共查询到20条相似文献,搜索用时 20 毫秒
1.
The area of land dedicated to growing maize for bioenergy in the United Kingdom is rapidly expanding. To understand how maize production influences soil carbon (C) dynamics, and whether this is influenced by soil type, we measured net ecosystem exchange (NEE) using the eddy covariance technique over the 2021 growing season. We combined the NEE data with C imports and exports to calculate the net ecosystem productivity (NEP) of two maize crops grown for bioenergy in the United Kingdom, one site on mineral soil and the other on lowland agricultural peat. Maize was similarly productive at both sites—gross primary productivity was 1107 g C m−2 at the site with mineral soil and 1407 g C m−2 at the peat site. However, total ecosystem respiration was considerably higher from the peat site (1198 g C m−2) compared with the mineral soil site (678 g C m−2). After accounting for the removal of C in harvested biomass, both sites were net C sources, but C losses were over two times greater from the peat site (NEP = 290 g C m−2) than the mineral site (NEP = 136 g C m−2). While annual crops may be needed to produce bioenergy in the short term, growing maize for bioenergy in the United Kingdom does not appear to be a viable option for C sequestration over the long term, as it leads to high carbon losses from agroecosystems, especially those on organic soils. Instead, growing perennial bioenergy crops on mineral soils with a low organic C content is a more appropriate option. 相似文献
2.
Life cycle assessment (LCA) was combined with primary data from nine forest harvesting operations in New York, Maine, Massachusetts, and Vermont, from 2013 to 2019 where forest biomass (FB) for bioenergy was one of several products. The objective was to conduct a data‐driven study of greenhouse gas emissions associated with FB feedstock harvesting operations in the Northeast United States. Deterministic and stochastic LCA models were built to simulate the current FB bioenergy feedstock supply chain in the Northeast US with a cradle‐to‐gate scope (forest harvest through roadside loading) and a functional unit of 1.0 Mg of green FB feedstock at a 50% moisture content. Baseline LCA, sensitivity analysis, and uncertainty analyses were conducted for three different FB feedstock types—dirty chips, clean chips, and grindings—enabling an empirically driven investigation of differences between feedstock types, individual harvesting process contributions, and literature comparisons. The baseline LCA average impacts were lower for grindings (4.57 kg CO 2eq/Mg) and dirty chips (7.16 kg CO 2eq/Mg) than for clean chips (23.99 kg CO 2eq/Mg) under economic allocation, but impacts were of similar magnitude under mass allocation, ranging from 24.42 to 27.89 kg CO 2eq/Mg. Uncertainty analysis showed a wider range of probable results under mass allocation compared to economic allocation. Sensitivity analysis revealed the impact of variations in the production masses and total economic values of primary products of forest harvests on the LCA results due to allocation of supply chain emissions. The high variability in fuel use between logging contractors also had a distinct influence on LCA results. The results of this study can aid decision‐makers in energy policy and guide emissions reductions efforts while informing future LCAs that expand the system boundary to regional FB energy pathways, including electricity generation, transportation fuels, pellets for heat, and combined heat and power. 相似文献
3.
理解草地生态系统结构和功能对氮富集的响应及其机制有助于准确评估大气氮沉降等外源氮输入的生态效应。全球范围内建立的多水平氮添加实验为认识草地生态系统结构和功能对氮输入的非线性响应机制提供了有效途径。为了反映学术界基于多水平氮添加控制实验取得的主要研究进展,该文综述了草地群落多样性和生态系统碳氮循环过程对外源氮输入的非线性响应特征及其驱动机制。按照目前的研究,氮输入会导致草地植物物种多样性、功能多样性以及土壤细菌多样性下降,但真菌多样性的变化并不明显。地上和地下生产力对氮输入的响应趋势存在差异:地上生产力沿氮添加梯度呈“先上升后饱和”的变化规律,而根系生产量和根冠比呈下降趋势,根系周转速率则呈“先上升后下降”的单峰格局。不同碳分解过程对氮输入的响应也不尽相同:凋落物分解速率沿氮添加梯度表现出“指数衰减、线性增加或无显著变化”的多元响应,而土壤呼吸和CH 4吸收速率与施氮量的关系则以“低氮促进、高氮抑制”的单峰趋势为主。类似地,不同土壤碳组分对氮输入的响应存在差异:氮添加总体会导致草地土壤碳库和颗粒态有机碳含量增加,而矿物结合态碳含量随施氮量呈“增加、不变或下降”的多元响... 相似文献
4.
