首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study attempts to determine global warming impact (GWI) of imported wood pellets from the Southern United States for electricity production in The Netherlands. An attempt is also made to determine GWI of utilizing produced wood pellets within the state of Florida for electricity generation instead of exports. A life-cycle approach is adopted to determine overall GWIs of both the cases. Economic objectives of forest landowners are also incorporated to determine biomass (pulpwood and harvesting residues) availability from a hectare of slash pine plantation. The GWI of a unit of electricity produced at a power plant located at Geertruidenberg, The Netherlands and Gainesville, Florida was 296.4 and 177.5 g of carbon dioxide equivalent greenhouse gas, respectively. An overall saving of 72.6% in greenhouse gas emissions was estimated for every kilowatt-hour of electricity generated using imported wood pellets in The Netherlands when compared with coal-based electricity. This value was found to be 82.4% if produced wood pellets are utilized within Florida for electricity generation instead of exports. A need exists to evaluate the potential of other feedstocks for wood pellet production like understory forest biomass. Additionally, macroeconomic and ecological impacts of utilizing forest biomass for wood pellet production needs to be quantified.  相似文献   

2.
British Columbia (BC) forests are estimated to have become a net carbon source in recent years due to tree death and decay caused primarily by mountain pine beetle (MPB) and related post‐harvest slash burning practices. BC forest biomass has also become a major source of wood pellets, exported primarily for bioenergy to Europe, although the sustainability and net carbon emissions of forest bioenergy in general are the subject of current debate. We simulated the temporal carbon balance of BC wood pellets against different reference scenarios for forests affected by MPB in the interior BC timber harvesting area using the Carbon Budget Model of the Canadian Forest Sector (CBM‐CFS3). We evaluated the carbon dynamics for different insect‐mortality levels, at the stand‐ and landscape level, taking into account carbon storage in the ecosystem, wood products and fossil fuel displacement. Our results indicate that current harvesting practices, in which slash is burnt and only sawdust used for pellet production, require between 20–25 years for beetle‐impacted pine and 37–39 years for spruce‐dominated systems to reach pre‐harvest carbon levels (i.e. break‐even) at the stand‐level. Using pellets made from logging slash to replace coal creates immediate net carbon benefits to the atmosphere of 17–21 tonnes C ha?1, shortening these break‐even times by 9–20 years and resulting in an instant carbon break‐even level on stands most severely impacted by the beetle. Harvesting pine dominated sites for timber while using slash for bioenergy was also found to be more carbon beneficial than a protection reference scenario on both stand‐ and landscape level. However, harvesting stands exclusively for bioenergy resulted in a net carbon source unless the system contained a high proportion of dead trees (>85%). Systems with higher proportions of living trees provide a greater climate change mitigation if used for long lived wood products.  相似文献   

3.
Pine plantations established on former heathland are common throughout Western Europe and North America. Such areas can continue to support high biodiversity values of the former heathlands in the more open areas, while simultaneously delivering ecosystem services such as wood production and recreation in the forested areas. Spatially optimizing wood harvest and recreation without threatening the biodiversity values, however, is challenging. Demand for woody biomass is increasing but other pressures on biodiversity including climate change, habitat fragmentation and air pollution are intensifying too. Strategies to spatially optimize different ecosystem services with biodiversity conservation are still underexplored in the research literature. Here we explore optimization scenarios for advancing ecosystem stewardship in a pine plantation in Belgium. Point observations of seven key indicator species were used to estimate habitat suitability using generalized linear models. Based on the habitat suitability and species’ characteristics, the spatially-explicit conservation value of different forested and open patches was determined with the help of a spatially-explicit conservation planning tool. Recreational pressure was quantified by interviewing forest managers and with automated trail counters. The impact of wood production and recreation on the conservation of the indicator species was evaluated. We found trade-offs between biodiversity conservation and both wood production and recreation, but were able to present a final scenario that combines biodiversity conservation with a restricted impact on both services. This case study illustrates that innovative forest management planning can achieve better integration of the delivery of different forest ecosystem services such as wood production and recreation with biodiversity conservation.  相似文献   

