首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Switchgrass, a potential biofuel crop, is a genetically diverse species with phenotypic plasticity enabling it to grow in a range of environments. Two primary divergent ecotypes, uplands and lowlands, exhibit trait combinations representative of acquisitive and conservative growth allocation strategies, respectively. Whether these ecotypes respond differently to various types of environmental drivers remains unclear but is crucial to understanding how switchgrass varieties will respond to climate change. We grew two upland, two lowland, and two intermediate/hybrid cultivars of switchgrass at three sites along a latitudinal gradient in the central United States. Over a 4-year period, we measured plant functional traits and biomass yields and evaluated genotype-by-environment (G × E) interaction effects by analyzing switchgrass responses to soil and climate variables. We found substantial evidence of G × E interactions on biomass yield, primarily due to deviations in the response of the southern lowland cultivar Alamo, which produced more biomass in hotter and drier environments relative to other cultivars. While lowland cultivars had the highest potential for yield, their yields were more variable year-to-year compared to other cultivars, suggesting greater sensitivity to environmental perturbations. Models comparing soil and climate principal components as explanatory variables revealed soil properties, especially nutrients, to be most effective at predicting switchgrass biomass yield. Also, positive correlations between biomass yield and conservative plant traits, such as high stem mass and tiller height,  became stronger at lower latitudes where the climate is hotter and drier, regardless of ecotype. Lowland cultivars, however, showed a greater predisposition to exhibit these conservative traits. These results suggest switchgrass trait allocation trade-offs that prioritize aboveground biomass production are more tightly associated in hot, dry environments and that lowland cultivars may exhibit a more specialized strategy relative to other cultivars. Altogether, this research provides essential knowledge for improving the viability of switchgrass as a biofuel crop.  相似文献   

2.
    
Switchgrass (Panicum virgatum L.), a US Department of Energy model species, is widely considered for US biomass energy production. While previous studies have demonstrated the effect of climate and management factors on biomass yield and chemical characteristics of switchgrass monocultures, information is lacking on the yield of switchgrass grown in combination with other species for biomass energy. Therefore, the objective of this quantitative review is to compare the effect of climate and management factors on the yield of switchgrass monocultures, as well as on mixtures of switchgrass, and other species. We examined all peer‐reviewed articles describing productivity of switchgrass and extracted dry matter yields, stand age, nitrogen fertilization (N), temperature (growing degree days), and precipitation/irrigation. Switchgrass yield was greater when grown in monocultures (10.9 t ha?1, n=324) than when grown in mixtures (4.4 t ha?1, n=85); yield in monocultures was also greater than the total yield of all species in the mixtures (6.9 t ha?1, n=90). The presence of legume species in mixtures increased switchgrass yield from 3.1 t ha?1 (n=65) to 8.9 t ha?1 (n=20). Total yield of switchgrass‐dominated mixtures with legumes reached 9.9 t ha?1 (n=25), which was not significantly different from the monoculture yield. The results demonstrated the potential of switchgrass for use as a biomass energy crop in both monocultures and mixtures across a wide geographic range. Monocultures, but not mixtures, showed a significant positive response to N and precipitation. The response to N for monocultures was consistent for newly established (stand age <3 years) and mature stands (stand age ≥3 years) and for lowland and upland ecotypes. In conclusion, these results suggest that fertilization with N will increase yield in monocultures, but not mixtures. For monocultures, N treatment need not be changed based on ecotype and stand age; and for mixtures, legumes should be included as an alternative N source.  相似文献   

