首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diversification rates are critically important for understanding patterns of species richness among clades. However, the effects of climatic niche width on plant diversification rates remain to be elucidated. Based on the phylogenetic, climatic, and distributional information of angiosperms in China, a total of 26 906 species from 182 families were included in this study. We aimed to test relationships between diversification rate and climatic niche width and climatic niche width related variables (including climatic niche divergence, climatic niche position, geographic extent, and climatic niche evolutionary rate) using phylogenetic methods. We found that climatic niche divergence had the largest unique contribution to the diversification rate, while the unique effects of climatic niche width, climatic niche position, geographic extent, and climatic niche evolutionary rate on the diversification rate were negligible. We also observed that the relationship between diversification rate and climatic niche divergence was significantly stronger than the null assumption (artefactual relationship between diversification and clade-level climatic niche width by sampling more species). Our study supports the hypothesis that wider family climatic niche widths explain faster diversification rates through a higher climatic niche divergence rather than through higher geographic extent, higher climatic niche evolutionary rate, or separated climatic niche position. Hence, the results provide a potential explanation for large-scale diversity patterns within families of plants.  相似文献   

2.
Climate may play important roles in speciation, such as causing the range fragmentation that underlies allopatric speciation (through niche conservatism) or driving divergence of parapatric populations along climatic gradients (through niche divergence). Here, we developed new methods to test the frequency of climate niche conservatism and divergence in speciation, and applied it to species pairs of squamate reptiles (lizards and snakes). We used a large‐scale phylogeny to identify 242 sister species pairs for analysis. From these, we selected all terrestrial allopatric pairs with sufficient occurrence records (= 49 pairs) and inferred whether each originated via climatic niche conservatism or climatic niche divergence. Among the 242 pairs, allopatric pairs were most common (41.3%), rather than parapatric (19.4%), partially sympatric (17.7%), or fully sympatric species pairs (21.5%). Among the 49 selected allopatric pairs, most appeared to have originated via climatic niche divergence (61–76%, depending on the details of the methods). Surprisingly, we found greater climatic niche divergence between allopatric sister species than between parapatric pairs, even after correcting for geographic distance. We also found that niche divergence did not increase with time, further implicating niche divergence in driving lineage splitting. Overall, our results suggest that climatic niche divergence may often play an important role in allopatric speciation, and the methodology developed here can be used to address the generality of these findings in other organisms.  相似文献   

3.
4.
Predicting how and when adaptive evolution might rescue species from global change, and integrating this process into tools of biodiversity forecasting, has now become an urgent task. Here, we explored whether recent population trends of species can be explained by their past rate of niche evolution, which can be inferred from increasingly available phylogenetic and niche data. We examined the assemblage of 409 European bird species for which estimates of demographic trends between 1970 and 2000 are available, along with a species-level phylogeny and data on climatic, habitat and trophic niches. We found that species'' proneness to demographic decline is associated with slow evolution of the habitat niche in the past, in addition to certain current-day life-history and ecological traits. A similar result was found at a higher taxonomic level, where families prone to decline have had a history of slower evolution of climatic and habitat niches. Our results support the view that niche conservatism can prevent some species from coping with environmental change. Thus, linking patterns of past niche evolution and contemporary species dynamics for large species samples may provide insights into how niche evolution may rescue certain lineages in the face of global change.  相似文献   

5.
6.
We compared the distributions, abundances and ecological requirements of parthenogenetic lizard Darevskia ‘dahli’ and its bisexual progenitors, D. portschinskii and D. mixta, in Georgia. We developed a regression model relating the species abundances with the distribution of climates. Darevskia portschinskii lives in warmer and drier climates than D. mixta; D. ‘dahli’ has the intermediate requirements. Temperature is more important than humidity for D. portschinskii, humidity is more important for D. mixta and both temperature and humidity are important for D. ‘dahli’. Suitable habitats of all three species overlap broadly; however, the observed ranges partly overlap only for D. ‘dahli’ and D. portschinskii. The observed abundance of each species, related to its predicted abundance, is lower at the sites with potential competitors. Darevskia ‘dahli’ occupies a higher proportion of the suitable habitats and has higher abundances than the progenitor species. Competition with D. ‘dahli’ is an important factor determining current distribution pattern of D. portschinskii and D. mixta. The parthenogen is a stronger competitor than the bisexual breeders and potential advantages of the bisexual reproduction remain unrealized in the given temporal and spatial scale. To explain domination of bisexually breeding lizards on the global scale, considering climate changes in geological timescale is necessary. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 447–460.  相似文献   