4.
Characterizing and managing multiple ecosystem services is vital for decision-making in sustainable forest management. This study focuses on characterizing and assessing the biophysical and spatial distribution of ecosystem services such as wood production, biodiversity and carbon sequestration in the Kumluca state forest (Turkey). The key ecosystem services were thematically characterized, economically valued, spatially mapped and mobilized as a knowledge-base for ecosystem based planning. Average wood production is higher (135.06 m3/ha) than the overall average (72 m3/ha) in Turkey. The average carbon stock is 119 tC/ha, indicating a medium capacity. The habitat potential for biodiversity is low to medium, based on the 15 target species. Total economic value of the key ecosystem services is estimated at US$624,748,191 (US$6132/ha). The composition and spatial distribution of vegetation determines the extent and potential of ecosystem services. This study emphasizes that comprehensive quantification as well as valuation of ecosystem services can facilitate underpinnings for efficient communication and good decision making in sustainable resource management for multiple values. The orchestrated vision of conservation and sustainable use of ecosystem services based on a comprehensive characterization, modeling, valuing and participatory approach is a strategy for sustainable forest management.  相似文献   

5.
This study estimates the abatement cost of greenhouse gas (GHG) emissions for a unit of electricity generated in the UK from wood pellets imported from Southern USA. We assumed that only pulpwood obtained from loblolly pine (Pinus taeda) plantations was used for manufacturing exported wood pellets. The use of imported wood pellets for electricity generation could save at least 69.9 % of GHG emissions relative to coal-based electricity in the UK. The average unit production cost of electricity generated from imported wood pellets (US$222.3 MWh?1) was higher by 30.0 % than the unit production cost of electricity generated from coal (US$171.0 MWh?1) without any price support. In the presence of payments from the established price support mechanisms of Renewable Obligation Certificates (ROCs) and Levy Exemption Certificates (LECs), the unit production cost of electricity generated from imported wood pellets (US$142.9 MWh?1) was lower by about 16.0 % than the unit production cost of electricity generated from coal. Policy makers should consider 1 MWh of electricity generated from imported wood pellets equivalent to 0.58 ROCs or 0.71 ROCs in presence and absence of payments from LECs, respectively. This will ensure zero abatement cost and lead to economic efficiency in reducing GHG emissions. However, a more in-depth analysis focusing on the market risks for power-generating companies and other wood pellet supply chains is required before modifying existing equivalency factors for ensuring continuous use of imported wood pellets for displacing coal-based electricity in the UK.  相似文献   

6.
Combined torrefaction and pelletization is used to increase the fuel value of biomass by increasing its energy density and improving its handling and combustion properties. In the present study, a single-pellet press tool was used to screen for the effects of pellet die temperature, moisture content, additive addition, and the degree of torrefaction on the pelletizing properties and pellet quality, i.e., density, static friction, and pellet strength. Results were compared with pellet production using a bench-scale pelletizer. The results indicate that friction is the key factor when scaling up from single-pellet press to bench-scale pelletizer. Tuning moisture content or increasing the die temperature did not ease the pellet production of torrefied wood chips significantly. The addition of rapeseed oil as a lubricant reduced the static friction by half and stabilized pellet production; however, the pellet quality, strength, and density were negatively affected. The pellets produced from pine wood torrefied at 250 and 280 °C were shorter than pellets produced from untreated wood and their quality did not match conventional wood pellet standards. However, the heating value of the torrefied pellets was higher and the particle size distribution after grinding the pellets was more uniform compared to conventional wood pellets.  相似文献   