3.
Switchgrass (Panicum virgatum L.) is a perennial grass native to the United States that has been studied as a sustainable source of biomass fuel. Although many field‐scale studies have examined the potential of this grass as a bioenergy crop, these studies have not been integrated. In this study, we present an empirical model for switchgrass yield and use this model to predict yield for the conterminous United States. We added environmental covariates to assembled yield data from field trials based on geographic location. We developed empirical models based on these data. The resulting empirical models, which account for spatial autocorrelation in the field data, provide the ability to estimate yield from factors associated with climate, soils, and management for both lowland and upland varieties of switchgrass. Yields of both ecotypes showed quadratic responses to temperature, increased with precipitation and minimum winter temperature, and decreased with stand age. Only the upland ecotype showed a positive response to our index of soil wetness and only the lowland ecotype showed a positive response to fertilizer. We view this empirical modeling effort, not as an alternative to mechanistic plant‐growth modeling, but rather as a first step in the process of functional validation that will compare patterns produced by the models with those found in data. For the upland variety, the correlation between measured yields and yields predicted by empirical models was 0.62 for the training subset and 0.58 for the test subset. For the lowland variety, the correlation was 0.46 for the training subset and 0.19 for the test subset. Because considerable variation in yield remains unexplained, it will be important in the future to characterize spatial and local sources of uncertainty associated with empirical yield estimates.  相似文献   

4.
    
MiRNAs have been reported to be the key regulators involving a wide range of biological processes in diverse plant species, but their functions in switchgrass, an important biofuel and forage crop, are largely unknown. Here, we reported the novel function of miR528, which has expanded to four copies in switchgrass, in controlling biomass trait of tillering number and regrowth rate after mowing. Blocking miR528 activity by expressing short tandem target mimic (STTM) increased tiller number and regrowth rate after mowing. The quadruple pvmir528 mutant lines derived from genome editing also showed such improved traits. Degradome and RNA-seq analysis, combined with in situ hybridization assay revealed that up-regulation of two miR528 targets coding for Cu/Zn-SOD enzymes, might be responsible for the improved traits of tillering and regrowth in pvmir528 mutant. Additionally, natural variations in the miR528-SOD interaction exist in C3 and C4 monocot species, implying the distinct regulatory strength of the miR528-SOD module during monocot evolution. Overall, our data illuminated a novel role of miR528 in controlling biomass traits and provided a new target for genetic manipulation-mediated crop improvement.  相似文献   

5.
杨新国  李玉英  吴天龙  程序 《生态学报》2008,28(12):6043-6050
为深入认识半干旱黄土丘陵沟壑区引种能源植物柳枝稷生物质生产的开发潜力及其约束机制,调查了农田、植丛尺度上早熟和晚熟柳枝稷年度生命周期内生物量累积、分株建成动态,以及土壤水分供求平衡过程。研究发现,植丛尺度早熟柳枝稷抽穗比例近100%,分株生殖发生大小阈值依赖基本丧失,高度大小分布近似正态,种群内光资源竞争强度明显弱化,与晚熟类型形成明显差异。农田尺度晚熟柳枝稷生物质产量可以达到15t/hm^2,高出早熟类型近1倍,但是其立地80~400cm土层的含水量稳定在7%以下,土壤干旱已经发生,早期干旱胁迫导致的生长停滞,以及生长中后期的成片倒伏现象在两年的观测周期内连续出现。早熟柳枝稷立地则形成相对稳定的白草、柳枝稷复合优势植被结构,深层土壤水分含量稳定在10%以上,实现了跨年度的土壤水分供求平衡。植丛尺度的生物质形成在一定程度上取决于分株生殖发生的大小依赖程度和分株间竞争关系格局,基于植丛尺度普遍的生殖发生和明显弱化的光资源竞争,早熟柳枝稷表现出更为高效的生物质形成机制。农田尺度晚熟柳枝稷尽管在雨热同步期的降水资源利用效率上存在明显比较优势,但是在降水资源利用分配策略和效应上,早熟柳枝稷表现出了综合的生态适宜性优势。保证雨热同步期降水资源利用和保蓄的平衡,是半干旱黄土丘陵沟壑区生物质生产应该遵循的基本原则之一。  相似文献   

6.
7.
    
