首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we focus on the impact on soil organic carbon (SOC) of two dedicated energy crops: perennial grass Miscanthus x Giganteus (Miscanthus) and short rotation coppice (SRC)‐willow. The amount of SOC sequestered in the soil is a function of site‐specific factors including soil texture, management practices, initial SOC levels and climate; for these reasons, both losses and gains in SOC were observed in previous Miscanthus and SRC‐willow studies. The ECOSSE model was developed to simulate soil C dynamics and greenhouse gas emissions in mineral and organic soils. The performance of ECOSSE has already been tested at site level to simulate the impacts of land‐use change to short rotation forestry (SRF) on SOC. However, it has not been extensively evaluated under other bioenergy plantations, such as Miscanthus and SRC‐willow. Twenty‐nine locations in the United Kingdom, comprising 19 paired transitions to SRC‐willow and 20 paired transitions to Miscanthus, were selected to evaluate the performance of ECOSSE in predicting SOC and SOC change from conventional systems (arable and grassland) to these selected bioenergy crops. The results of the present work revealed a strong correlation between modelled and measured SOC and SOC change after transition to Miscanthus and SRC‐willow plantations, at two soil depths (0–30 and 0–100 cm), as well as the absence of significant bias in the model. Moreover, model error was within (i.e. not significantly larger than) the measurement error. The high degrees of association and coincidence with measured SOC under Miscanthus and SRC‐willow plantations in the United Kingdom, provide confidence in using this process‐based model for quantitatively predicting the impacts of future land use on SOC, at site level as well as at national level.  相似文献   

2.
Accurate estimation of the greenhouse gas (GHG) mitigation potential of bioenergy crops requires the integration of a significant component of spatially varying information. In particular, crop yield and soil carbon (C) stocks are variables which are generally soil type and climate dependent. Since gaseous emissions from soil C depend on current C stocks, which in turn are related to previous land management it is important to consider both previous and proposed future land use in any C accounting assessment. We have conducted a spatially explicit study for England and Wales, coupling empirical yield maps with the RothC soil C turnover model to simulate soil C dynamics. We estimate soil C changes under proposed planting of four bioenergy crops, Miscanthus ( Miscanthus × giganteus ), short rotation coppice (SRC) poplar ( Populus trichocarpa Torr. & Gray × P. trichocarpa , var. Trichobel), winter wheat, and oilseed rape. This is then related to the former land use – arable, pasture, or forest/seminatural, and the outputs are then assessed in the context of a life cycle analysis (LCA) for each crop. By offsetting emissions from management under the previous land use, and considering fossil fuel C displaced, the GHG balance is estimated for each of the 12 land use change transitions associated with replacing arable, grassland, or forest/seminatural land, with each of the four bioenergy crops. Miscanthus and SRC are likely to have a mostly beneficial impact in reducing GHG emissions, while oilseed rape and winter wheat have either a net GHG cost, or only a marginal benefit. Previous land use is important and can make the difference between the bioenergy crop being beneficial or worse than the existing land use in terms of GHG balance.  相似文献   

3.
We present the first assessment of the impact of land use change (LUC) to second‐generation (2G) bioenergy crops on ecosystem services (ES) resolved spatially for Great Britain (GB). A systematic approach was used to assess available evidence on the impacts of LUC from arable, semi‐improved grassland or woodland/forest, to 2G bioenergy crops, for which a quantitative ‘threat matrix’ was developed. The threat matrix was used to estimate potential impacts of transitions to either Miscanthus, short‐rotation coppice (SRC, willow and poplar) or short‐rotation forestry (SRF). The ES effects were found to be largely dependent on previous land uses rather than the choice of 2G crop when assessing the technical potential of available biomass with a transition from arable crops resulting in the most positive effect on ES. Combining these data with constraint masks and available land for SRC and Miscanthus (SRF omitted from this stage due to lack of data), south‐west and north‐west England were identified as areas where Miscanthus and SRC could be grown, respectively, with favourable combinations of economic viability, carbon sequestration, high yield and positive ES benefits. This study also suggests that not all prospective planting of Miscanthus and SRC can be allocated to agricultural land class (ALC) ALC 3 and ALC 4 and suitable areas of ALC 5 are only minimally available. Beneficial impacts were found on 146 583 and 71 890 ha when planting Miscanthus or SRC, respectively, under baseline planting conditions rising to 293 247 and 91 318 ha, respectively, under 2020 planting scenarios. The results provide an insight into the interplay between land availability, original land uses, bioenergy crop type and yield in determining overall positive or negative impacts of bioenergy cropping on ecosystems services and go some way towards developing a framework for quantifying wider ES impacts of this important LUC.  相似文献   