7.
In South Africa, restoration and sustainable management of historically overgrazed and degraded rangelands are promoted to increase biodiversity and ecosystem service provision. This study evaluates different land management scenarios in terms of ecosystem services in a South African rangeland, the Baviaanskloof catchment. As measured data were limited, we used simple models to quantify and map the effect of the different combination of agricultural, nature conservation and restoration practices on multiple ecosystem services. The land management scenarios were evaluated against management targets set for individual ecosystem services. Results highlight how the provision of ecosystem services is related to land management as unmanaged, pristine ecosystems provide a different mix of ecosystem services than ecosystems recently restored or managed as grazing lands. Results also indicate that historically overgrazed lands provide no forage, may retain 40% less sediment and have 38% lower biodiversity, while providing 60% more fuel wood and supplying two and half times more water (i.e. retaining less water), than pristine or restored lands. We conclude that a combination of light grazing, low input agriculture, nature conservation and restoration is the best for the sufficient provision of multiple ecosystem services. Applying such mixed management would improve biodiversity, ecotourism and maintain forage production and regulating services on farmers’ land. This management option also fits into and further optimizes local decision-makers’ vision regarding the future management of the area.  相似文献   

8.
This study adopts an integrated life-cycle approach to assess overall carbon saving related with the utilization of wood pellets manufactured using pulpwood and logging residues for electricity generation. Carbon sequestered in wood products and wood present in landfills and avoided carbon emissions due to substitution of grid electricity with the electricity generated using wood pellets are considered part of overall carbon savings. Estimated value of overall carbon saving is compared with the overall carbon saving related to the current use of pulpwood and logging residues. The unit of analysis is a hectare of slash pine (Pinus elliottii) plantation in southern USA. All carbon flows are considered starting from forest management to the decay of wood products in landfills. Exponential decay function is used to ascertain carbon sequestered in wood products and wood present in landfills. Non-biogenic carbon emissions due to burning of wood waste at manufacturing facilities, wood pellets at a power plant, and logging residues on forestlands are also considered. Impacts of harvest age and forest management intensity on overall carbon saving are analyzed as well. The use of pulpwood for bioenergy development reduces carbon sequestered in wood products and wood present in landfills (up to 1.6 metric tons/ha) relative to a baseline when pulpwood is used for paper making and logging residues are used for manufacturing wood pellets. Avoided carbon emissions because of displacement of grid electricity from the electricity generated using wood pellets derived from pulpwood fully compensate the loss of carbon sequestered in wood products and wood present in landfills. The use of both pulpwood and logging residues for bioenergy development is beneficial from carbon perspective. Harvest age is more important in determining overall carbon saving than forest management intensity.  相似文献   

9.
生态系统综合评价的内容与方法   总被引:100,自引:8,他引:100  
傅伯杰  刘世梁  马克明 《生态学报》2001,21(11):1885-1892
生态系统综合评价是系统分析生态系统的生产及服务能力,对生态系统进行健康诊断,做出综合的生态分析和经济分析,评价其当前状态,并预测生态系统今后的发展趋势,为生态系统管理提供科学依据。从总体上讲,综合评价更强调生态系统一系列产品与服务功能之间的权衡,具有很强的实践意义。许多学者对不同的生态系统服务功能进行了经济价值评估,但缺乏对生态系统的产品、服务、健康与管理之间关系的进一步探讨。对生态系统服务功能评价、健康评价的生态管理与预测进行了系统论述,目的是提出生态系统综合评价的框架,指导生态系统评价行动及生态系统管理。  相似文献   

10.
Several EU countries import wood pellets from the south‐eastern United States. The imported wood pellets are (co‐)fired in power plants with the aim of reducing overall greenhouse gas (GHG) emissions from electricity and meeting EU renewable energy targets. To assess whether GHG emissions are reduced and on what timescale, we construct the GHG balance of wood‐pellet electricity. This GHG balance consists of supply chain and combustion GHG emissions, carbon sequestration during biomass growth and avoided GHG emissions through replacing fossil electricity. We investigate wood pellets from four softwood feedstock types: small roundwood, commercial thinnings, harvest residues and mill residues. Per feedstock, the GHG balance of wood‐pellet electricity is compared against those of alternative scenarios. Alternative scenarios are combinations of alternative fates of the feedstock materials, such as in‐forest decomposition, or the production of paper or wood panels like oriented strand board (OSB). Alternative scenario composition depends on feedstock type and local demand for this feedstock. Results indicate that the GHG balance of wood‐pellet electricity equals that of alternative scenarios within 0–21 years (the GHG parity time), after which wood‐pellet electricity has sustained climate benefits. Parity times increase by a maximum of 12 years when varying key variables (emissions associated with paper and panels, soil carbon increase via feedstock decomposition, wood‐pellet electricity supply chain emissions) within maximum plausible ranges. Using commercial thinnings, harvest residues or mill residues as feedstock leads to the shortest GHG parity times (0–6 years) and fastest GHG benefits from wood‐pellet electricity. We find shorter GHG parity times than previous studies, for we use a novel approach that differentiates feedstocks and considers alternative scenarios based on (combinations of) alternative feedstock fates, rather than on alternative land uses. This novel approach is relevant for bioenergy derived from low‐value feedstocks.  相似文献   