7.
Relatively, few species have been able to colonize extremely cold alpine environments. We investigate the role played by the cushion life form in the evolution of climatic niches in the plant genus Androsace s.l., which spreads across the mountain ranges of the Northern Hemisphere. Using robust methods that account for phylogenetic uncertainty, intraspecific variability of climatic requirements and different life-history evolution scenarios, we show that climatic niches of Androsace s.l. exhibit low phylogenetic signal and that they evolved relatively recently and punctually. Models of niche evolution fitted onto phylogenies show that the cushion life form has been a key innovation providing the opportunity to occupy extremely cold environments, thus contributing to rapid climatic niche diversification in the genus Androsace s.l. We then propose a plausible scenario for the adaptation of plants to alpine habitats.  相似文献   

8.

Aim

Species geographical range sizes play a crucial role in determining species vulnerability to extinction. Although several mechanisms affect range sizes, the number of biotic interactions and species climatic tolerance are often thought to play discernible roles, defining two dimensions of the Hutchinsonian niche. Yet, the relative importance of the trophic and the climatic niche for determining species range sizes is largely unknown.

Location

Central and northern Europe.

Time period

Present.

Major taxa studied

Gall-inducing sawflies and their parasitoids.

Methods

We use data documenting the spatial distributions and biotic interactions of 96 herbivore species, and their 125 parasitoids, across Europe and analyse the relationship between species range size and the climatic and trophic dimensions of the niche. We then compare the observed relationships with null expectations based on species occupancy to understand whether the relationships observed are an inevitable consequence of species range size or if they contain information about the importance of each dimension of the niche on species range size.

Results

We find that both niche dimensions are positively correlated with species range size, with larger ranges being associated with wider climatic tolerances and larger numbers of interactions. However, diet breadth appears to more strongly limit species range size. Species with larger ranges have more interactions locally and they are also able to interact with a larger diversity of species across sites (i.e. higher β-diversity), resulting in a larger number of interactions at continental scales.

Main conclusions

We show for the first time how different aspects of species diet niches are related to their range size. Our study offers new insight into the importance of biotic interactions in determining species spatial distributions, which is critical for improving understanding and predictions of species vulnerability to extinction under the current rates of global environmental change.  相似文献   

9.
Rapid diversification may be caused by ecological adaptive radiation via niche divergence. In this model, speciation is coupled with niche divergence and lineage diversification is predicted to be correlated with rates of niche evolution. Studies of the role of niche evolution in diversification have generally focused on ecomorphological diversification but climatic‐niche evolution may also be important. We tested these alternatives using a phylogeny of 298 species of ovenbirds (Aves: Furnariidae). We found that within Furnariidae, variation in species richness and diversification rates of subclades were best predicted by rate of climatic‐niche evolution than ecomorphological evolution. Although both are clearly important, univariate regression and multivariate model averaging more consistently supported the climatic‐niche as the best predictor of lineage diversification. Our study adds to the growing body of evidence, suggesting that climatic‐niche divergence may be an important driver of rapid diversification in addition to ecomorphological evolution. However, this pattern may depend on the phylogenetic scale at which rate heterogeneity is examined.  相似文献   

10.
通过野外实地调查,结合文献中松茸分布数据,采用生态位因子分析和最大熵模型对川西高原松茸的分布规律及适生区范围进行模拟和验证,分析气候因子与动态分布之间的关系,预测未来松茸适生区的变化。结果表明: 模型训练集和验证集曲线下面积(AUC)值均>0.90,模型预测结果极准确。影响松茸潜在分布的环境变量主要有最冷月最低温度、最冷季雨量、气温年温差等气候因子和土壤类型,累计贡献率达90.3%。松茸适宜分布区的生态位参数为: 最冷月最低温度-18.5~-5.4 ℃、最冷季雨量15.7 mm以下、气温年温差39.5~45 ℃、土壤类型为半淋溶土(包括燥红土、褐土、灰褐土、黑土和灰色森林土)。川西高原松茸的适生区分布在高原西南部、南部、中部、东部的海拔1900~3600 m地区。雅江、乡城、康定、九龙、稻城、理塘、巴塘、丹巴、马尔康、小金、金川、理县、茂县等县(市)的部分乡镇松茸适生指数较高,得荣、道孚、新龙、炉霍、白玉、泸定、壤塘、汶川、黑水、九寨沟等县(市)的部分乡镇有松茸中、低适生区存在。适生区破碎分散,依河流和山脉走向呈片状或枝状不连续分布,中适生区与高适生区相连,低适生区是高、中适生区的延伸。未来气候变化对川西高原松茸生长有利,气候适生区总体呈增加趋势,低海拔岷江流域受影响程度高于高海拔地区。  相似文献   

