首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To increase the understanding of poplar and willow perennial woody crops and facilitate their deployment for the production of biofuels, bioproducts, and bioenergy, there is a need for broadscale yield maps. For national analysis of woody and herbaceous crops production potential, biomass feedstock yield maps should be developed using a common framework. This study developed willow and poplar potential yield maps by combining data from a network of willow and poplar field trials and the modeling power of PRISM‐ELM. Yields of the top three willow cultivars across 17 sites ranged from 3.60 to 14.6 Mg ha?1 yr?1 dry weight, while the yields from 17 poplar trials ranged from 7.5 to 15.2 Mg ha?1 yr?1. Relationships between the environmental suitability estimates from the PRISM‐ELM model and results from field trials had an R2 of 0.60 for poplar and 0.81 for willow. The resulting potential yield maps reflected the range of poplar and willow yields that have been reported in the literature. Poplar covered a larger geographic range than willow, which likely reflects the poplar breeding efforts that have occurred for many more decades using genotypes from a broader range of environments than willow. While the field trial data sets used to develop these models represent the most complete information at the time, there is a need to expand and improve the model by monitoring trials over multiple cutting cycles and across a broader range of environmental gradients. Despite some limitations, the results of these models represent a dramatic improvement in projections of potential yield of poplar and willow crops across the United States.  相似文献   

2.
Woody biomass produced from short rotation coppice (SRC) poplar (Populus spp.) and willow (Salix spp.) is a bioenergy feedstock that can be grown widely across temperate landscapes and its use is likely to increase in future. Process‐based models are therefore required to predict current and future yield potential that are spatially resolved and can consider new genotypes and climates that will influence future yield. The development of a process‐based model for SRC poplar and willow, ForestGrowth‐SRC, is described and the ability of the model to predict SRC yield and water use efficiency (WUE) was evaluated. ForestGrowth‐SRC was parameterized from a process‐based model, ForestGrowth for high forest. The new model predicted annual above ground yield well for poplar (r2 = 0.91, RMSE = 1.46 ODT ha?1 yr?1) and willow (r2 = 0.85, RMSE = 1.53 ODT ha?1 yr?1), when compared with measured data from seven sites in contrasting climatic zones across the United Kingdom. Average modelled yields for poplar and willow were 10.3 and 9.0 ODT ha?1 yr?1, respectively, and interestingly, the model predicted a higher WUE for poplar than for willow: 9.5 and 5.5 g kg?1 respectively. Using regional mapped climate and soil inputs, modelled and measured yields for willow compared well (r2 = 0.58, RMSE = 1.27 ODT ha?1 yr?1), providing the first UK map of SRC yield, from a process‐based model. We suggest that the model can be used for predicting current and future SRC yields at a regional scale, highlighting important species and genotype choices with respect to water use efficiency and yield potential.  相似文献   

3.
Fodder maize is the most commonly used crop for biogas production owing to its high yields, high concentrations of starch and good digestibility. However, environmental concerns and possible future conflict with land for food production may limit its long‐term use. The bioenergy grass, Miscanthus, is a high‐yielding perennial that can grow on marginal land and, with ‘greener’ environmental credentials, may offer an alternative. To compete with maize, the concentration of non‐structural carbohydrates (NSC) and digestibility may need to be improved. Non‐structural carbohydrates were quantified in 38 diverse genotypes of Miscanthus in green‐cut biomass in July and October. The aim was to determine whether NSC abundance could be a target for breeding programmes or whether genotypes already exist that could rival maize for use in anaerobic digestion systems. The saccharification potential and measures of N P and K were also studied. The highest concentrations of NSC were in July, reaching a maximum of 20% DW. However, the maximum yield was in October with 300–400 g NSC plant?1 owing to higher biomass. The digestibility of the cell wall was higher in July than in October, but the increase in biomass meant yields of digestible sugars were still higher in October. Nutrient concentrations were at least twofold higher in July compared to November, and the abundance of potassium showed the greatest degree of variation between genotypes. The projected maximum yield of NSC was 1.3 t ha?1 with significant variation to target for breeding. Starch accumulated in the highest concentrations and continued to increase into autumn in some genotypes. Therefore, starch, rather than sugars, would be a better target for breeding improvement. If harvest date was brought forward to autumn, nutrient losses in non‐flowering genotypes would be comparable to an early spring harvest.  相似文献   

