle‐headed seasnakes (Emydocephalus annulatus). Fish repel nest‐raiding snakes by a series of tactics. We recorded 232 cases (involving 22 fish species) of antipredator behaviour towards snakes on a reef near Noumea. Blennies and gobies focused their attacks on snakes entering their nests, whereas damselfish (Pomacentridae) attacked passing snakes, as well as nest‐raiders (reflecting territorial defence). Biting the snake was the most common form of attack, although damselfish and blennies also slapped snakes with the tail, or (blennies only) plugged the nest entrance with the parent fish's body. Gobies rarely defended the nest, although they sometimes bit or threw sand at the snake. A snake was more likely to flee if it was attacked before it began feeding rather than after it found the eggs (82% versus 3% repelled) and if bitten on the head rather than the body (68% versus 53%). Tail‐slaps were not effective, although plugging the burrow and throwing sand often caused snakes to flee. These strong patterns reflect phylogenetic variation in fish behaviour (e.g. damselfish detect a snake approach sooner than do substrate‐dwelling blennies and gobies) coupled with intraspecific variation in snake diets. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 415–425.  相似文献   

8.
    
Migration is expected to benefit individuals through exposure to higher quality forage and reducing predation rates more than non‐migratory conspecifics. Previous studies of partially migratory ungulates (with migrant and resident individuals) have focused on bottom–up factors regulating resident and migrant segments, yet differential predation between strategies could also be a density‐dependent regulatory mechanism. Our study tested for density‐dependence in mortality, as well as mechanisms of ­bottom–up or top–down regulation in the resident and migrant portions of the partially migratory Ya Ha Tinda elk population. We tested for density dependence in adult female and juvenile survival rates, and then discriminated between predator‐ and food‐regulation hypotheses by testing for density‐dependence amongst mortality causes for adult female elk. Notably, the population declined almost 70% from near previously published estimates of carrying capacity over 10 years, providing ideal conditions to test for density dependence. In contrast to predictions, we found only weak support for density dependence in adult survival and juvenile survival. We also found few differences between migrant and resident elk in adult or juvenile survival, though juvenile survival differences were biologically significant. Predation by humans and grizzly bears was density dependent, but similar between migratory strategies. Predation by wolves was the leading known cause of mortality, yet remained constant with declining elk density equally for both migrant and resident elk, indicating wolf predation was density‐independent. Instead of being strongly regulated by food or predation, we found adult female survival was driven by density‐independent predation and climatic factors. The few differences between migratory strategies suggest equivalent fitness payoffs for migrants and residents. This population is being limited by density‐independent predation leading to declines of both migratory strategies. Our results challenge classical predator–prey theory, and call for better integration between predator–prey and migration theory.  相似文献   

9.
Exposure to elevated levels of background predation risk is known to shape the behavioural response of prey organisms to known and unknown predation threats. However, less is known regarding the effects of background predation risk on predator recognition learning. Here, we test the potential effects of elevated background predation risk on the strength and retention of learned predator recognition in juvenile convict cichlids (Amatitlania nigrofasciata). In a series of laboratory trials, we exposed shoals of juvenile cichlids to conditions of elevated (vs. low) levels of background risk and then conditioned them to recognize a novel predator odour (rainbow trout, Oncorhynchus mykiss). The results of our first experiment demonstrate that despite showing reduced response intensities during initial conditioning (due to risk allocation), conditioned cichlids from high vs. low background risk show similar intensities of learned recognition when tested 24 h post‐conditioning. Moreover, elevated levels of background risk induced a predator avoidance response among unconditioned cichlids (due to induced neophobia). Our second experiment demonstrates that while we find no difference in the strength of learning when tested 24 h post‐conditioning, retention of acquired recognition is enhanced among cichlids from the high background predation risk treatment. Together, our results highlight the complex interacting effects past experience plays in shaping the response to acute predation threats.  相似文献   

10.
Juvenile Cyprichromis leptosoma, an endemic cichlid fish in Lake Tanganyika, form large schools near the nesting sites of the piscivorous cichlid Lepidiolamprologus profundicola. The female L. profundicola guarding the nesting site drove away piscivorous fish that approached the nest. After the disappearance of the guarding L. profundicola, the frequency of predatory dashes toward the school of juvenile C. leptosoma near the nesting site increased markedly. This suggests that juvenile C. leptosoma use the breeding territory of L. profundicola as a safety zone from their potential predators. The relationship between C. leptosoma and L. profundicola should be regarded as a type of commensalism.  相似文献   

11.
    