11.
重庆市森林生态系统服务功能价值评估   总被引:31,自引:14,他引:31  
评价了重庆市近几年来森林生态系统服务功能价值,将重庆市森林生态系统服务功能划分为提供产品功能、调节功能、支持功能及文化服务功能4大类,以2006年为基准年,利用市场价值法和生产成本法等,定量评价重庆市森林生态系统服务功能的经济价值。结果表明:从2006年至2011年,森林产品提供功能由35.14亿元增加至51.24亿元,提高了45.82%。森林碳储量增长了近100万t。重庆市森林生态系统涵养水源价值增加了59.21亿元。森林生态系统的土壤保持能力与保持总量都有所提高。气候调节价值净增加了45.86亿元。2011年森林工程引发旅游业收入增加68.34亿元。从不同的服务功能类型来看,其价值量大小依次为:水源涵养气候调节景观旅游生物多样性土壤保持碳固定。从研究结果来看,重庆市森林生态系统服务功能价值巨大,该结果有利于加强人们对森林生态系统的认识,可以为生态系统管理、生态保护和生态补偿提供依据。  相似文献   

12.
Many ecosystem services are delivered by organisms that depend on habitats that are segregated spatially or temporally from the location where services are provided. Management of mobile organisms contributing to ecosystem services requires consideration not only of the local scale where services are delivered, but also the distribution of resources at the landscape scale, and the foraging ranges and dispersal movements of the mobile agents. We develop a conceptual model for exploring how one such mobile-agent-based ecosystem service (MABES), pollination, is affected by land-use change, and then generalize the model to other MABES. The model includes interactions and feedbacks among policies affecting land use, market forces and the biology of the organisms involved. Animal-mediated pollination contributes to the production of goods of value to humans such as crops; it also bolsters reproduction of wild plants on which other services or service-providing organisms depend. About one-third of crop production depends on animal pollinators, while 60–90% of plant species require an animal pollinator. The sensitivity of mobile organisms to ecological factors that operate across spatial scales makes the services provided by a given community of mobile agents highly contextual. Services vary, depending on the spatial and temporal distribution of resources surrounding the site, and on biotic interactions occurring locally, such as competition among pollinators for resources, and among plants for pollinators. The value of the resulting goods or services may feed back via market-based forces to influence land-use policies, which in turn influence land management practices that alter local habitat conditions and landscape structure. Developing conceptual models for MABES aids in identifying knowledge gaps, determining research priorities, and targeting interventions that can be applied in an adaptive management context.  相似文献   

13.
Planted forests are increasingly contributing wood products and other ecosystem services at a global scale. These forests will be even more important as carbon markets develop and REDD-plus forest programs (forests used specifically to reduce atmospheric emissions of CO2 through deforestation and forest degradation) become common. Restoring degraded and deforested areas with long-rotation planted forests can be accomplished in a manner that enhances carbon storage and other key ecosystem services. Knowledge from natural systems and understanding the functioning novel of ecosystems can be instructive for planning and restoring future forests. Here we summarize information pertaining to the mechanisms by which biodiversity functions to provide ecosystem services including: production, pest control, pollination, resilience, nutrient cycling, seed dispersal, and water quality and quantity and suggest options to improve planted forest management, especially for REDD-plus.  相似文献   