The production of dedicated energy crops on marginally productive cropland is projected to play an important role in reaching the US Billion Ton goal. This study aimed to evaluate warm‐season grasses for biomass production potential under different harvest timings (summer [H1], after killing frost [H2], or alternating between two [H3]) and nitrogen (N) fertilizer rates (0, 56, and 112 kg N/ha) on a wet marginal land across multiple production years. Six feedstocks were evaluated including Miscanthus x giganteus, two switchgrass cultivars (Panicum virgatum L.), prairie cordgrass (Spartina pectinata Link), and two polycultures including a mixture of big bluestem (Andropogon gerardii Vitman), indiangrass (Sorghastrum nutans), and sideoats grama (Bouteloua curtipendula [Michx.] Torr.), and a mixture of big bluestem and prairie cordgrass. Across four production years, harvest timing and feedstock type played an important role in biomass production. Miscanthus x giganteus produced the greatest biomass (18.7 Mg/ha), followed by the switchgrass cultivar “Liberty” (14.7 Mg/ha). Harvest in H1 tended to increase yield irrespective of feedstock; the exception being M. x giganteus that had significantly lower biomass when harvested in H1 when compared to H2 and H3. The advantage H1 harvest had over H2 for all feedstocks declined over time, suggesting H2 or H3 would provide greater and more sustainable biomass production for the observed feedstocks. The N application rate played an important role mainly for M. x giganteus where 112 kg N/ha yielded more biomass than no N. Other feedstocks occasionally showed a slight, but statistically insignificant increase in biomass yield with increasing N rate. This study showed the potential of producing feedstocks for bioenergy on wet marginal land; however, more research on tissue and soil nutrient dynamics under different N rates and harvest regimes will be important in understanding stand longevity for feedstocks grown under these conditions.  相似文献   

8.
    
Switchgrass (Panicum virgatum L.) has been developed into a dedicated herbaceous bioenergy crop. Biomass yield is a major target trait for genetic improvement of switchgrass. microRNAs have emerged as a prominent class of gene regulatory factors that has the potential to improve complex traits such as biomass yield. A miR156b precursor was overexpressed in switchgrass. The effects of miR156 overexpression on SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes were revealed by microarray and quantitative RT-PCR analyses. Morphological alterations, biomass yield, saccharification efficiency and forage digestibility of the transgenic plants were characterized. miR156 controls apical dominance and floral transition in switchgrass by suppressing its target SPL genes. Relatively low levels of miR156 overexpression were sufficient to increase biomass yield while producing plants with normal flowering time. Moderate levels of miR156 led to improved biomass but the plants were non-flowering. These two groups of plants produced 58%-101% more biomass yield compared with the control. However, high miR156 levels resulted in severely stunted growth. The degree of morphological alterations of the transgenic switchgrass depends on miR156 level. Compared with floral transition, a lower miR156 level is required to disrupt apical dominance. The improvement in biomass yield was mainly because of the increase in tiller number. Targeted overexpression of miR156 also improved solubilized sugar yield and forage digestibility, and offered an effective approach for transgene containment.  相似文献   

9.
徐炳成  山仑  李凤民 《生态学报》2005,25(9):2206-2213
加强优良引种禾草植物的生态适应性研究对促进我国黄土高原半干旱区草地建设和草业科学发展具有十分重要的意义。比较研究了引种禾草柳枝稷(Panicumvirgatum)在黄土丘陵半干旱区不同立地条件下地上生物量的大小和季节累积差异及其水分利用特征。2001~2002年川地柳枝稷草地地上生物量达13000~16000kg/hm2,山地梯田和坡地为2300~2650kg/hm2。不同立地条件柳枝稷返青后的生物量累积过程呈二次或三次多项式。柳枝稷的绝对生长速率(AGR)在整个生长季内呈双峰曲线变化,川地柳枝稷草地的现存量和总量AGR最大值分别为158.93和169.83kg/(hm2·d),梯田分别为27.31和38.25kg/(hm2·d),坡地为37.0和36.69kg/(hm2·d)。坡地柳枝稷生物量较大值和AGR最大值出现时间最早。不同立地柳枝稷生物量相对生长速率(RGR)在整个生长季内呈双峰曲线变化,均以返青后的20d内最大,平均AGR以川地最大,坡地和梯田相近,但坡地两峰值高于梯田。不同立地柳枝稷草地土壤水分主要利用层次为0~2m,月平均含水量顺序为梯田>坡地>川地。川地柳枝稷叶片和整体生物量水分利用效率均最高,梯田整体生物量水分利用效率大于坡地,但二者叶片水分利用效率相近。川地和山地地表下5cm生育期平均地温均为17.60℃,但4~5月份川地地温高出山地1.2~2.8℃,川地4~10月份平均气温较山地高1.5℃,这些差异影响不同立地条件柳枝稷草地水分利用和生长进程。  相似文献   