4.
To develop a more sustainable bio‐based economy, an increasing amount of carbon for industrial applications and biofuel will be obtained from bioenergy crops. This may result in intensified land use and potential conflicts with other ecosystem services provided by soil, such as control of greenhouse gas emissions, carbon sequestration, and nutrient dynamics. A growing number of studies examine how bioenergy crops influence carbon and nitrogen cycling. Few studies, however, have combined such assessments with analysing both the immediate effects on the provisioning of soil ecosystem services as well as the legacy effects for subsequent crops in the rotation. Here, we present results from field and laboratory experiments on effects of a standard first‐generation bioenergy crop (maize) and three different second‐generation bioenergy crops (willow short rotation coppice (SRC), Miscanthus × giganteus, switchgrass) on key soil quality parameters: soil structure, organic matter, biodiversity and growth and disease susceptibility of a major follow‐up crop, wheat (Triticum aestivum). We analysed a 6‐year field experiment and show that willow SRC, Miscanthus, and maize maintained a high yield over this period. Soil quality parameters and legacy effects of Miscanthus and switchgrass were similar or performed worse than maize. In contrast, willow SRC enhanced soil organic carbon concentration (0–5 cm), soil fertility, and soil biodiversity in the upper soil layer when compared to maize. In a greenhouse experiment, wheat grown in willow soil had higher biomass production than when grown in maize or Miscanthus soil and exhibited no growth reduction in response to introduction of a soil‐borne (Rhizoctonia solani) or a leaf pathogen (Mycosphaerella graminicola). We conclude that the choice of bioenergy crops can greatly influence provisioning of soil ecosystem services and legacy effects in soil. Our results imply that bioenergy crops with specific traits might even enhance ecosystem properties through positive legacy effects.  相似文献   

5.
This article evaluates the suitability of the ECOSSE model to estimate soil greenhouse gas (GHG) fluxes from short rotation coppice willow (SRC‐Willow), short rotation forestry (SRF‐Scots Pine) and Miscanthus after land‐use change from conventional systems (grassland and arable). We simulate heterotrophic respiration (Rh), nitrous oxide (N2O) and methane (CH4) fluxes at four paired sites in the UK and compare them to estimates of Rh derived from the ecosystem respiration estimated from eddy covariance (EC) and Rh estimated from chamber (IRGA) measurements, as well as direct measurements of N2O and CH4 fluxes. Significant association between modelled and EC‐derived Rh was found under Miscanthus, with correlation coefficient (r) ranging between 0.54 and 0.70. Association between IRGA‐derived Rh and modelled outputs was statistically significant at the Aberystwyth site (= 0.64), but not significant at the Lincolnshire site (= 0.29). At all SRC‐Willow sites, significant association was found between modelled and measurement‐derived Rh (0.44 ≤  0.77); significant error was found only for the EC‐derived Rh at the Lincolnshire site. Significant association and no significant error were also found for SRF‐Scots Pine and perennial grass. For the arable fields, the modelled CO2 correlated well just with the IRGA‐derived Rh at one site (= 0.75). No bias in the model was found at any site, regardless of the measurement type used for the model evaluation. Across all land uses, fluxes of CH4 and N2O were shown to represent a small proportion of the total GHG balance; these fluxes have been modelled adequately on a monthly time‐step. This study provides confidence in using ECOSSE for predicting the impacts of future land use on GHG balance, at site level as well as at national level.  相似文献   