4.
Production of energy crops is promoted as a means to mitigate global warming by decreasing dependency on fossil energy. However, agricultural production of bioenergy can have various environmental effects depending on the crop and production system. In a field trial initiated in 2008, nitrate concentration in soil water was measured below winter wheat, grass‐clover and willow during three growing seasons. Crop water balances were modelled to estimate the amount of nitrate leached per hectare. In addition, dry matter yields and nitrogen (N) yields were measured, and N balances and energy balances were calculated. In willow, nitrate concentrations were up to approximately 20 mg l?1 nitrate‐N during the establishment year, but declined subsequently to <5 mg l?1 nitrate‐N, resulting in an annual N leaching loss of 18, 3 and 0.3 kg ha?1 yr?1 N in the first 3 years after planting. A similar trend was observed in grass‐clover where concentrations stabilized at 2–4 mg l?1 nitrate‐N from the beginning of the second growing season, corresponding to leaching of approximately 5 kg ha?1 yr?1 N. In winter wheat, an annual N leaching loss of 36–68 kg ha?1 yr?1 was observed. For comparison, nitrate leaching was also measured in an old willow crop established in 1996 from which N leaching ranged from 6 to 27 kg ha?1 yr?1. Dry matter yields ranged between 5.9 and 14.8 Mg yr?1 with lowest yield in the newly established willow and the highest yield harvested in grass‐clover. Grass‐clover gave the highest net energy yield of 244 GJ ha?1 yr?1, whereas old willow, winter wheat and first rotation willow gave net energy yields of 235, 180 and 105 GJ ha?1 yr?1. The study showed that perennial crops can provide high energy yields and significantly reduce N losses compared to annual crops.  相似文献   

5.
The additive main effects and multiplicative interaction (AMMI) model has emerged as a powerful analytical tool for genotype x environment studies. The objective of the present study was to assess its value in quantitative trait locus (QTL) mapping. This was done through the analysis of a large two-way table of genotype-by-environment data of barley (Hordeum vulgare L.) grain yields, where the genotypes constituted a genetic population suitable for mapping studies. Grain yield data of 150 doubled haploid lines derived from the Steptoe x Morex cross, and the two parental lines, were taken by the North American Barley Genome Mapping Project (NABGMP) at 16 environments throughout the barley production areas of the USA and Canada. Four regions of the genome were responsible for most of the differential genotypic expression across environments. They accounted for approximately 50% of the genotypic main effect and 30% of the genotype x environment interaction (GE) sums of squares. The magnitude and sign of AMMI scores for genotypes and sites facilitate inferences about specific interactions. The parallel use of classification (cluster analysis of environments) and ordination (principal component analysis of GE matrix) techniques allowed most of the variation present in the genotype x environment matrix to be summarized in just a few dimensions, specifically four QTLs showing differential adaptation to four clusters of environments. Thus, AMMI genotypic scores, when the genotypes constituted a population suitable for QTL mapping, could provide an adequate way of resolving the magnitude and nature of QTL x environment interactions.Ignacio Romagosa was on sabbatical leave from the University of Lleida and the Institut de Recerca i Tecnologia Agroalimentàries, Lleida, Spain, when this study was conducted  相似文献   

6.
Willow (Salix spp.) short‐rotation coppice is commercially grown to produce lignocellulosic biomass to meet renewable bioenergy demands. Most commercial willow coppices are grown in stands of a single genotype, but biomass productivity may be greater in mixed communities, and the productivity in mixed communities may depend on the specific genotypes involved. We assessed the biomass production of four different Salix genotypes (“Björn,” “Jorr,” “Loden,” “Tora”) grown without additional nutrient fertilization during one cutting cycle at three locations in Europe (Uppsala in Sweden, Rostock and Freiburg in Germany) in plots of pure and mixed communities. We evaluated (i) the effect of genotype diversity on shoot biomass productivity, including the evidence for complementarity and selection effects; (ii) the influence of individual genotypes on mixed community productivity; and (iii) the productivity of individual genotypes in response to pure vs. mixed culture. Mean shoot biomass production after the first cutting cycle decreased in the order Rostock (8.7 Mg ha?1) > Freiburg (6.9 Mg ha?1) > Uppsala (5.7 Mg ha?1), with values similar to those for other nonfertilized willow stands after the first growth cycle. Consistently across all three locations, increasing genotype diversity did not significantly affect shoot biomass production. Using Bayesian statistics, the addition of the genotypes “Jorr” and “Loden” was predicted to enhance shoot biomass production, while “Tora” and “Björn” are more likely to reduce shoot biomass production in mixed communities. In addition, we found evidence for a negative selection effect due to the genotype “Tora” performing better in mixed than in pure communities in two of the sites (Freiburg, Uppsala). In conclusion, our results imply that increasing genetic richness has no negative effect on productivity and that there is a potential to design site‐specific genotype mixtures of short‐rotation coppice promoting both high genetic diversity and high biomass production.  相似文献   