The study describes an integrated impact assessment tool for the net carbon dioxide (CO 2) exchange in forest production. The components of the net carbon exchange include the uptake of carbon into biomass, the decomposition of litter and humus, emissions from forest management operations and carbon released from the combustion of biomass and degradation of wood‐based products. The tool enables the allocation of the total carbon emissions to the timber and energy biomass and to the energy produced on the basis of biomass. In example computations, ecosystem model simulations were utilized as an input to the tool. We present results for traditional timber production (pulpwood and saw logs) and integrated timber and bioenergy production (logging residues, stumps and roots) for Norway spruce, in boreal conditions in Finland, with two climate scenarios over one rotation period. The results showed that the magnitude of management related emissions on net carbon exchange was smaller when compared with the total ecosystem fluxes; decomposition being the largest emission contributor. In addition, the effects of management and climate were higher on the decomposition of new humus compared with old humus. The results also showed that probable increased biomass growth, obtained under the changing climate (CC), could not compensate for decomposition and biomass combustion related carbon loss in southern Finland. In our examples, the emissions allocated for the energy from biomass in southern Finland were 172 and 188 kg CO 2 MW h ?1 in the current climate and in a CC, respectively, and 199 and 157 kg CO 2 MW h ?1 in northern Finland. This study concludes that the tool is suitable for estimating the net carbon exchange of forest production. The tool also enables the allocation of direct and indirect carbon emissions, related to forest production over its life cycle, in different environmental conditions and for alternative time periods and land uses. Simulations of forest management regimes together with the CC give new insights into ecologically sustainable forest bioenergy and timber production, as well as climate change mitigation options in boreal forests. 相似文献
5.
碳足迹是指由企业、组织或个人引起的碳排放的集合。参照PAS2050规范并结合生命周期评价方法对上海市水稻生产进行了碳足迹评估。结果表明:(1)目前上海市水稻生产的碳排放为11.8114 t CO2e/hm2,折合每吨水稻生产周期的碳足迹为1.2321 t CO2e;(2)稻田温室气体排放是水稻生产最主要的碳排放源,每吨水稻生产的总排放量为0.9507 t CO2e,占水稻生产全部碳排放的77.1%,其中甲烷(CH4)又是最主要的温室气体,对稻田温室气体碳排放的贡献率高达96.6%;(3)化学肥料的施用是第二大碳排放源,每吨水稻生产的总排放量为0.2044 t CO2e,占水稻生产总碳排放的16.5%,其中N最高,排放量为0.1159 t CO2e。因此,上海低碳水稻生产的关键在降低稻田甲烷的排放,另外可通过提高氮肥利用效率,减少氮肥施用等方法减少种植过程中碳排放。 相似文献
6.
Owing to the peculiarities of forest net primary production humans would appropriate ca. 60% of the global increment of woody biomass if forest biomass were to produce 20% of current global primary energy supply. We argue that such an increase in biomass harvest would result in younger forests, lower biomass pools, depleted soil nutrient stocks and a loss of other ecosystem functions. The proposed strategy is likely to miss its main objective, i.e. to reduce greenhouse gas (GHG) emissions, because it would result in a reduction of biomass pools that may take decades to centuries to be paid back by fossil fuel substitution, if paid back at all. Eventually, depleted soil fertility will make the production unsustainable and require fertilization, which in turn increases GHG emissions due to N 2O emissions. Hence, large‐scale production of bioenergy from forest biomass is neither sustainable nor GHG neutral. 相似文献
7.