6.
In the UK and other temperate regions, short rotation coppice (SRC) and Miscanthus x giganteus (Miscanthus) are two of the leading ‘second‐generation’ bioenergy crops. Grown specifically as a low‐carbon (C) fossil fuel replacement, calculations of the climate mitigation provided by these bioenergy crops rely on accurate data. There are concerns that uncertainty about impacts on soil C stocks of transitions from current agricultural land use to these bioenergy crops could lead to either an under‐ or overestimate of their climate mitigation potential. Here, for locations across mainland Great Britain (GB), a paired‐site approach and a combination of 30‐cm‐ and 1‐m‐deep soil sampling were used to quantify impacts of bioenergy land‐use transitions on soil C stocks in 41 commercial land‐use transitions; 12 arable to SRC, 9 grasslands to SRC, 11 arable to Miscanthus and 9 grasslands to Miscanthus. Mean soil C stocks were lower under both bioenergy crops than under the grassland controls but only significant at 0–30 cm. Mean soil C stocks at 0–30 cm were 33.55 ± 7.52 Mg C ha?1 and 26.83 ± 8.08 Mg C ha?1 lower under SRC (P = 0.004) and Miscanthus plantations (P = 0.001), respectively. Differences between bioenergy crops and arable controls were not significant in either the 30‐cm or 1‐m soil cores and smaller than for transitions from grassland. No correlation was detected between change in soil C stock and bioenergy crop age (time since establishment) or soil texture. Change in soil C stock was, however, negatively correlated with the soil C stock in the original land use. We suggest, therefore, that selection of sites for bioenergy crop establishment with lower soil C stocks, most often under arable land use, is the most likely to result in increased soil C stocks.  相似文献   

7.
Biogenic volatile organic compounds (BVOC) emissions from bioenergy crops may differ from those of conventional crops. We compared emission rates of isoprene and a number of monoterpenes from the lignocellulosic bioenergy crops short‐rotation coppice (SRC) willow and Miscanthus, with the conventional crops wheat and oilseed rape. BVOC emission rates were measured via dynamic vegetation enclosure and GC‐MS analysis approximately monthly between April 2010 and August 2012 at a location in England and from SRC willow at two locations in Scotland. The largest BVOC emission rates were measured from willow in England and varied between years. Isoprene emission rates varied between μg g?1 h?1. Of the monoterpenes detected from willow, α‐pinene emission rates were highest (μg g?1 h?1), followed by μg g?1 h?1 for δ‐3‐carene, μg g?1 h?1 for β‐pinene and μg g?1 h?1 for limonene. BVOC emission rates measured in Scotland were much lower. Low emission rates of isoprene and α‐pinene were measured from Miscanthus in 2010 (μg g?1 h?1 and μg g?1 h?1, respectively) but were not detected in subsequent years. Emission rates from wheat of isoprene were negligible but relatively high for monoterpenes (μg g?1 h?1 and μg g?1 h?1 for α‐pinene and limonene, respectively). No significant emission rates of BVOCs were measured from oilseed rape. The measured emission rates followed a clear seasonal trend. Crude extrapolations based solely on data gathered here indicate that isoprene emissions from willow could correspond to 0.004–0.03% (UK) and 0.76–5.5% (Europe) of current global isoprene if 50% of all land potentially available for bioenergy crops is planted with willow.  相似文献   