14.
Forests of the Midwestern United States are an important source of fiber for the wood and paper products industries. Scientists, land managers, and policy makers are interested in using woody biomass and/or harvest residue for biofuel feedstocks. However, the effects of increased biomass removal for biofuel production on forest production and forest system carbon balance remain uncertain. We modeled the carbon (C) cycle of the forest system by dividing it into two distinct components: (1) biological (net ecosystem production, net primary production, autotrophic and heterotrophic respiration, vegetation, and soil C content) and (2) industrial (harvest operations and transportation, production, use, and disposal of major wood products including biofuel and associated C emissions). We modeled available woody biomass feedstock and whole‐system carbon balance of 220 000 km2 of temperate forests in the Upper Midwest, USA by coupling an ecosystem process model to a collection of greenhouse gas life‐cycle inventory models and simulating seven forest harvest scenarios in the biological ecosystem and three biofuel production scenarios in the industrial system for 50 years. The forest system was a carbon sink (118 g C m?2 yr?1) under current management practices and forest product production rates. However, the system became a C source when harvest area was doubled and biofuel production replaced traditional forest products. Total carbon stores in the vegetation and soil increased by 5–10% under low‐intensity management scenarios and current management, but decreased up to 3% under high‐intensity harvest regimes. Increasing harvest residue removal during harvest had more modest effects on forest system C balance and total biomass removal than increasing the rate of clear‐cut harvests or area harvested. Net forest system C balance was significantly, and negatively correlated (R2 = 0.67) with biomass harvested, illustrating the trade‐offs between increased C uptake by forests and utilization of woody biomass for biofuel feedstock.  相似文献   

15.
海河流域森林生态系统服务功能评估   总被引:19,自引:7,他引:12  
白杨  欧阳志云  郑华  徐卫华  江波  方瑜 《生态学报》2011,31(7):2029-2039
森林生态系统在流域中发挥着极其重要的生态作用,为流域发展提供着巨大的服务功能。本研究根据生态系统服务功能的内涵,建立了流域森林生态系统服务功能评价指标体系,利用市场价值法、影子工程法和生产成本法等,定量评价了海河流域森林生态系统服务功能的经济价值。结果表明:海河流域森林生态系统总价值2349.4亿元,其中直接价值358.7亿元,间接价值1990.7亿元。从不同的服务功能类型来看,其价值量大小依次为:涵养水源>固碳释氧>环境净化>提供产品>土壤保持>营养元素循环;从不同的森林类型来看,其价值量大小依次为:松柏类>灌丛>栎类>桦木类>混交林>杨树类>松杉类。但是从各种森林类型单位面积价值量来看,大小依次是:松杉类>松柏类>桦木类>混交林>栎类>杨树类>灌丛。从研究结果来看,海河流域森林生态系统服务功能价值巨大,该结果有利于加强人们对森林生态系统的认识,可以为流域生态系统管理、生态保护和生态补偿提供依据。  相似文献   

16.
There is increasing interest worldwide regarding managing plantation forests in a manner that maintains or improves timber production, enhances ecosystem services, and promotes long‐term sustainability of forest resources. We selected the Gan River Basin, the largest catchment of Poyang Lake and a region with a typical plantation distribution in South China, as the study region. We evaluated and mapped four important forest ecosystem services, including wood volume, carbon storage, water yield, and soil retention at a 30 × 30 m resolution, then quantified their trade‐offs and synergies at the county and subwatershed scales. We found that the wood volume and carbon storage services, as well as the soil retention and water yield, exhibited synergistic relationships. However, the carbon storage displayed a trade‐off relationship with the water yield. Additionally, we compared the beneficial spatial characteristics among dominant species in the study region. The results showed that the Chinese fir forest and the pine forest exhibited lower overall benefits than natural forests including the broad‐leaved forest and the bamboo forest. To propose a suitable management strategy for the study region, method of spatial cluster analysis was used based on the four eco‐services at the subwatershed scale. The basin was divided into four management groups instead of treating the region as a homogenous management region. Finally, we proposed more specific and diverse management strategies to optimize forest benefits throughout the entire region.  相似文献   