Perennial bioenergy crops have significant potential to reduce greenhouse gas (GHG) emissions and contribute to climate change mitigation by substituting for fossil fuels; yet delivering significant GHG savings will require substantial land‐use change, globally. Over the last decade, research has delivered improved understanding of the environmental benefits and risks of this transition to perennial bioenergy crops, addressing concerns that the impacts of land conversion to perennial bioenergy crops could result in increased rather than decreased GHG emissions. For policymakers to assess the most cost‐effective and sustainable options for deployment and climate change mitigation, synthesis of these studies is needed to support evidence‐based decision making. In 2015, a workshop was convened with researchers, policymakers and industry/business representatives from the UK, EU and internationally. Outcomes from global research on bioenergy land‐use change were compared to identify areas of consensus, key uncertainties, and research priorities. Here, we discuss the strength of evidence for and against six consensus statements summarising the effects of land‐use change to perennial bioenergy crops on the cycling of carbon, nitrogen and water, in the context of the whole life‐cycle of bioenergy production. Our analysis suggests that the direct impacts of dedicated perennial bioenergy crops on soil carbon and nitrous oxide are increasingly well understood and are often consistent with significant life cycle GHG mitigation from bioenergy relative to conventional energy sources. We conclude that the GHG balance of perennial bioenergy crop cultivation will often be favourable, with maximum GHG savings achieved where crops are grown on soils with low carbon stocks and conservative nutrient application, accruing additional environmental benefits such as improved water quality. The analysis reported here demonstrates there is a mature and increasingly comprehensive evidence base on the environmental benefits and risks of bioenergy cultivation which can support the development of a sustainable bioenergy industry. 相似文献
8.
为揭示凋落物去除和添加处理对草原生态系统碳通量的影响, 2013和2014年连续两年在成熟群落围封样地进行凋落物去除实验、在退化群落放牧样地进行凋落物添加实验, 并运用静态箱法探讨碳通量变化规律并分析其主要影响因子。结果表明: 两种群落的净生态系统CO 2交换( NEE)有明显的季节性变化。对成熟群落而言, 去除50%凋落物显著增加了 NEE, 去除100%凋落物显著降低了 NEE, 而对生态系统总初级生产力( GEP)和生态系统呼吸( ER)均无显著影响; 对退化群落而言, 凋落物添加显著增加了 GEP和 NEE, 而对 ER无显著影响。两种群落的 GEP与10 cm土壤温度显著正相关, 但 NEE和 GEP的变化规律与土壤温度相反, 与10 cm土壤湿度相同。由此可见, 凋落物去除和添加处理对生态系统碳通量的影响主要是改变土壤湿度和地上生物量,而不是改变土壤温度。该研究为合理利用凋落物改善草地生态系统管理和促进草地恢复提供了理论依据。 相似文献
9.
The net CO 2 exchange of forests was investigated to study net atmospheric impact of forest bioenergy production (BP) and utilization in Finnish boreal conditions. Net CO 2 exchange was simulated with a life cycle assessment tool over a 90‐year period and over the whole Finland based on National Forest Inventory data. The difference in the net exchanges between the traditional timber production (TP) and BP regime was considered the net atmospheric impact of forest bioenergy utilization. According to the results, forests became net sources of CO 2 after about 20 years of simulation, and the net exchange was higher in the BP regime than in the TP regime until the middle of the simulation period. From 2040 onwards, the net exchange started to decrease in both regimes and became higher in the TP regime, excluding the last decade of the simulation. The shift of forests to becoming a CO 2 source reflected the decrease in CO 2 sequestration due to the increasing share of recently harvested and seedling stands that are acting as sources of CO 2, and an increase of emissions from degradation of wood products. When expressed in terms of radiative forcing, the net atmospheric impact was on average 19% less for bioenergy compared with that for coal energy over the whole simulation period. The results show the importance of time dependence when considering dynamic forest ecosystems in BP and climate change mitigation. Furthermore, the results emphasize the dualistic role and possibilities of forest management in controlling the build and release of carbon into and from the stocks and in controlling the rate of the build speed, i.e. growth. This information is needed in identifying the capability and possibilities of ecosystems to produce biomass for energy, alongside other products and ecosystem services (e.g. pulp wood and timber), and simultaneously to mitigate climate change. 相似文献
10.