8.
When considering the large‐scale deployment of bioenergy crops, it is important to understand the implication for ecosystem hydrological processes and the influences of crop type and location. Based on the potential for future land use change (LUC), the 10,280 km2 West Wales Water Framework Directive River Basin District (UK) was selected as a typical grassland dominated district, and the Soil & Water Assessment Tool (SWAT) hydrology model with a geographic information systems interface was used to investigate implications for different bioenergy deployment scenarios. The study area was delineated into 855 sub‐basins and 7,108 hydrological response units based on rivers, soil type, land use, and slope. Changes in hydrological components for two bioenergy crops (Miscanthus and short rotation coppice, SRC) planted on 50% (2,192 km2) or 25% (1,096 km2) of existing improved pasture are quantified. Across the study area as a whole, only surface run‐off with SRC planted at the 50% level was significantly impacted, where it was reduced by up to 23% (during April). However, results varied spatially and a comparison of annual means for each sub‐basin and scenario revealed surface run‐off was significantly decreased and baseflow significantly increased (by a maximum of 40%) with both Miscanthus and SRC. Evapotranspiration was significantly increased with SRC (at both planting levels) and water yield was significantly reduced with SRC (at the 50% level) by up to 5%. Effects on streamflow were limited, varying between ?5% and +5% change (compared to baseline) in the majority of sub‐basins. The results suggest that for mesic temperate grasslands, adverse effects from the drying of soil and alterations to streamflow may not arise, and with surface run‐off reduced and baseflow increased, there could, depending on crop location, be potential benefits for flood and erosion mitigation.  相似文献   

9.
The EU Common Agricultural Policy regulations for the 2014–2020 period comprise three ‘greening measures’ aimed at climate change mitigation and biodiversity conservation. These three greening measures consist of the maintenance of permanent pastures, crop diversification and ecological focus areas (EFAs). Farmers are to assign 5% of their land as EFAs; this concerns for example grassland, hedges, buffer strips or nitrogen‐fixing crops. Short rotation coppice (SRC) as a perennial bioenergy crop is also considered as an eligible EFA within the EU greening measures, whereas Miscanthus is not. However, a quantitative comparison (t‐test) of SRC and Miscanthus revealed that both crops are similar in the delivery of a variety of ecosystem services, such as C storage and biodiversity. Moreover, Miscanthus may contribute to the reduction of greenhouse gas emissions due to a considerable CO2 mitigation potential. Due to the overall consensus of the ecological significance of Miscanthus in agro‐ecosystems with the greening measures within the EU CAP reform, we recommend acknowledging Miscanthus as an eligible EFA with a similar payment as for SRC, boundary ridges or buffer strips. Along with Miscanthus, a number of other perennial renewables also may contribute to what the CAP intends. We predict that introducing Miscanthus and even other perennial energy crops could also make European agriculture more innovative and effective.  相似文献   

10.
Understanding and predicting the effects of land‐use change to short rotation forestry (SRF) on soil carbon (C) is an important requirement for fully assessing the C mitigation potential of SRF as a bioenergy crop. There is little current knowledge of SRF in the UK and in particular a lack of consistent measured data sets on the direct impacts of land use change on soil C stocks. The ECOSSE model was developed to simulate soil C dynamics and greenhouse gas (GHG) emissions in mineral and organic soils. The ECOSSE model has already been applied spatially to simulate land‐use change impacts on soil C and GHG emissions. However, it has not been extensively evaluated under SRF. Eleven sites comprising 29 transitions in Britain, representing land‐use change from nonwoodland land uses to SRF, were selected to evaluate the performance of ECOSSE in predicting soil C and soil C change in SRF plantations. The modelled C under SRF showed a strong correlation with the soil C measurements at both 0–30 cm (R = 0.93) and 0–100 cm soil depth (R = 0.82). As for the SRF plots, the soil C at the reference sites have been accurately simulated by the model. The extremely high correlation for the reference fields (R ≥ 0.99) shows a good performance of the model spin‐up. The statistical analysis of the model performance to simulate soil C and soil C changes after land‐use change to SRF highlighted the absence of significant error between modelled and measured values as well as the absence of significant bias in the model. Overall, this evaluation reinforces previous studies on the ability of ECOSSE to simulate soil C and emphasize its accuracy to simulate soil C under SRF plantations.  相似文献   