10.
    
Giant reed (Arundo donax L.) is a C3 perennial, warm‐season, rhizomatous grass of emerging interest for bioenergy and biomass derivatives production, and for phytoremediation. It only propagates vegetatively and very little genetic variation is found among ecotypes, basically precluding breeding efforts. With the objective to increase the genetic variation in this species, we developed and applied a mutagenesis protocol based on γ‐irradiation of in vitro cell cultures from which regenerants were obtained. Based on a radiosensitivity test, the irradiation dose reducing to 50% the number of regenerants per callus (RD50) was estimated at 35 Gy. A large mutagenic experiment was carried out by irradiating a total of 3120 calli with approx. 1×, 1.5× and 2× RD50. A total of 1004 regenerants from irradiated calli were hardened in pots and transplanted to the field. Initial phenotypic characterization of the collection showed correlated responses of biomass‐related quantitative traits to irradiation doses. Approx. 10% of field‐grown clones showed remarkable morphological aberrations including dwarfism, altered tillering, abnormal inflorescence, leaf variegation and others, which were tested for stability over generations. Clone lethality reached 0.4%. Our results show for the first time that physical mutagenesis can efficiently induce new genetic and phenotypic variation of agronomic and prospective industrial value in giant reed. The methodology and the plant materials described here may contribute to the domestication and the genetic improvement of this important biomass species.  相似文献   

11.
本研究利用SCoT标记对96份柳枝稷种质的亲缘关系和遗传变异进行了研究。筛选出20条引物对96份供试材料进行PCR扩增,共获得445条带,其中多态性条带402条,平均多态性条带比率(PPB)达90.31%,多态性信息含量(PIC)为0.166~0.410,平均值为0.332,标记指数(MI)为10.20。遗传相似系数(GS)为0.498~0.912,平均值为0.688。表明SCoT标记能够揭示柳枝稷种质间的遗传变异。通过UPGMA分析表明,96份种质资源聚为高地型和低地型两大类。经POPGENE1.32软件分析结果显示:96份柳枝稷基因多样性指数(H)为0.285,Shannon指数(I)为0.431,表明供试的种质间遗传多样性丰富,遗传多样性水平高。经AMOVA 1.55方差分析揭示:96份柳枝稷生态型内的遗传变异占总变异的72.85%,生态型间遗传变异占总变异的27.15%,结果表明ScoT可用于柳枝稷遗传多样性研究,该研究结果可为柳枝稷种质资源的进一步开发利用提供重要信息。  相似文献   

12.
    
Excess nutrients from agriculture in the Mississippi River drainage, USA have degraded water quality in freshwaters and contributed to anoxic conditions in downstream estuaries. Consequently, water quality is a significant concern associated with conversion of lands to bioenergy production. This study focused on the Arkansas-White-Red river basin (AWR), one of five major river basins draining to the Mississippi River. The AWR has a strong precipitation gradient from east to west, and advanced cellulosic feedstocks are projected to become economically feasible within normal-to-wet areas of the region. In this study, we used large-scale watershed modeling to identify areas along this precipitation gradient with potential for improving water quality. We compared simulated water quality in rivers draining projected future landscapes with and without cellulosic bioenergy for two future years, 2022 and 2030 with an assumed farmgate price of $50 per dry ton. Changes in simulated water quantity and quality under future bioenergy scenarios varied among subbasins and years. Median water yield, nutrient loadings, and sediment yield decreased by 2030. Median concentrations of nutrients also decreased, but suspended sediment, which is influenced by decreased flow and in-stream processes, increased. Spatially, decreased loadings prevailed in the transitional ecotone between 97° and 100° longitude, where switchgrass, Panicum virgatum L., is projected to compete against alternative crops and land uses at $50 per dry ton. We conclude that this region contains areas that hold promise for sustainable bioenergy production in terms of both economic feasibility and water quality protection.  相似文献   