Europe’s roadmap to a low-carbon economy aims to cut greenhouse gas ( GHG) emissions 80% below 1990 levels by 2050. Beef production is an important source of GHG emissions and is expected to increase as the world population grows. LIFE BEEF CARBON is a voluntary European initiative that aims to reduce GHG emissions per unit of beef (carbon footprint) by 15% over a 10-year period on 2172 farms in four large beef-producing countries. Changes in farms beef carbon footprint are normally estimated via simulation modelling, but the methods current models apply differ. Thus, our initial goal was to develop a common modelling framework to estimate beef farms carbon footprint. The framework was developed for a diverse set of Western Europe farms located in Ireland, Spain, Italy and France. Whole farm and life cycle assessment ( LCA) models were selected to quantify emissions for the different production contexts and harmonized. Carbon Audit was chosen for Ireland, Bovid-CO 2 for Spain and CAP’2ER for France and Italy. All models were tested using 20 case study farms, that is, 5 per country and quantified GHG emissions associated with on-farm live weight gain. The comparison showed the ranking of beef systems gross carbon footprint was consistent across the three models. Suckler to weaning or store systems generally had the highest carbon footprint followed by suckler to beef systems and fattening beef systems. When applied to the same farm, Carbon Audit’s footprint estimates were slightly lower than CAP’2ER, but marginally higher than Bovid-CO 2. These differences occurred because the models were adapted to a specific region’s production circumstances, which meant their emission factors for key sources; that is, methane from enteric fermentation and GHG emissions from concentrates were less accurate when used outside their target region. Thus, for the common modelling framework, region-specific LCA models were chosen to estimate beef carbon footprints instead of a single generic model. Additionally, the Carbon Audit and Bovid-CO 2 models were updated to include carbon removal by soil and other environmental metrics included in CAP’2ER, for example, acidification. This allows all models to assess the effect carbon mitigation strategies have on other potential pollutants. Several options were identified to reduce beef farms carbon footprint, for example, improving genetic merit. These options were assessed for beef systems, and a mitigation plan was created by each nation. The cumulative mitigation effect of the LIFE BEEF CARBON plan was estimated to exceed the projects reduction target (−15%). 相似文献
11.
The effect of a transition from grassland to second‐generation (2G) bioenergy on soil carbon and greenhouse gas (GHG) balance is uncertain, with limited empirical data on which to validate landscape‐scale models, sustainability criteria and energy policies. Here, we quantified soil carbon, soil GHG emissions and whole ecosystem carbon balance for short rotation coppice (SRC) bioenergy willow and a paired grassland site, both planted at commercial scale. We quantified the carbon balance for a 2‐year period and captured the effects of a commercial harvest in the SRC willow at the end of the first cycle. Soil fluxes of nitrous oxide (N 2O) and methane (CH 4) did not contribute significantly to the GHG balance of these land uses. Soil respiration was lower in SRC willow (912 ± 42 g C m ?2 yr ?1) than in grassland (1522 ± 39 g C m ?2 yr ?1). Net ecosystem exchange (NEE) reflected this with the grassland a net source of carbon with mean NEE of 119 ± 10 g C m ?2 yr ?1 and SRC willow a net sink, ?620 ± 18 g C m ?2 yr ?1. When carbon removed from the ecosystem in harvested products was considered (Net Biome Productivity), SRC willow remained a net sink (221 ± 66 g C m ?2 yr ?1). Despite the SRC willow site being a net sink for carbon, soil carbon stocks (0–30 cm) were higher under the grassland. There was a larger NEE and increase in ecosystem respiration in the SRC willow after harvest; however, the site still remained a carbon sink. Our results indicate that once established, significant carbon savings are likely in SRC willow compared with the minimally managed grassland at this site. Although these observed impacts may be site and management dependent, they provide evidence that land‐use transition to 2G bioenergy has potential to provide a significant improvement on the ecosystem service of climate regulation relative to grassland systems. 相似文献
12.