11.
National governments and international organizations perceive bioenergy, from crops such as Miscanthus, to have an important role in mitigating greenhouse gas (GHG) emissions and combating climate change. In this research, we address three objectives aimed at reducing uncertainty regarding the climate change mitigation potential of commercial Miscanthus plantations in the United Kingdom: (i) to examine soil temperature and moisture as potential drivers of soil GHG emissions through four years of parallel measurements, (ii) to quantify carbon (C) dynamics associated with soil sequestration using regular measurements of topsoil (0–30 cm) C and the surface litter layer and (iii) to calculate a life cycle GHG budget using site‐specific measurements, enabling the GHG intensity of Miscanthus used for electricity generation to be compared against coal and natural gas. Our results show that methane (CH4) and nitrous oxide (N2O) emissions contributed little to the overall GHG budget of Miscanthus, while soil respiration offset 30% of the crop's net aboveground C uptake. Temperature sensitivity of soil respiration was highest during crop growth and lowest during winter months. We observed no significant change in topsoil C or nitrogen stocks following 7 years of Miscanthus cultivation. The depth of litter did, however, increase significantly, stabilizing at approximately 7 tonnes dry biomass per hectare after 6 years. The cradle‐to‐farm gate GHG budget of this crop indicated a net removal of 24.5 t CO2‐eq ha?1 yr?1 from the atmosphere despite no detectable C sequestration in soils. When scaled up to consider the full life cycle, Miscanthus fared very well in comparison with coal and natural gas, suggesting considerable CO2 offsetting per kWh generated. Although the comparison does not account for the land area requirements of the energy generated, Miscanthus used for electricity generation can make a significant contribution to climate change mitigation even when combusted in conventional steam turbine power plants.  相似文献   

12.
Short‐rotation woody crops (SRWC) such as poplar and willow are an important source of renewable energy. They can be converted into electricity and/or heat using conventional or modern biomass technologies. In recent years many studies have examined the energy and greenhouse gas (GHG) balance of bioenergy production from poplar and willow using various approaches. The outcomes of these studies have, however, generated controversy among scientists, policy makers, and the society. This paper reviews 26 studies on energy and GHG balance of bioenergy production from poplar and willow published between 1990 and 2009. The data published in the reviewed literature gave energy ratios (ER) between 13 and 79 for the cradle‐to‐farm gate and between 3 and 16 for cradle‐to‐plant assessments, whereas the intensity of GHG emissions ranged from 0.6 to 10.6 g CO2 Eq MJbiomass?1 and 39 to 132 g CO2 Eq kWh?1. These values vary substantially among the reviewed studies depending on the system boundaries and methodological assumptions. The lack of transparency hampers meaningful comparisons among studies. Although specific numerical results differ, our review revealed a general consensus on two points: SRWC yielded 14.1–85.9 times more energy than coal (ERcoal~0.9) per unit of fossil energy input, and GHG emissions were 9–161 times lower than those of coal (GHGcoal~96.8). To help to reduce the substantial variability in results, this review suggests a standardization of the assumptions about methodological issues. Likewise, the development of a widely accepted framework toward a reliable analysis of energy in bioenergy production systems is most needed.  相似文献   

13.
Marginal organic soils, abundant in the boreal region, are being increasingly used for bioenergy crop cultivation. Using long‐term field experimental data on greenhouse gas (GHG) balance from a perennial bioenergy crop [reed canary grass (RCG), Phalaris arundinaceae L.] cultivated on a drained organic soil as an example, we show here for the first time that, with a proper cultivation and land‐use practice, environmentally sound bioenergy production is possible on these problematic soil types. We performed a life cycle assessment (LCA) for RCG on this organic soil. We found that, on an average, this system produces 40% less CO2‐equivalents per MWh of energy in comparison with a conventional energy source such as coal. Climatic conditions regulating the RCG carbon exchange processes have a high impact on the benefits from this bioenergy production system. Under appropriate hydrological conditions, this system can even be carbon‐negative. An LCA sensitivity analysis revealed that net ecosystem CO2 exchange and crop yield are the major LCA components, while non‐CO2 GHG emissions and costs associated with crop production are the minor ones. Net bioenergy GHG emissions resulting from restricted net CO2 uptake and low crop yields, due to climatic and moisture stress during dry years, were comparable with coal emissions. However, net bioenergy emissions during wet years with high net uptake and crop yield were only a third of the coal emissions. As long‐term experimental data on GHG balance of bioenergy production are scarce, scientific data stemming from field experiments are needed in shaping renewable energy source policies.  相似文献   