7.
Species and hybrids of Miscanthus are a promising energy crop, but their outcrossing mating systems and perennial life cycles are serious challenges for breeding programs. One approach to accelerating the domestication of Miscanthus is to harness the tremendous genetic variation that is present within this genus using phenotypic data from extensive field trials, high‐density genotyping and sequencing technologies, and rapidly developing statistical methods of relating phenotype to genotype. The success of this approach, however, hinges on detailed knowledge about the population genetic structure of the germplasm used in the breeding program. We therefore used data for 120 single‐nucleotide polymorphism and 52 simple sequence repeat markers to depict patterns of putatively neutral population structure among 244 Miscanthus genotypes grown in a field trial near Aberystwyth (UK) and delineate a population of 145 M . sinensis genotypes that will be used for association mapping and genomic selection. Comparative multivariate analyses of molecular marker and phenotypic data for 17 traits related to phenology, morphology/biomass, and cell wall composition revealed significant geographic patterns in this population. A longitudinal cline accounted for a substantial proportion of molecular marker variation (R2 = 0.60, = 3.4 × 10?15). In contrast, genetic variation for phenotypic traits tended to follow latitudinal and altitudinal gradients, with several traits appearing to have been affected by divergent selection (i.e., QST >> FST). These contrasting geographic trends are unusual relative to other plants and provide opportunities for powerful studies of phenotype–genotype associations and the evolutionary history of M. sinensis.  相似文献   

8.
Biogenic volatile organic compounds (BVOC) emissions from bioenergy crops may differ from those of conventional crops. We compared emission rates of isoprene and a number of monoterpenes from the lignocellulosic bioenergy crops short‐rotation coppice (SRC) willow and Miscanthus, with the conventional crops wheat and oilseed rape. BVOC emission rates were measured via dynamic vegetation enclosure and GC‐MS analysis approximately monthly between April 2010 and August 2012 at a location in England and from SRC willow at two locations in Scotland. The largest BVOC emission rates were measured from willow in England and varied between years. Isoprene emission rates varied between μg g?1 h?1. Of the monoterpenes detected from willow, α‐pinene emission rates were highest (μg g?1 h?1), followed by μg g?1 h?1 for δ‐3‐carene, μg g?1 h?1 for β‐pinene and μg g?1 h?1 for limonene. BVOC emission rates measured in Scotland were much lower. Low emission rates of isoprene and α‐pinene were measured from Miscanthus in 2010 (μg g?1 h?1 and μg g?1 h?1, respectively) but were not detected in subsequent years. Emission rates from wheat of isoprene were negligible but relatively high for monoterpenes (μg g?1 h?1 and μg g?1 h?1 for α‐pinene and limonene, respectively). No significant emission rates of BVOCs were measured from oilseed rape. The measured emission rates followed a clear seasonal trend. Crude extrapolations based solely on data gathered here indicate that isoprene emissions from willow could correspond to 0.004–0.03% (UK) and 0.76–5.5% (Europe) of current global isoprene if 50% of all land potentially available for bioenergy crops is planted with willow.  相似文献   