Sensitivity to chemical cues associated with predation threat has been well observed in many freshwater zooplankters, yet few studies have highlighted such sensitivity in eury‐ and stenohaline metazoans. We aimed to assess sensitivity to conspecific chemical alarm cues in the estuarine copepod, Paracartia longipatella. Alarm cues associated with predation have been shown to have population level effects on certain zooplanktonic species. As such, we assessed the occurrence of such effects on population dynamics of P. longipatella over a 12 day period. Using experimental in situ mesocosms, we compared P. longipatella adult, copepodite and nauplii numbers between three treatments; one inoculated with conspecific alarm cues, one containing direct predation pressure (zooplanktivorous fish), and a control treatment containing no predation threat. Trends in population abundances were similar between the direct predation and alarm cue treatments for the six days of the experiment, decreasing in abundance. During the latter half of the study, however, P. longipatella abundances in the alarm cue treatment increased, while those in the presence of direct predation continued to decrease. In the treatment absent of any predation threat, P. longipatella abundances increased consistently over time for the duration of the study. We suggest that P. longipatella are indeed sensitive to conspecific alarm cues associated with predation threat. Furthermore, we propose that prolonged exposure to conspecific alarm cues in the absence of any real threat results in a reduction in sensitive to these cues.  相似文献   

12.
    
1. Antlions are opportunistic trap building predators that cannot control prey encounter. Their trap should ideally retain a great diversity of prey. However, building a single trap that captures many prey with varying characteristics can be challenging. 2. A series of five different ant species ranging from thin to large, of sizes ranging from 2.75 to 6.5 mm, and a mean weight ranging from 0.54 to 6.00 mg were offered in a random succession to antlions. The state of satiation of the antlions was controlled, and their mass and the depth of their pit were recorded. The reaction of antlion to the prey, the probability of capture as well as the time to escape were recorded. 3. The probability of an antlion reaction is an increasing function of the pit depth and a decreasing function of antlion mass. The probability of capture is highest for intermediate prey mass and is an increasing function of pit depth. The time to escape is a declining function of prey mass and an increasing function of pit depth. 4. There is an upper limit to prey mass given that large prey escape out of the pit. There is a lower limit to prey mass given the difficulty to apprehend the smallest, thin species. Consequently, there is a range of prey mass, corresponding to a medium‐sized ant of 2 mg, for which the pit functions best. The physics of insect locomotion on sandy slopes was identified as the key to understanding the functioning of antlion pits.  相似文献   

13.
    
  • 1 The Eurasian lynx Lynx lynx occupies a variety of environmental and climatic conditions, and the majority of present‐day European populations have either recovered from severe demographic bottlenecks, or are living in fragmented habitat. These factors may have affected the genetic variability of lynx populations. We summarize available data on genetics, population status and ecology of these felids to shed light on the pattern and mechanisms behind their genetic variability and population differentiation in Europe.
  • 2 Genetic studies conducted so far, based on mtDNA and microsatellites, have shown that the Eurasian lynx has low to moderate genetic variability. Variability is lowest in the north (Scandinavian bottlenecked population), but is also low in the Carpathian region. A trend towards loss of genetic variation has been noted in fragmented and reintroduced populations. Genetically, the populations are highly differentiated from each other.
  • 3 There are clear relationships between the pattern of lynx genetic variability, differentiation between the populations, and such factors as population history (demographic bottlenecks), social interactions and habitat fragmentation. The genetic divergence between lynx populations is also strongly correlated with the depth and duration of snow cover.
  • 4 Our review provides evidence that the lynx is undergoing significant genetic differentiation, due to several factors. To enable better planning of conservation programmes for the Eurasian lynx, researchers should identify the Evolutionarily Significant Units among its populations, using different classes of molecular markers.
  相似文献   

14.
    