14.
Native perennial bioenergy crops can mitigate greenhouse gases (GHG) by displacing fossil fuels with renewable energy and sequestering atmospheric carbon (C) in soil and roots. The relative contribution of root C to net GHG mitigation potential has not been compared in perennial bioenergy crops ranging in species diversity and N fertility. We measured root biomass, C, nitrogen (N), and soil organic carbon (SOC) in the upper 90 cm of soil for five native perennial bioenergy crops managed with and without N fertilizer. Bioenergy crops ranged in species composition and were annually harvested for 6 (one location) and 7 years (three locations) following the seeding year. Total root biomass was 84% greater in switchgrass (Panicum virgatum L.) and a four‐species grass polyculture compared to high‐diversity polycultures; the difference was driven by more biomass at shallow soil depth (0–30 cm). Total root C (0–90 cm) ranged from 3.7 Mg C ha?1 for a 12‐species mixture to 7.6 Mg C ha?1 for switchgrass. On average, standing root C accounted for 41% of net GHG mitigation potential. After accounting for farm and ethanol production emissions, net GHG mitigation potential from fossil fuel offsets and root C was greatest for switchgrass (?8.4 Mg CO2e ha?1 yr?1) and lowest for high‐diversity mixtures (?4.5 Mg CO2e ha?1 yr?1). Nitrogen fertilizer did not affect net GHG mitigation potential or the contribution of roots to GHG mitigation for any bioenergy crop. SOC did not change and therefore did not contribute to GHG mitigation potential. However, associations among SOC, root biomass, and root C : N ratio suggest greater long‐term C storage in diverse polycultures vs. switchgrass. Carbon pools in roots have a greater effect on net GHG mitigation than SOC in the short‐term, yet variation in root characteristics may alter patterns in long‐term C storage among bioenergy crops.  相似文献   

15.
Growing biomass feedstocks from marginal lands is becoming an increasingly attractive choice for producing biofuel as an alternative energy to fossil fuels. Here, we used a biogeochemical model at ecosystem scale to estimate crop productivity and greenhouse gas (GHG) emissions from bioenergy crops grown on marginal lands in the United States. Two broadly tested cellulosic crops, switchgrass, and Miscanthus, were assumed to be grown on the abandoned land and mixed crop‐vegetation land with marginal productivity. Production of biomass and biofuel as well as net carbon exchange and nitrous oxide emissions were estimated in a spatially explicit manner. We found that, cellulosic crops, especially Miscanthus could produce a considerable amount of biomass, and the effective ethanol yield is high on these marginal lands. For every hectare of marginal land, switchgrass and Miscanthus could produce 1.0–2.3 kl and 2.9–6.9 kl ethanol, respectively, depending on nitrogen fertilization rate and biofuel conversion efficiency. Nationally, both crop systems act as net GHG sources. Switchgrass has high global warming intensity (100–390 g CO2eq l?1 ethanol), in terms of GHG emissions per unit ethanol produced. Miscanthus, however, emits only 21–36 g CO2eq to produce every liter of ethanol. To reach the mandated cellulosic ethanol target in the United States, growing Miscanthus on the marginal lands could potentially save land and reduce GHG emissions in comparison to growing switchgrass. However, the ecosystem modeling is still limited by data availability and model deficiencies, further efforts should be made to classify crop‐specific marginal land availability, improve model structure, and better integrate ecosystem modeling into life cycle assessment.  相似文献   