17.
The ecosystem service (ES) framework is gaining traction in ecosystem management as a means to recognize the multiple benefits that ecosystems provide. In forested ecosystems, many structural attributes (trees, understory plants and woody debris) create heterogeneous ecosystems that provide numerous ecosystem services, including many that are culturally important. However, application of the ES framework to forest management is challenged by difficulties measuring and comparing multiple ES across diverse and heterogeneous forest conditions. Indicators can help bring the ES approach to forest management by providing a means for accurate ES inventory and mapping. We measured 10 forest ES in contrasting forest types to investigate the effects of past forest harvesting in coastal temperate rainforest of Vancouver Island, BC, Canada. Our objectives were to build a systematic set of ES indicators for coastal temperate forests based on forest structural features, including trees, coarse woody debris, and understory plants. To achieve this, we 1) analyzed field data to compare the effects of forest age (old-growth vs. second-growth) and ecological site conditions (riparian vs. upland forest) on the bundle of ES provided by different forest types; and 2) worked with a local indigenous wood carver to identify attributes of cedar trees (Thuja plicata) essential for traditional uses, including canoe carving. Forest age and forest type had significant and major effects on bundles of ES. Old-growth forests provided three times higher carbon storage, nine times higher wood volume, and eighteen times higher canopy habitat services than recovering forests. Within old-growth forests, the proportion of trees suitable for traditional indigenous wood carving was significantly higher in riparian stands. Yet of 456 trees measured, only 17 were cedar with potential traditional uses. Of those, trees for canoe carving were the least frequent (n = 3), which we identified as large (>110 cm DBH) trees of exceptional quality. In general, old-growth riparian forests were a hotspot of ES, providing for example nearly three times as much carbon storage as old-growth forests on upland sites and 12 times the amount of carbon storage as found in second-growth forests on upland sites. These results indicate that typical inventories of forest ES, which usually generalize across heterogeneity, may oversimplify dramatic variations in ES bundles in forested landscapes. Our novel set of stand-level ES indicators can improve the accuracy of ES assessments, incorporate important cultural ES, and help address the role of landscape heterogeneity in influencing ES.  相似文献   

18.
19.
The diversity of aquatic ecosystems is being quickly reduced on many continents, warranting a closer examination of the consequences for ecological integrity and ecosystem services. Here we describe intermediate and final ecosystem services derived from aquatic biodiversity in forests. We include a summary of the factors framing the assembly of aquatic biodiversity in forests in natural systems and how they change with a variety of natural disturbances and human-derived stressors. We consider forested aquatic ecosystems as a multi-state portfolio, with diverse assemblages and life-history strategies occurring at local scales as a consequence of a mosaic of habitat conditions and past disturbances and stressors. Maintaining this multi-state portfolio of assemblages requires a broad perspective of ecosystem structure, various functions, services, and management implications relative to contemporary stressors. Because aquatic biodiversity provides multiple ecosystem services to forests, activities that compromise aquatic ecosystems and biodiversity could be an issue for maintaining forest ecosystem integrity. We illustrate these concepts with examples of aquatic biodiversity and ecosystem services in forests of northwestern North America, also known as Northeast Pacific Rim. Encouraging management planning at broad as well as local spatial scales to recognize multi-state ecosystem management goals has promise for maintaining valuable ecosystem services. Ultimately, integration of information from socio-ecological ecosystems will be needed to maintain ecosystem services derived directly and indirectly from forest aquatic biota.  相似文献   

20.
中国主要森林生态系统公益的评估   总被引:156,自引:2,他引:156       下载免费PDF全文
 为生态系统管理提供科学的量化指标,以我国森林为研究对象,根据全国第3次森林资源清查资料(1984~1988)及Costanza等(1997)的森林生态系统公益资料计算了我国38种主要森林类型生态系统公益的总价值约为117.401亿美元,其中以森林营养循环的贡献最大(约占40%),而原材料(包括木材、燃料、饲料)的贡献仅占15%,反映出森林生态系统公益的显著性。 研究发现,各森林类型的生态系统公益(Va)与其总生产力(Tp)具有良好的相关关系:Ln(Va)=108.21(Tp)0.93,R2=0.844。这对于简化生态系统公益的评估具有重要意义。本研究为合理保护和可持续利用森林资源提供了科学的量化依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号