13.
    
Switchgrass (Panicum virgatum L.), a perennial warm season bunchgrass native to North America, has been a target in the U.S. as a renewable bioenergy crop because of its ability to produce moderate to high biomass yield on marginal soils. Delaying flowering can increase vegetative biomass production by allowing prolonged growth before switching to the reproductive phase. Despite the identification of flowering time as a biomass trait in switchgrass, the molecular regulatory factors involved in controlling floral transition are poorly understood. Here we identified PvFT1, PvAPL1‐3 and PvSL1, 2 as key flowering regulators required from floral transition initiation to development of floral organs. PvFT1 expression in leaves is developmentally regulated peaking at the time of floral transition, and diurnally regulated with peak at approximately 2 h into the dark period. Ectopic expression of PvFT1 in Arabidopsis, Brachypodium and switchgrass led to extremely early flowering, and activation of FT downstream target genes, confirming that it is a strong activator of flowering in switchgrass. Ectopic expression of PvAPL1‐3 and PvSL1, 2 in Arabidopsis also activated early flowering with distinct floral organ phenotypes. Our results suggest that switchgrass has conserved flowering pathway regulators similar to Arabidopsis and rice.  相似文献   

14.
  总被引:2,自引:0,他引:2  
Spatial heterogeneity of resources can influence plant community composition and diversity in natural communities. We manipulated soil depth (two levels) and nutrient availability (three levels) to create four heterogeneity treatments (no heterogeneity, depth heterogeneity, nutrient heterogeneity, and depth + nutrient heterogeneity) replicated in an agricultural field seeded to native prairie species. Our objective was to determine whether resource heterogeneity influences species diversity and the trajectory of community development during grassland restoration. The treatments significantly increased heterogeneity of available inorganic nitrogen (N), soil water content, and light penetration. Plant diversity was indirectly related to resource heterogeneity through positive relationships with variability in productivity and cover established by the belowground manipulations. Diversity was inversely correlated with the average cover of the dominant grass, Switchgrass (Panicum virgatum), which increased over time in all heterogeneity treatments and resulted in community convergence among the heterogeneity treatments over time. The success of this cultivar across the wide range of resource availability was attributed to net photosynthesis rates equivalent to or higher than those of the native prairie plants in the presence of lower foliar N content. Our results suggest that resource heterogeneity alone may not increase diversity in restorations where a dominant species can successfully establish across the range of resource availability. This is consistent with theory regarding the role of ecological filters on community assembly in that the establishment of one species best adapted for the physical and biological conditions can play an inordinately important role in determining community structure.  相似文献   

15.
黄土丘陵区柳枝稷光合生理生态特性的初步研究   总被引:9,自引:1,他引:9       下载免费PDF全文
研究了黄土丘陵区引种草种柳枝稷(Panicum virgatum)的光合生理生态特性。比较了不同叶位叶片光合速率(Pn)、蒸腾速率(Tr)、水分利用效率(WUE)的日变化以及环境因子的作用,结果表明,柳枝稷叶片Pn日变化曲线为双峰型,中午“光合降低”主要是由于叶温过高导致呼吸高引起的净化合速率降低,叶龄增大,叶片Pn日变化相对较平缓,其中壮龄叶Pn日变化最为平缓,幼龄叶Tr的日变化为双峰型,随叶龄增大(叶位下降)而成为单峰型。Pn日变化最为平缓,幼龄叶Tr的日变化为双峰型,随叶龄增大(叶位下降)而成为单峰型,WUE的日变化可划分为上午的降低和下午的波动2个阶段,最上充分展开叶(旗叶)的WUE始终最高。  相似文献   

16.
    