16.
Oilseed rape is one of the leading feedstocks for biofuel production in Europe. The climate change mitigation effect of rape methyl ester (RME) is particularly challenged by the greenhouse gas (GHG) emissions during crop production, mainly as nitrous oxide (N2O) from soils. Oilseed rape requires high nitrogen fertilization and crop residues are rich in nitrogen, both potentially causing enhanced N2O emissions. However, GHG emissions of oilseed rape production are often estimated using emission factors that account for crop‐type specifics only with respect to crop residues. This meta‐analysis therefore aimed to assess annual N2O emissions from winter oilseed rape, to compare them to those of cereals and to explore the underlying reasons for differences. For the identification of the most important factors, linear mixed effects models were fitted with 43 N2O emission data points deriving from 12 different field sites. N2O emissions increased exponentially with N‐fertilization rates, but interyear and site‐specific variability were high and climate variables or soil parameters did not improve the prediction model. Annual N2O emissions from winter oilseed rape were 22% higher than those from winter cereals fertilized at the same rate. At a common fertilization rate of 200 kg N ha?1 yr?1, the mean fraction of fertilizer N that was lost as N2O‐N was 1.27% for oilseed rape compared to 1.04% for cereals. The risk of high yield‐scaled N2O emissions increased after a critical N surplus of about 80 kg N ha?1 yr?1. The difference in N2O emissions between oilseed rape and cereal cultivation was especially high after harvest due to the high N contents in oilseed rape's crop residues. However, annual N2O emissions of winter oilseed rape were still lower than predicted by the Stehfest and Bouwman model. Hence, the assignment of oilseed rape to the crop‐type classes of cereals or other crops should be reconsidered.  相似文献   

17.
The effect of a transition from grassland to second‐generation (2G) bioenergy on soil carbon and greenhouse gas (GHG) balance is uncertain, with limited empirical data on which to validate landscape‐scale models, sustainability criteria and energy policies. Here, we quantified soil carbon, soil GHG emissions and whole ecosystem carbon balance for short rotation coppice (SRC) bioenergy willow and a paired grassland site, both planted at commercial scale. We quantified the carbon balance for a 2‐year period and captured the effects of a commercial harvest in the SRC willow at the end of the first cycle. Soil fluxes of nitrous oxide (N2O) and methane (CH4) did not contribute significantly to the GHG balance of these land uses. Soil respiration was lower in SRC willow (912 ± 42 g C m?2 yr?1) than in grassland (1522 ± 39 g C m?2 yr?1). Net ecosystem exchange (NEE) reflected this with the grassland a net source of carbon with mean NEE of 119 ± 10 g C m?2 yr?1 and SRC willow a net sink, ?620 ± 18 g C m?2 yr?1. When carbon removed from the ecosystem in harvested products was considered (Net Biome Productivity), SRC willow remained a net sink (221 ± 66 g C m?2 yr?1). Despite the SRC willow site being a net sink for carbon, soil carbon stocks (0–30 cm) were higher under the grassland. There was a larger NEE and increase in ecosystem respiration in the SRC willow after harvest; however, the site still remained a carbon sink. Our results indicate that once established, significant carbon savings are likely in SRC willow compared with the minimally managed grassland at this site. Although these observed impacts may be site and management dependent, they provide evidence that land‐use transition to 2G bioenergy has potential to provide a significant improvement on the ecosystem service of climate regulation relative to grassland systems.  相似文献   

18.
Perennial bioenergy crops have significant potential to reduce greenhouse gas (GHG) emissions and contribute to climate change mitigation by substituting for fossil fuels; yet delivering significant GHG savings will require substantial land‐use change, globally. Over the last decade, research has delivered improved understanding of the environmental benefits and risks of this transition to perennial bioenergy crops, addressing concerns that the impacts of land conversion to perennial bioenergy crops could result in increased rather than decreased GHG emissions. For policymakers to assess the most cost‐effective and sustainable options for deployment and climate change mitigation, synthesis of these studies is needed to support evidence‐based decision making. In 2015, a workshop was convened with researchers, policymakers and industry/business representatives from the UK, EU and internationally. Outcomes from global research on bioenergy land‐use change were compared to identify areas of consensus, key uncertainties, and research priorities. Here, we discuss the strength of evidence for and against six consensus statements summarising the effects of land‐use change to perennial bioenergy crops on the cycling of carbon, nitrogen and water, in the context of the whole life‐cycle of bioenergy production. Our analysis suggests that the direct impacts of dedicated perennial bioenergy crops on soil carbon and nitrous oxide are increasingly well understood and are often consistent with significant life cycle GHG mitigation from bioenergy relative to conventional energy sources. We conclude that the GHG balance of perennial bioenergy crop cultivation will often be favourable, with maximum GHG savings achieved where crops are grown on soils with low carbon stocks and conservative nutrient application, accruing additional environmental benefits such as improved water quality. The analysis reported here demonstrates there is a mature and increasingly comprehensive evidence base on the environmental benefits and risks of bioenergy cultivation which can support the development of a sustainable bioenergy industry.  相似文献   