9.
Afforestation with short‐rotation coppice (SRC) willow plantations for the purpose of producing bioenergy feedstock was contemplated as one potential climate change mitigation option. The objectives of this study were to assess the magnitude of this mitigation potential by addressing: (i) the land area potentially available for SRC systems in the province of Saskatchewan, Canada; (ii) the potential biomass yields of SRC plantations; and (iii) the carbon implications from such a large‐scale afforestation program. Digital soils and land‐use data were used to identify, map, and group into clusters of similar polygons 2.12 million hectares (Mha) of agriculturally marginal land that was potentially suitable for willow in the Boreal Plains and Prairies ecozones in Saskatchewan. The Physiological Principles in Predicting Growth (3PG) model was calibrated with data from SRC experiments in Saskatchewan, to quantify potential willow biomass yields, and the Carbon Budget Model of the Canadian Forest Sector (CBM‐CFS3), was used to simulate stand and landscape‐level C fluxes and stocks. Short‐rotation willow plantations managed in 3 year rotations for seven consecutive harvests (21 years) after coppicing at Year 1 produced about 12 Mg ha?1 yr?1 biomass. The more significant contribution to the C cycle was the cumulative harvest. After 44 years, the potential average cumulative harvested biomass C in the Prairies was 244 Mg C ha?1 (5.5 Mg C ha?1 yr?1) about 20% higher than the average for the Boreal Plains, 203 Mg C ha?1 (4.6 Mg C ha?1 yr?1). This analysis did not consider afforestation costs, rate of establishment of willow plantations, and other constraints, such as drought and disease effects on biomass yield. The results must therefore be interpreted as a biophysical mitigation potential with the technical and economic potential being both lower than our estimates. Nevertheless, short‐rotation bioenergy plantations offer one potential mitigation option to reduce the rate of CO2 accumulation in the earth's atmosphere and further research is needed to operationalise such a mitigation effort.  相似文献   

10.
A field trial was carried out on a 15 year old Miscanthus stand, subject to nitrogen fertilizer treatments of 0, 63 and 125 kg‐N ha?1, measuring N2O emissions, as well as annual crop yield over a full year. N2O emission intensity (N2O emissions calculated as a function of above‐ground biomass) was significantly affected by fertilizer application, with values of 52.2 and 59.4 g N2O‐N t?1 observed at 63 and 125 kg‐N ha?1, respectively, compared to 31.3 g N2O‐N t?1 in the zero fertilizer control. A life cycle analyses approach was applied to calculate the increase in yield required to offset N2O emissions from Miscanthus through fossil fuel substitution in the fuel chain. For the conditions observed during the field trial yield increases of 0.33 and 0.39 t ha?1 were found to be required to offset N2O emissions from the 63 kg‐N ha?1 treatment, when replacing peat and coal, respectively, while increases of 0.71 and 0.83 t ha?1 were required for the 125 kg‐N ha?1 treatment, for each fuel. These values are considerably less than the mean above‐ground biomass yield increases observed here of 1.57 and 2.79 t ha?1 at fertilization rates 63 and 125 kg‐N ha?1 respectively. Extending this analysis to include a range of fertilizer application rates and N2O emission factors found increases in yield necessary to offset soil N2O emissions ranging from 0.26 to 2.54 t ha?1. These relatively low yield increase requirements indicate that where nitrogen fertilizer application improves yield, the benefits of such a response will not be offset by soil N2O emissions.  相似文献   

11.
Sustained interest in producing renewable energy from dedicated woody biomass crops, such as shrub willow (Salix spp.), through short rotation coppice (SRC) has resulted in a substantial amount of published research on SRC over the past few decades. One area of constant focus has been the nutritional requirements for optimal growth and yield. Inconsistency in the results of individual research trials has likely been a driver of repeated experimentation. This review is intended to provide a quantitative examination of the effect of fertilization treatments on willow biomass yield in field conditions. Data from the literature were collected and summarized to test for significant sources of variation in willow biomass nitrogen (N) pools of common SRC genotypes used in North American and European research programs. A meta‐analysis was conducted on studies comparing synthetic or organic sources of N willow fertilization to an unfertilized control treatment to test for yield response. Overall, the majority of responses to fertilization were positive, although variation by species, N source material, and crop age were found. While no clear pattern in N dosage response was observed, the level of yield response was correlated with geographic and climatic variables. Nitrogen export levels were fairly predictable, and the synthesis presented here can be used to refine current guidelines. Environmental and economic aspects are also considered.  相似文献   