Miscanthus is a high-yielding bioenergy crop that is broadly adapted to temperate and tropical environments. Commercial cultivation of Miscanthus is predominantly limited to a single sterile triploid clone of Miscanthus × giganteus, a hybrid between Miscanthus sacchariflorus and M. sinensis. To expand the genetic base of M. × giganteus, the substantial diversity within its progenitor species should be used for cultivar improvement and diversification. Here, we phenotyped a diversity panel of 605 M. sacchariflorus from six previously described genetic groups and 27 M. × giganteus genotypes for dry biomass yield and 16 yield-component traits, in field trials grown over 3 years at one subtropical location (Zhuji, China) and four temperate locations (Foulum, Denmark; Sapporo, Japan; Urbana, Illinois; and Chuncheon, South Korea). There was considerable diversity in yield and yield-component traits among and within genetic groups of M. sacchariflorus, and across the five locations. Biomass yield of M. sacchariflorus ranged from 0.003 to 34.0 Mg ha−1 in year 3. Variation among the genetic groups was typically greater than within, so selection of genetic group should be an important first step for breeding with M. sacchariflorus. The Yangtze 2x genetic group (=ssp. lutarioriparius) of M. sacchariflorus had the tallest and thickest culms at all locations tested. Notably, the Yangtze 2x genetic group's exceptional culm length and yield potential were driven primarily by a large number of nodes (>29 nodes culm−1 average over all locations), which was consistent with the especially late flowering of this group. The S Japan 4x, the N China/Korea/Russia 4x, and the N China 2x genetic groups were also promising genetic resources for biomass yield, culm length, and culm thickness, especially for temperate environments. Culm length was the best indicator of yield potential in M. sacchariflorus. These results will inform breeders' selection of M. sacchariflorus genotypes for population improvement and adaptation to target production environments.  相似文献   

17.
    
  1. Intercropping switchgrass (Panicum virgatum) between rows in managed pine stands is a potential, emerging method for biofuel feedstock production in forestry systems. Switchgrass intercropping likely alters vegetation characteristics within a stand by increasing herbaceous vegetation cover and thus influences insect communities positively. However, its effect may vary with stand age, which often determines canopy closure and vegetation structure within a stand: effects of switchgrass intercropping may be stronger in old pine stands with a closed canopy than in young pine stands with an open canopy.
  2. We examined how switchgrass intercropping and stand age, namely 3–4‐year‐old pine (YPine) and 8–9‐year‐old pine (OPine), influenced insect abundance and diversity in loblolly pine (Pinus taeda) stands in Mississippi, U.S.A., during May to August 2013–2014. We captured insects at 36 locations throughout 12 stands (three stands per each of four treatments; intercropping and non‐intercropping treatment in YPine and OPine stands), using pan traps.
  3. Abundance and family level richness were greater in YPine stands and Shannon–Wiener diversity and evenness at family level was higher in OPine stands both years. However, insect abundance and diversity did not differ between intercropping and non‐intercropping treatments. Community composition was also influenced by stand age, which explained > 90% of constrained inertia, rather than switchgrass intercropping.
  4. Our findings suggest that switchgrass intercropping is unlikely to significantly affect insect communities in managed pine stands, whereas stand age, as well as associated successional changes, can be a main factor affecting insects, as often observed in other animal taxa in managed pine landscapes.
  相似文献   