Prey organisms reduce predation risk by altering their behavior, morphology, or life history. Avoiding or deterring predators often incurs costs, such as reductions in growth or fecundity. Prey minimize costs by limiting predator avoidance or deterrence to situations that pose significant risk of injury or death, requiring them to gather information regarding the relative threat potential predators pose. Chemical cues are often used for risk evaluation, and we investigated morphological responses of oysters (Crassostrea virginica) to chemical cues from injured conspecifics, from heterospecifics, and from predatory blue crabs (Callinectes sapidus) reared on different diets. Previous studies found newly settled oysters reacted to crab predators by growing heavier, stronger shells, but that adult oysters did not. We exposed oysters at two size classes (newly settled oyster spat and juveniles ~2.0 cm) to predation risk cue treatments including predator or injured prey exudates and to seawater controls. Since both of the size classes tested can be eaten by blue crabs, we hypothesized that both would react to crab exudates by producing heavier, stronger shells. Oyster spat grew heavier shells that required significantly more force to break, an effective measure against predatory crabs, when exposed to chemical exudates from blue crabs as compared to controls. When exposed to chemical cues from injured conspecifics or from injured clams (Mercenaria mercenaria), a sympatric bivalve, shell mass and force were intermediate between predator treatments and controls, indicating that oysters react to injured prey cues but not as strongly as to cues released by predators. Juvenile oysters of ~ 2.0 cm did not significantly alter their shell morphology in any of the treatments. Thus, newly settled oysters can differentiate between predatory threats and adjust their responses accordingly, with the strongest responses being to exudates released by predators, but oysters of 2.0 cm and larger do not react morphologically to predatory threats.  相似文献   

15.
    
  1. Environmental changes such as global warming can affect ecological communities by altering individual life histories and species interactions. Recent studies focusing on the consequences of environmental change on species interactions highlighted the need for a wider, multi‐species context including both trophic and non‐trophic interactions (e.g. predator interference). However, the effects of biotic and abiotic factors on trophic and non‐trophic interactions remain largely unexplored.
  2. To fill this gap, we combined laboratory experiments and functional response modelling to investigate how temperature and prey density influence trophic and non‐trophic interactions in multiple predator communities.
  3. The system under study consisted of predatory dragonfly larvae (Aeshna cyanea) and omnivorous marbled crayfish (Procambarus virginalis) preying on common carp fry (Cyprinus carpio). We estimated the functional response of each predator in single‐predator experiments and used this information to disentangle the trophic and non‐trophic interactions and their dependence on environmental conditions in multiple predator trials.
  4. We found that consumer identity, prey density, and temperature all affect the magnitude of trophic and non‐trophic interactions. Non‐trophic interactions mostly decreased predator feeding rates, corroborating previous observations that interference prevails in aquatic communities. Moreover, trophic interactions depended primarily on the environmental variables whereas non‐trophic interactions depended mainly on consumer identity.
  5. Our results indicate that non‐trophic interactions among true predators and omnivores can be substantial and that biotic and abiotic conditions further modify the magnitude and direction of these interactions, which can affect food web dynamics and stability.
  相似文献   

16.
    
  1. Identifying factors that influence the foraging ability of an introduced predator is essential for assessing its potential impact on the invaded community. We conducted a series of in situ enclosure experiments to determine the effect of light on the foraging ability and community‐level effects of the invasive cladoceran Bythotrephes longimanus in lakes.
  2. In 1‐L enclosures with only Daphnia prey, a strong effect of predation under ambient light conditions was observed. There was no evidence of predation in dark treatments, suggesting that Bythotrephes is unable to feed by mechanoreception alone.
  3. A subsequent experiment using larger enclosures exposed an assemblage of prey from an uninvaded lake to Bythotrephes predation across a similar light gradient. Consistent with regional lake surveys, Bythotrephes reduced cladoceran abundance under ambient light conditions.
  4. At the community level, predation effects were overall strongest under ambient light; however, the influence of light on predation varied across trials that differed in initial community structure of prey. Also, some predation under dark conditions was possible on Ceriodaphnia and Bosmina, suggesting that Daphnia, in particular, may be less vulnerable under low‐light conditions.
  5. Our results suggest that light refuges for some prey taxa could play an important role in mediating the impact of Bythotrephes.
  相似文献   

17.
    