A full accounting of net greenhouse gas balance (NGHGB) and greenhouse gas intensity (GHGI) was examined in an annual coastal reclaimed saline Jerusalem artichoke-fallow cropping system under various soil practices including soil tillage, soil ameliorant, and crop residue amendments. Seasonal fluxes of soil carbon dioxide (CO 2), methane (CH 4), and nitrous oxide (N 2O) were measured using static chamber method, and the net ecosystem exchange of CO 2 (NEE) was determined by the difference between soil heterotrophic respiration ( RH) and net primary production (NPP). Relative to no-tillage, rotary tillage significantly decreased the NPP of Jerusalem artichoke while it had no significant effects on the annual RH. Rotary tillage increased CH 4 emissions, while seasonal or annual soil N 2O emissions did not statistically differ between the two tillage treatments. Compared with the control plots, soil ameliorant or straw amendment enhanced RH, soil CH 4, and N 2O emissions under the both tillage regimes. Annual NGHGB was negative for all the field treatments, as a consequence of net ecosystem CO 2 sequestration exceeding the CO 2-equivalents released as CH 4 and N 2O emissions, which indicates that Jerusalem artichoke-fallow cropping system served as a net sink of GHGs. The annual net NGHGB and GHGI were estimated to be 11–21% and 4–8% lower in the NT than in RT cropping systems, respectively. Soil ameliorant and straw amendments greatly increased NPP and thus significantly decreased the negative annual net NGHGB. Overall, higher NPP but lower climatic impacts of coastal saline bioenergy production would be simultaneously achieved by Jerusalem artichoke cultivation under no-tillage with improved saline soil conditions in southeast China. 相似文献
13.
Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km 2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management. 相似文献
14.
Short-rotation woody crops (SRWC) along with other woody biomass feedstocks will play a significant role in a more secure and sustainable energy future for the United States and around the world. In temperate regions, shrub willows are being developed as a SRWC because of their potential for high biomass production in short time periods, ease of vegetative propagation, broad genetic base, and ability to resprout after multiple harvests. Understanding and working with willow's biology is important for the agricultural and economic success of the system. The energy, environmental, and economic performance of willow biomass production and conversion to electricity is evaluated using life cycle modeling methods. The net energy ratio (electricity generated/life cycle fossil fuel consumed) for willow ranges from 10 to 13 for direct firing and gasification processes. Reductions of 70 to 98 percent (compared to U.S. grid generated electricity) in greenhouse gas emissions as well as NOx, SO2, and particulate emissions are achieved. Despite willow's multiple environmental and rural development benefits, its high cost of production has limited deployment. Costs will be lowered by significant improvements in yields and production efficiency and by valuing the system's environmental and rural development benefits. Policies like the Conservation Reserve Program (CRP), federal biomass tax credits and renewable portfolio standards will make willow cost competitive in the near term. The avoided air pollution from the substitution of willow for conventional fossil fuel generated electricity has an estimated damage cost of $0.02 to $0.06 kWh?1. The land intensity of about 4.9 × 10?5 ha-yr/kWh is greater than other renewable energy sources. This may be considered the most significant limitation of willow, but unlike other biomass crops such as corn it can be cultivated on the millions of hectares of marginal agricultural lands, improving site conditions, soil quality and landscape diversity. A clear advantage of willow biomass compared to other renewables is that it is a stock resource whereas wind and PV are intermittent. With only 6 percent of the current U.S. energy consumption met by renewable sources the accelerated development of willow biomass and other renewable energy sources is critical to address concerns of energy security and environmental impacts associated with fossil fuels. 相似文献
15.