18.
The Paris agreement on climate change requires rapid reductions in greenhouse gas emissions. One important mitigation strategy, at least in the intermediate future, is the substitution of fossil fuels with bioenergy. However, using agriculture- and forest-derived biomass for energy has sparked controversy regarding both the climate mitigation potential and conflicts with biodiversity conservation. The urgency of the climate crisis calls for using forests for carbon sequestration and storage rather than for bioenergy, making agricultural biomass an attractive alternative for fossil energy substitution. However, this calls for comprehensive assessments of its sustainability in terms of consequences for biodiversity and ecosystem services. In this review, we provide a first holistic overview of the impacts on ecosystems of land-use changes from bioenergy crop production in temperate climates, by synthesizing results on both biodiversity and ecosystem service impacts. We found that bioenergy-related land-use changes can have both positive and negative effects on ecosystems, with original land use, bioenergy crop type and scale of bioenergy production being important moderators of impacts. Despite the risk of opportunity cost for food production, perennial crop cultivation on arable land had the lowest occurrence of negative impacts on biodiversity and ecosystem services. Growing biomass for bioenergy on surplus land has been suggested as a way to alleviate competition with food production and biodiversity conservation, but our results demonstrate that utilizing marginal or abandoned land for bioenergy crop production cannot fully resolve these trade-offs. Furthermore, there is a lack of empirical studies of the biodiversity value of marginal and abandoned land, limiting our understanding of the sustainability implications of biomass cultivation on surplus land. We argue that future research and policies for bioenergy production must explicitly consider biodiversity and ecosystem services in combination to avoid potential trade-offs between the two and to ensure sustainable bioenergy production.  相似文献   

19.
 A dual marker plasmid comprising the reporter gene sgfp (green fluorescent protein) and the selectable bar gene (Basta tolerance) was constructed by replacing the uidA (β-glucuronidase, GUS) gene in a uidA-bar construct with sgfp. A particle inflow gun was used to propel tungsten particles coated with this plasmid into immature inflorescence-derived embryogenic callus of switchgrass (Panicum virgatum L.). GFP was observed in leaf tissue and pollen of transgenic plants. Nearly 100 plants tolerant to Basta were obtained from the experiments, and Southern blot hybridization confirmed the presence of both the bar and sgfp genes. Plants regenerated from in vitro cultures of transgenic plants grew on medium with 10 mg l–1 bialaphos. When the pH indicator chlorophenol red was in the medium, the transgenic plantlets changed the medium from red to yellow. Basta tolerance was observed in T1 plants resulting from crosses between transgenic and nontransgenic control plants, indicating inheritance of the bar transgene. Received: 11 May 2000 / Revision received: 21 August 2000 / Accepted: 22 August 2000  相似文献   

20.
    
Information on the growth and development of warm‐season grasses in response to management is required to use them successfully as a biomass crop. Our objectives were to determine optimum harvest periods and effect of N fertilization rates on the biomass production of four warm‐season grasses, and to investigate if traits of canopy structure can explain observed yields with varying harvest dates and N rates. A field study was conducted at Sorenson Research Farm near Ames, IA, during 2006 and 2007. The experimental design was split‐split plot arranged in a randomized complete block with four replications. Big bluestem (Andropogon gerardii Vitman), eastern gamagrass (Tripsacum dactyloides L.), indiangrass (Sorghastrum nutrans L. Nash), and switchgrass (Panicum virgatum L.) were main plots. Three N application rates (0, 65, and 140 kg ha?1) were subplots, and 10 harvest dates were sub‐sub plots. Biomass of warm‐season grasses increased with advanced maturity, but differently among species. The maximum yield of eastern gamagrass occurred at the highest MSC (1.6 and 2.2) when the largest seed ripening tillers were present. Big bluestem, switchgrass, and indiangrass obtained the maximum yields at MSC 3.5, 3.9, and 2.9, respectively when the largest reproductive tillers were present. In terms of a biomass supply strategy, eastern gamagrass may be used during early summer, while big bluestem and switchgrass may be best used between mid‐ and late‐ summer, and indiangrass in early fall. Nitrogen fertilization increased yield by increasing tiller development. Optimum biomass yields were obtained later in the season when they were fertilized with 140 kg ha?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号