12.
Converting land to biofuel feedstock production incurs changes in soil organic carbon (SOC) that can influence biofuel life‐cycle greenhouse gas (GHG) emissions. Estimates of these land use change (LUC) and life‐cycle GHG emissions affect biofuels' attractiveness and eligibility under a number of renewable fuel policies in the USA and abroad. Modeling was used to refine the spatial resolution and depth extent of domestic estimates of SOC change for land (cropland, cropland pasture, grassland, and forest) conversion scenarios to biofuel crops (corn, corn stover, switchgrass, Miscanthus, poplar, and willow) at the county level in the USA. Results show that in most regions, conversions from cropland and cropland pasture to biofuel crops led to neutral or small levels of SOC sequestration, while conversion of grassland and forest generally caused net SOC loss. SOC change results were incorporated into the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model to assess their influence on life‐cycle GHG emissions of corn and cellulosic ethanol. Total LUC GHG emissions (g CO2eq MJ?1) were 2.1–9.3 for corn‐, ?0.7 for corn stover‐, ?3.4 to 12.9 for switchgrass‐, and ?20.1 to ?6.2 for Miscanthus ethanol; these varied with SOC modeling assumptions applied. Extending the soil depth from 30 to 100 cm affected spatially explicit SOC change and overall LUC GHG emissions; however, the influence on LUC GHG emission estimates was less significant in corn and corn stover than cellulosic feedstocks. Total life‐cycle GHG emissions (g CO2eq MJ?1, 100 cm) were estimated to be 59–66 for corn ethanol, 14 for stover ethanol, 18–26 for switchgrass ethanol, and ?7 to ?0.6 for Miscanthus ethanol. The LUC GHG emissions associated with poplar‐ and willow‐derived ethanol may be higher than that for switchgrass ethanol due to lower biomass yield.  相似文献   

13.
Employing known susceptible and resistant genotypes and pure bacterial inoculum (0.1 OD; 108 CFU/ml?1), five different inoculation methods were tried to assess the response of tomato genotypes to Ralstonia solanacearum. This included seed‐soaking inoculation, seed‐sowing followed by inoculum drenching, or at 2‐week stage through petiole‐excision inoculation, soaking of planting medium with inoculum either directly or after imparting seedling root‐injury. Seed‐based inoculations or mere inoculum drenching at 2 weeks did not induce much disease in seedlings. Petiole inoculation induced 90–100% mortality in susceptible checks but also 50–60% mortality in normally resistant genotypes within 7–10 days. Root‐injury inoculation at 2‐week seedling stage appeared the best for early and clearer distinction between resistant and susceptible lines. The observations suggest a role played by the root system in governing genotypic resistance to the pathogen. Direct shoot inoculation is to be adopted only for selecting highly resistant lines or to thin down segregating populations during resistance breeding.  相似文献   

14.
Mutations that are beneficial in one environment can have different fitness effects in other environments. In the context of antibiotic resistance, the resulting genotype‐by‐environment interactions potentially make selection on resistance unpredictable in heterogeneous environments. Furthermore, resistant bacteria frequently fix additional mutations during evolution in the absence of antibiotics. How do these two types of mutations interact to determine the bacterial phenotype across different environments? To address this, I used Escherichia coli as a model system, measuring the effects of nine different rifampicin resistance mutations on bacterial growth in 31 antibiotic‐free environments. I did this both before and after approximately 200 generations of experimental evolution in antibiotic‐free conditions (LB medium), and did the same for the antibiotic‐sensitive wild type after adaptation to the same environment. The following results were observed: (i) bacteria with and without costly resistance mutations adapted to experimental conditions and reached similar levels of competitive fitness; (ii) rifampicin resistance mutations and adaptation to LB both indirectly altered growth in other environments; and (iii) resistant‐evolved genotypes were more phenotypically different from the ancestor and from each other than resistant‐nonevolved and sensitive‐evolved genotypes. This suggests genotype‐by‐environment interactions generated by antibiotic resistance mutations, observed previously in short‐term experiments, are more pronounced after adaptation to other types of environmental variation, making it difficult to predict long‐term selection on resistance mutations from fitness effects in a single environment.  相似文献   