19.
Converting land to biofuel feedstock production incurs changes in soil organic carbon (SOC) that can influence biofuel life‐cycle greenhouse gas (GHG) emissions. Estimates of these land use change (LUC) and life‐cycle GHG emissions affect biofuels' attractiveness and eligibility under a number of renewable fuel policies in the USA and abroad. Modeling was used to refine the spatial resolution and depth extent of domestic estimates of SOC change for land (cropland, cropland pasture, grassland, and forest) conversion scenarios to biofuel crops (corn, corn stover, switchgrass, Miscanthus, poplar, and willow) at the county level in the USA. Results show that in most regions, conversions from cropland and cropland pasture to biofuel crops led to neutral or small levels of SOC sequestration, while conversion of grassland and forest generally caused net SOC loss. SOC change results were incorporated into the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model to assess their influence on life‐cycle GHG emissions of corn and cellulosic ethanol. Total LUC GHG emissions (g CO2eq MJ?1) were 2.1–9.3 for corn‐, ?0.7 for corn stover‐, ?3.4 to 12.9 for switchgrass‐, and ?20.1 to ?6.2 for Miscanthus ethanol; these varied with SOC modeling assumptions applied. Extending the soil depth from 30 to 100 cm affected spatially explicit SOC change and overall LUC GHG emissions; however, the influence on LUC GHG emission estimates was less significant in corn and corn stover than cellulosic feedstocks. Total life‐cycle GHG emissions (g CO2eq MJ?1, 100 cm) were estimated to be 59–66 for corn ethanol, 14 for stover ethanol, 18–26 for switchgrass ethanol, and ?7 to ?0.6 for Miscanthus ethanol. The LUC GHG emissions associated with poplar‐ and willow‐derived ethanol may be higher than that for switchgrass ethanol due to lower biomass yield.  相似文献   

20.
Land‐use change to bioenergy crop production can contribute towards addressing the dual challenges of greenhouse gas mitigation and energy security. Realisation of the mitigation potential of bioenergy crops is, however, dependent on suitable crop selection and full assessment of the carbon (C) emissions associated with land conversion. Using eddy covariance‐based estimates, ecosystem C exchange was studied during the early‐establishment phase of two perennial crops, C3 reed canary grass (RCG) and C4 Miscanthus, planted on former grassland in Ireland. Crop development was the main determinant of net carbon exchange in the Miscanthus crop, restricting significant net C uptake during the first 2 years of establishment. The Miscanthus ecosystem switched from being a net C source in the conversion year to a strong net C sink (?411 ± 63 g C m?2) in the third year, driven by significant above‐ground growth and leaf expansion. For RCG, early establishment and rapid canopy development facilitated a net C sink in the first 2 years of growth (?319 ± 57 (post‐planting) and ?397 ± 114 g C m?2, respectively). Peak seasonal C uptake occurred three months earlier in RCG (May) than Miscanthus (August), however Miscanthus sustained net C uptake longer into the autumn and was close to C‐neutral in winter. Leaf longevity is therefore a key advantage of C4 Miscanthus in temperate climates. Further increases in productivity are projected as Miscanthus reaches maturity and are likely to further enhance the C sink potential of Miscanthus relative to RCG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号