11.
12.
Although climatic niche conservatism has been assumed by a large number of studies focused on climatic niche evolution, there are examples of climatic niche diversification and adaptation to changing climates. In this article, we reconstruct a climatic niche of scaly tree ferns (Cyatheaceae) using a rigorous analytical procedure which combines climatic niche modelling with reconstruction of continuous characters given a phylogenetic hypothesis. To estimate the limits to climatic niches of species, we used climate envelope modelling and ordination. Ancestral climatic niches of species were reconstructed by maximum likelihood and least‐squares analyses. We observed a trend towards niche conservatism with occasional events of niche transformations in scaly tree ferns. We discuss the implications of our study with respect to the potential and limitations for applications of niche modelling to evolutionary studies. We suggest that future studies of evolution of climatic niches could be considerably improved by employing approaches enabling reconstruction of continuous response to climatic gradients. Further progress may also be achieved by exploring models of character evolution other than the Brownian motion model. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 165 , 1–19.  相似文献   

13.
14.
The climatic niche is a central concept for understanding species distribution, with current and past climate interpreted as strong drivers of present and historical-geographical ranges. Our aim is to understand whether Atlantic Forest snakes follow the general geographical pattern of increasing species climatic niche breadths with increasing latitude. We also tested if there is a tradeoff between temperature and precipitation niche breadths of species in order to understand if species with larger breadths of one niche dimension have stronger dispersal constraints by the other due to narrower niche breadths. Niche breadths were calculated by the subtraction of maximal and minimal values of temperature and precipitation across species ranges. We implemented Phylogenetic Generalized Least Squares to measure the relationship between temperature and precipitation niche breadths and latitude. We also tested phylogenetic signals by Lambda statistics to analyze the degree of phylogenetic niche conservatism to both niche dimensions. Temperature niche breadths were not related to latitude. Precipitation niche breadths decreased with increasing latitude and presented a high phylogenetic signal, that is, significant phylogenetic niche conservatism. We rejected the tradeoff hypotheses of temperature and precipitation niche breadths. Our results also indicate that precipitation should be an important ecological constraint affecting the geographical distribution of snake lineages across the South American Atlantic Forest. We then provide a general view of how phylogenetic niche conservatism could impact the patterns of latitudinal variation of climatic niches across this biodiversity hotspot.  相似文献   

15.
Understanding how the climatic niche of species evolved has been a topic of high interest in current theoretical and applied macroecological studies. However, little is known regarding how species traits might influence climatic niche evolution. Here, we evaluated patterns of climatic niche evolution in turtles (tortoises and freshwater turtles) and whether species habitat (terrestrial or aquatic) influences these patterns. We used phylogenetic, climatic and distribution data for 261 species to estimate their climatic niches. Then, we compared whether niche overlap between sister species was higher than between random species pairs and evaluated whether niche optima and rates varied between aquatic and terrestrial species. Sister species had higher values of niche overlap than random species pairs, suggesting phylogenetic climatic niche conservatism in turtles. The climatic niche evolution of the group followed an Ornstein–Uhlenbeck model with different optimum values for aquatic and terrestrial species, but we did not find consistent evidence of differences in their rates of climatic niche evolution. We conclude that phylogenetic climatic niche conservatism occurs among turtle species. Furthermore, terrestrial and aquatic species occupy different climatic niches but these seem to have evolved at similar evolutionary rates, reinforcing the importance of habitat in understanding species climatic niches and their evolution.  相似文献   