Analysing the structure and dynamics of biotic interaction networks and the processes shaping them is currently one of the key fields in ecology. In this paper, we develop a novel approach to gut content analysis, thereby deriving a new perspective on community interactions and their responses to environment. For this, we use an elevational gradient in the High Arctic, asking how the environment and species traits interact in shaping predator–prey interactions involving the wolf spider Pardosa glacialis. To characterize the community of potential prey available to this predator, we used pitfall trapping and vacuum sampling. To characterize the prey actually consumed, we applied molecular gut content analysis. Using joint species distribution models, we found elevation and vegetation mass to explain the most variance in the composition of the prey community locally available. However, such environmental variables had only a small effect on the prey community found in the spider's gut. These observations indicate that Pardosa exerts selective feeding on particular taxa irrespective of environmental constraints. By directly modelling the probability of predation based on gut content data, we found that neither trait matching in terms of predator and prey body size nor phylogenetic or environmental constraints modified interaction probability. Our results indicate that taxonomic identity may be more important for predator–prey interactions than environmental constraints or prey traits. The impact of environmental change on predator–prey interactions thus appears to be indirect and mediated by its imprint on the community of available prey.  相似文献   

18.
19.
    
Predator–prey interactions may be responsible for enormous morphological diversity in prey species. We performed predation experiments with morphological manipulations (ablation) to investigate the defensive function of dorsal spines and explanate margins in Cassidinae leaf beetles against three types of predators: assassin bugs (stinger), crab spiders (biter), and tree frogs (swallower). There was mixed support for the importance of primary defense mechanisms (i.e., preventing detection or identification). Intact spined prey possessing dorsal spines were more likely to be attacked by assassin bugs and tree frogs, while intact armored prey possessing explanate margins were likely to avoid attack by assassin bugs. In support of the secondary defense mechanisms (i.e., preventing subjugation), dorsal spines had a significant physical defensive function against tree frogs, and explanate margins protected against assassin bugs and crab spiders. Our results suggest a trade‐off between primary and secondary defenses. Dorsal spines improved the secondary defense but weakened the primary defense against tree frogs. We also detected a trade‐off in which dorsal spines and explanate margins improved secondary defenses against mutually exclusive predator types. Adaptation to different predatory regimes and functional trade‐offs may mediate the diversification of external morphological defenses in Cassidinae leaf beetles.  相似文献   

20.
    
Dropping is a common antipredator defence that enables rapid escape from a perceived threat. However, despite its immediate effectiveness in predator–prey encounters (and against other dangers such as a parasitoid or an aggressive conspecific), it remains an under‐appreciated defence strategy in the scientific literature. Dropping has been recorded in a wide range of taxa, from primates to lizards, but has been studied most commonly in insects. Insects have been found to utilise dropping in response to both biotic and abiotic stimuli, sometimes dependent on mechanical or chemical cues. Whatever the trigger for dropping, the decision to drop by prey will present a range of inter‐related costs and benefits to the individual and so there will be subtle complexities in the trade‐offs surrounding this defensive behaviour. In predatory encounters, dropping by prey will also impose varying costs and benefits on the predator – or predators – involved in the system. There may be important trade‐offs involved in the decision made by predators regarding whether to pursue prey or not, but the predator perspective on dropping has been less explored at present. Beyond its function as an escape tactic, dropping has also been suggested to be an important precursor to flight in insects and further study could greatly improve understanding of its evolutionary importance. Dropping in insects could also prove of significant practical importance if an improved understanding can be applied to integrated pest‐management strategies. Currently the non‐consumptive effects of predators on their prey are under‐appreciated in biological control and it may be that the dropping behaviour of many pest species could be exploited via management practices to improve crop protection. Overall, this review aims to provide a comprehensive synthesis of the current literature on dropping and to raise awareness of this fascinating and widespread behaviour. It also seeks to offer some novel hypotheses and highlight key avenues for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号