作为全球变化的重要现象之一,紫外射线B(UV-B,波长280~320 nm)辐射增强对陆地生态系统碳循环具有重要影响.UV-B辐射增强主要通过改变植物的光合作用、凋落物分解以及土壤呼吸来影响陆地生态系统碳的输入和转化输出.其他气候因子(大气CO2浓度、温度和水分)可能会促进或减缓UV-B辐射对陆地生态系统碳循环的作用.本文介绍了UV-B辐射增强的背景,综述了国内外近年来UV-B辐射增强及与其他气候因子交互作用对陆地生态系统碳循环的影响,总结了目前研究存在的不足,讨论了未来的研究重点和方向. 相似文献
16.
Uruguay is pursuing renewable energy production pathways using feedstocks from its agricultural sector to supply transportation fuels, among them ethanol produced from commercial technologies that use sweet and grain sorghum. However, the environmental performance of the fuel is not known. We investigate the life cycle environmental and cost performance of these two major agricultural crops used to produce ethanol that have begun commercial production and are poised to grow to meet national energy targets for replacing gasoline. Using both attributional and consequential life cycle assessment (LCA) frameworks for system boundaries to quantify the carbon intensity, and engineering cost analysis to estimate the unit production cost of ethanol from grain and sweet sorghum, we determined abatement costs. We found 1) an accounting error in estimating N 2O emissions for a specific crop in multiple crop rotations when using Intergovernmental Panel on Climate Change(IPCC) Tier 1 methods within an attributional LCA framework, due to N legacy effects; 2) choice of baseline and crop identity in multiple crop rotations evaluated within the consequential LCA framework both affect the global warming intensity (GWI) of ethanol; and 3) although abatement costs for ethanol from grain sorghum are positive and from sweet sorghum they are negative, both grain and sweet sorghum pathways have a high potential for reducing transport fuel GWI by more than 50% relative to gasoline, and are within the ranges targeted by the US renewable transportation fuel policies. 相似文献
17.
Energy derived from second generation perennial energy crops is projected to play an increasingly important role in the decarbonization of the energy sector. Such energy crops are expected to deliver net greenhouse gas emissions reductions through fossil fuel displacement and have potential for increasing soil carbon (C) storage. Despite this, few empirical studies have quantified the ecosystem‐level C balance of energy crops and the evidence base to inform energy policy remains limited. Here, the temporal dynamics and magnitude of net ecosystem carbon dioxide (CO 2) exchange (NEE) were quantified at a mature short rotation coppice (SRC) willow plantation in Lincolnshire, United Kingdom, under commercial growing conditions. Eddy covariance flux observations of NEE were performed over a four‐year production cycle and combined with biomass yield data to estimate the net ecosystem carbon balance (NECB) of the SRC. The magnitude of annual NEE ranged from ?147 ± 70 to ?502 ± 84 g CO 2‐C m ?2 year ?1 with the magnitude of annual CO 2 capture increasing over the production cycle. Defoliation during an unexpected outbreak of willow leaf beetle impacted gross ecosystem production, ecosystem respiration, and net ecosystem exchange during the second growth season. The NECB was ?87 ± 303 g CO 2‐C m ?2 for the complete production cycle after accounting for C export at harvest (1,183 g C m ?2), and was approximately CO 2‐C neutral (?21 g CO 2‐C m ?2 year ?1) when annualized. The results of this study are consistent with studies of soil organic C which have shown limited changes following conversion to SRC willow. In the context of global decarbonization, the study indicates that the primary benefit of SRC willow production at the site is through displacement of fossil fuel emissions. 相似文献
18.