15.
To improve the efficiency of breeding of Miscanthus for biomass yield, there is a need to develop genomics‐assisted selection for this long‐lived perennial crop by relating genotype to phenotype and breeding value across a broad range of environments. We present the first genome‐wide association (GWA) and genomic prediction study of Miscanthus that utilizes multilocation phenotypic data. A panel of 568 Miscanthus sinensis accessions was genotyped with 46,177 single nucleotide polymorphisms (SNPs) and evaluated at one subtropical and five temperate locations over 3 years for biomass yield and 14 yield‐component traits. GWA and genomic prediction were performed separately for different years of data in order to assess reproducibility. The analyses were also performed for individual field trial locations, as well as combined phenotypic data across groups of locations. GWA analyses identified 27 significant SNPs for yield, and a total of 504 associations across 298 unique SNPs across all traits, sites, and years. For yield, the greatest number of significant SNPs was identified by combining phenotypic data across all six locations. For some of the other yield‐component traits, greater numbers of significant SNPs were obtained from single site data, although the number of significant SNPs varied greatly from site to site. Candidate genes were identified. Accounting for population structure, genomic prediction accuracies for biomass yield ranged from 0.31 to 0.35 across five northern sites and from 0.13 to 0.18 for the subtropical location, depending on the estimation method. Genomic prediction accuracies of all traits were similar for single‐location and multilocation data, suggesting that genomic selection will be useful for breeding broadly adapted M. sinensis as well as M. sinensis optimized for specific climates. All of our data, including DNA sequences flanking each SNP, are publicly available. By facilitating genomic selection in M. sinensis and Miscanthus × giganteus, our results will accelerate the breeding of these species for biomass in diverse environments.  相似文献   

16.
Flowering time is an important factor affecting grain yield in wheat. In this study, we divided reproductive spike development into eight sub‐phases. These sub‐phases have the potential to be delicately manipulated to increase grain yield. We measured 36 traits with regard to sub‐phase durations, determined three grain yield‐related traits in eight field environments and mapped 15 696 single nucleotide polymorphism (SNP, based on 90k Infinium chip and 35k Affymetrix chip) markers in 210 wheat genotypes. Phenotypic and genetic associations between grain yield traits and sub‐phase durations showed significant consistency (Mantel test; = 0.5377, < 0.001). The shared quantitative trait loci (QTLs) revealed by the genome‐wide association study suggested a close association between grain yield and sub‐phase duration, which may be attributed to effects on spikelet initiation/spikelet number (double ridge to terminal spikelet stage, DR‐TS) and assimilate accumulation (green anther to anthesis stage, GA‐AN). Moreover, we observed that the photoperiod‐sensitivity allele at the Ppd‐D1 locus on chromosome 2D markedly extended all sub‐phase durations, which may contribute to its positive effects on grain yield traits. The dwarfing allele at the Rht‐D1 (chromosome 4D) locus altered the sub‐phase duration and displayed positive effects on grain yield traits. Data for 30 selected genotypes (from among the original 210 genotypes) in the field displayed a close association with that from the greenhouse. Most importantly, this study demonstrated specific connections to grain yield in narrower time windows (i.e. the eight sub‐phases), rather than the entire stem elongation phase as a whole.  相似文献   

17.
To verify current thresholds for Bollgard II® cotton in Australia, the impact of Helicoverpa spp. (Lepidoptera: Noctuidae) larvae on yield, development, and quality under various infestation intensities and durations, and stages of growth, was tested using small plot field experiments over two seasons. Infestation with up to 80 eggs m?1 of Helicoverpa armigera (Hübner) and Helicoverpa punctigera Wallengren showed that species, infestation level, and stage of growth had no significant effect on yields of seed‐cotton or lint and on maturity and fibre quality. The duration of infestation of white flowers with H. punctigera neonates (maximum of every day for up to 4 weeks) had no impact on the yield of seed‐cotton or lint, maturity, and fibre quality, but when 100% of flowers were infested (compared with 0 or 50%), seed‐cotton and lint yields were significantly reduced and maturity was delayed. Infestation with up to 18 medium H. armigera larvae m?1 at several plant stages did not significantly affect yields of seed‐cotton and lint, maturity, and fibre quality. A heliocide spray applied on a commercial farm at the current threshold resulted in a significantly higher lint yield, compared with a farm where no spray was applied. In conclusion, Bollgard II® cotton is highly resistant to Helicoverpa spp. infestation.  相似文献   