16.
17.
Aim We explore the impact of calibrating ecological niche models (ENMs) using (1) native range (NR) data versus (2) entire range (ER) data (native and invasive) on projections of current and future distributions of three Hieracium species. Location H. aurantiacum, H. murorum and H. pilosella are native to Europe and invasive in Australia, New Zealand and North America. Methods Differences among the native and invasive realized climatic niches of each species were quantified. Eight ENMs in BIOMOD were calibrated with (1) NR and (2) ER data. Current European, North American and Australian distributions were projected. Future Australian distributions were modelled using four climate change scenarios for 2030. Results The invasive climatic niche of H. murorum is primarily a subset of that expressed in its native range. Invasive populations of H. aurantiacum and H. pilosella occupy different climatic niches to those realized in their native ranges. Furthermore, geographically separate invasive populations of these two species have distinct climatic niches. ENMs calibrated on the realized niche of native regions projected smaller distributions than models incorporating data from species’ entire ranges, and failed to correctly predict many known invasive populations. Under future climate scenarios, projected distributions decreased by similar percentages, regardless of the data used to calibrate ENMs; however, the overall sizes of projected distributions varied substantially. Main conclusions This study provides quantitative evidence that invasive populations of Hieracium species can occur in areas with different climatic conditions than experienced in their native ranges. For these, and similar species, calibration of ENMs based on NR data only will misrepresent their potential invasive distribution. These errors will propagate when estimating climate change impacts. Thus, incorporating data from species’ entire distributions may result in a more thorough assessment of current and future ranges, and provides a closer approximation of the elusive fundamental niche.  相似文献   

18.
Across angiosperms, variable rates of molecular substitution are linked with life-history attributes associated with woody and herbaceous growth forms. As the number of generations per unit time is correlated with molecular substitution rates, it is expected that rates of phenotypic evolution would also be influenced by differences in generation times. Here, we make the first broad-scale comparison of growth-form-dependent rates of niche evolution. We examined the climatic niches of species on large time-calibrated phylogenies of five angiosperm clades and found that woody lineages have accumulated fewer changes per million years in climatic niche space than related herbaceous lineages. Also, climate space explored by woody lineages is consistently smaller than sister lineages composed mainly of herbaceous taxa. This pattern is probably linked to differences in the rate of climatic niche evolution. These results have implications for niche conservatism; in particular, the role of niche conservatism in the distribution of plant biodiversity. The consistent differences in the rate of climatic niche evolution also emphasize the need to incorporate models of phenotypic evolution that allow for rate heterogeneity when examining large datasets.  相似文献   

19.
The evolution of the realized climatic niche in the genus Arabidopsis was studied using an almost complete phylogenetic tree based on DNA sequences of the ribosomal internal transcribed spacers. The realized climatic niche (climate space) was determined by the intersections of the distribution ranges of the taxa with climate data and is presented in temperature/precipitation diagrams. A positive correlation exists between the climate spaces of the taxa and their range sizes. The diagrams revealed a core climate; that is, a climate space in which all taxa co-exist. This core climate is almost identical to the most parsimonious reconstruction of the genus' ancestral climate space and may be considered an ancestral state of these characters. Mapping the evolutionary changes occurring in the realized climatic space on the phylogenetic tree from the core climate proved to be the most parsimonious procedure. The character complex is homoplastic; that is, many parallel evolutionary events have occurred in the subclades. With the exception of A. thaliana, which is sister to the other species of the genus and occupies a very large climate space, the late-diverged taxa of the other subclades experienced great evolutionary changes whereas the realized climate space of the taxa that diverged earlier resembles the core climate. The latter also show some parallel contractions in the climate space. It is hypothesized that the diversification of Arabidopsis may have started from small to midsized ranges in a temperate climate.  相似文献   

20.
During Pleistocene glacial‐interglacial cycles, the geographic range is often assumed to have shifted as a species tracks its climatic niche. Alternatively, the geographic range would not necessarily shift if a species can adapt in situ to a changing environment. The potential for a species to persist in place might increase with the diversity of habitat types that a species exploits. We evaluate evidence for either range shift or range stability between the last glacial maximum (LGM) and present time in the chisel‐toothed kangaroo rat (Dipodomys microps), an endemic of the Great Basin and Mojave deserts. We modeled how the species’ range would have changed if the climatic niche of the species remained conserved between the LGM and present time. The climatic models imply that if D. microps inhabited the same climatic niche during the LGM as it does today, the species would have persisted primarily within the warm Mojave Desert and expanded northwards into the cold Great Basin only after the LGM. Contrary to the climatic models, the mitochondrial DNA assessment revealed signals of population persistence within the current distribution of the species throughout at least the latest glacial‐interglacial cycle. We concluded that D. microps did not track its climatic niche during late Pleistocene oscillations, but rather met the challenge of a changing environment by shifting its niche and retaining large portions of its distribution. We speculate that this kind of response to fluctuating climate was possible because of ‘niche drifting’, an alteration of the species’ realized niche due to plasticity in various biological characters. Our study provides an example of an approach to reconstruct species’ responses to past climatic changes that can be used to evaluate whether and to what extent taxa have capacity to shift their niches in response to the changing environment – information becoming increasingly important to predicting biotic responses to future environmental changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号