Livestock grazing can strongly determine how grasslands function and their role in the carbon cycle. However, how ecosystem carbon exchange responds to grazing and the underlying mechanisms remain unclear. We measured ecosystem carbon fluxes to explore the changes in carbon exchange and their driving mechanisms under different grazing intensities (CK, control; HG, heavy grazing; LG, light grazing; MG, moderate grazing) based on a 16-year long-term grazing experimental platform in a desert steppe. We found that grazing intensity influenced aboveground biomass during the peak growing season, primarily by decreasing shrubs and semi-shrubs and perennial forbs. Furthermore, grazing decreased net ecosystem carbon exchange by decreasing aboveground biomass, especially the functional group of shrubs and semi-shrubs. At the same time, we found that belowground biomass and soil ammonium nitrogen were the driving factors of soil respiration in grazed systems. Our study indicates that shrubs and semi-shrubs are important factors in regulating ecosystem carbon exchange under grazing disturbance in the desert steppe, whereas belowground biomass and soil available nitrogen are important factors regulating soil respiration under grazing disturbance in the desert steppe; this results provide deeper insights for understanding how grazing moderates the relationships between soil nutrients, plant biomass, and ecosystem CO2 exchange, which provide a theoretical basis for further grazing management. 相似文献
19.
Across the energy sector, alternatives to fossil fuels are being developed, in response to the dual drivers of climate change and energy security. For transport, biofuels have the greatest potential to replace fossil fuels in the short‐to medium term. However, the ecological benefits of biofuels and the role that their deployment can play in mitigating climate change are being called into question. Life Cycle Assessment (LCA) is a widely used approach that enables the energy and greenhouse gas (GHG) balance of biofuel production to be calculated. Concerns have nevertheless been raised that published data show widely varying and sometimes contradictory results. This review describes a systematic review of GHG emissions and energy balance data from 44 LCA studies of first‐ and second‐generation biofuels. The information collated was used to identify the dominant sources of GHG emissions and energy requirements in biofuel production and the key sources of variability in published LCA data. Our analysis revealed three distinct sources of variation: (1) ‘real’ variability in parameters e.g. cultivation; (2) ‘methodological’ variability due to the implementation of the LCA method; and (3) ‘uncertainty’ due to parameters rarely included and poorly quantified. There is global interest in developing a sustainability assessment protocol for biofuels. Confidence in the results of such an assessment can only be assured if these areas of uncertainty and variability are addressed. A more defined methodology is necessary in order to allow effective and accurate comparison of results. It is also essential that areas of uncertainty such as impacts on soil carbon stocks and fluxes are included in LCA assessments, and that further research is conducted to enable a robust calculation of impacts under different land‐use change scenarios. Without the inclusion of these parameters, we cannot be certain that biofuels are really delivering GHG savings compared with fossil fuels. 相似文献
20.
In recent years, liquid biofuels for transport have benefited from significant political support due to their potential role in curbing climate change and reducing our dependence on fossil fuels. They may also participate to rural development by providing new markets for agricultural production. However, the growth of energy crops has raised concerns due to their high consumption of conventional fuels, fertilizers and pesticides, their impacts on ecosystems and their competition for arable land with food crops. Low-input species such as Jatropha curcas , a perennial, inedible crop well adapted to semiarid regions, has received much interest as a new alternative for biofuel production, minimizing adverse effects on the environment and food supply. Here, we used life-cycle assessment to quantify the benefits of J. curcas biofuel production in West Africa in terms of greenhouse gas emissions and fossil energy use, compared with fossil diesel fuel and other biofuels. Biodiesel from J. curcas has a much higher performance than current biofuels, relative to oil-derived diesel fuels. Under West Africa conditions, J. curcas biodiesel allows a 72% saving in greenhouse gas emissions compared with conventional diesel fuel, and its energy yield (the ratio of biodiesel energy output to fossil energy input) is 4.7. J. curcas production studied is eco-compatible for the impacts under consideration and fits into the context of sustainable development. 相似文献
|