18.
To breed improved biomass cultivars of Miscanthus ×giganteus, it will be necessary to select the highest‐yielding and best‐adapted genotypes of its parental species, Miscanthus sinensis and Miscanthus sacchariflorus. We phenotyped a diverse clonally propagated panel of 569 M. sinensis and nine natural diploid M. ×giganteus at one subtropical (Zhuji, China) and five temperate locations (Sapporo, Japan; Leamington, Ontario, Canada; Fort Collins, CO; Urbana, IL; and Chuncheon, Korea) for dry biomass yield and 14 yield‐component traits, in trials grown for 3 years. Notably, dry biomass yield of four Miscanthus accessions exceeded 80 Mg/ha in Zhuji, China, approaching the highest observed for any land plant. Additionally, six M. sinensis in Sapporo, Japan and one in Leamington, Canada also yielded more than the triploid M. ×giganteus ‘1993‐1780’ control, with values exceeding 20 Mg/ha. Diploid M. ×giganteus was the best‐yielding group at the northern sites. Genotype‐by‐environment interactions were modest among the five northern trial sites but large between Zhuji, and the northern sites. M. sinensis accessions typically yielded best at trial sites with latitudes similar to collection sites, although broad adaptation was observed for accessions from southern Japan. Genotypic heritabilities for third year yields ranged from 0.71 to 0.88 within locations. Compressed circumference was the best predictor of yield. These results establish a baseline of data for initiating selection to improve biomass yield of M. sinensis and M. ×giganteus in a diverse set of relevant geographies.  相似文献   

19.
We investigated the potential of seaweeds as feedstock for oil‐based products, and our results support macroalgae (seaweeds) as a biomass source for oil‐based bioproducts including biodiesel. Not only do several seaweeds have high total lipid content above 10% dry weight, but in the brown alga Spatoglossum macrodontum 50% of these lipids are in the form of extractable fatty acids. S. macrodontum had the highest fatty acid content (57.40 mg g?1 dw) and a fatty acid profile rich in saturated fatty acids with a high content of C18:1, which is suitable as a biofuel feedstock. Similarly, the green seaweed Derbesia tenuissima has high levels of fatty acids (39.58 mg g?1 dw), however, with a high proportion of PUFA (n‐3) (31% of total lipid) which are suitable as nutraceuticals or fish oil replacements. Across all species of algae the critical parameter of fatty acid content (measured as fatty acid methyl esters, FAME) was positively correlated (R2 = 0.67) with total lipid content. However, the proportion of fatty acids to total lipid decreased markedly with total lipid content, generally between 30% and 50%, making it an inaccurate measure of the potential to identify seaweeds suitable for oil‐based bioproducts. Finally, we quantified within species variation of fatty acids across locations and sampling periods supporting either environmental effects on quantitative fatty acid profiles, or genotypes with specific quantitative fatty acid profiles, thereby opening the possibility to optimize the fatty acid content and quality for oil production through specific culture conditions and selective breeding.  相似文献   

20.
Perennial grasses have been proposed as viable bioenergy crops because of their potential to yield harvestable biomass on marginal lands annually without displacing food and to contribute to greenhouse gas (GHG) reduction by storing carbon in soil. Switchgrass, miscanthus, and restored native prairie are among the crops being considered in the corn and agricultural regions of the Midwest and eastern United States. In this study, we used an extensive dataset of site observations for each of these crops to evaluate and improve the DayCent biogeochemical model and make predictions about how both yield and GHG fluxes would respond to different management practices compared to a traditional corn‐soy rotation. Using this model‐data integration approach, we found 30–75% improvement in our predictions over previous studies and a subsequent evaluation with a synthesis of sites across the region revealed good model‐data agreement of harvested yields (r2 > 0.62 for all crops). We found that replacement of corn‐soy rotations would result in a net GHG reduction of 0.5, 1.0, and 2.0 Mg C ha?1 yr?1 with average annual yields of 3.6, 9.2, and 17.2 Mg of dry biomass per year for native prairie, switchgrass, and miscanthus respectively. Both the yield and GHG balance of switchgrass and miscanthus were affected by harvest date with highest yields occurring near onset of senescence and highest GHG reductions occurring in early spring before the new crops emergence. Addition of a moderate length rotation (10–15 years) caused less than a 15% change to yield and GHG balance. For policy incentives aimed at GHG reduction through onsite management practices and improvement of soil quality, post‐senescence harvests are a more effective means than maximizing yield potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号