首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
飓风和台风对沿海地区森林生态系统的影响   总被引:4,自引:0,他引:4  
仝川  杨玉盛 《生态学报》2007,27(12):5337-5344
飓风和台风是影响热带和温带沿海区域的主要灾害性气候之一,飓风和台风对于森林生态系统的影响是生态学关注的课题。综述了飓风和台风登陆对于森林生态系统树木和林分的危害影响形式及主要影响因素,着重举例阐述了树种和森林类型是影响台风危害程度的一个重要因素。分析了目前国际上开展的关于飓风和台风登陆对于森林生态系统碳、氮循环的影响,结果表明飓风、台风干扰导致的森林凋落物输入量、凋落物分解速率以及森林碳储存量动态变化较为复杂,与森林类型、林分空间位置以及台风过后的时间段密切相关。飓风引起的森林受损的恢复途径和机理与树冠受损严重程度直接相关,并受到光和水分条件的影响,及时的开花、结果以及充足的土壤种子库对森林植被恢复具有促进作用。在景观和区域尺度量化飓风和台风对沿海地区森林生态系统的影响也日益引起关注,在这方面,整合气象数据、遥感数据和地面调查的模型模拟方法起到重要的作用。今后应加强对于我国东南沿海地区森林生态系统遭受台风影响损失的生态监测和长期定位研究,加强关于台风对于不同森林生态系统类型和不同树种的危害形式和危害程度的研究,以及台风对于森林生态系统碳、氮循环影响的研究,弥补我国在以上领域的空白。  相似文献   

2.
《Global Change Biology》2018,24(6):2339-2351
Projected changes in temperature and drought regime are likely to reduce carbon (C) storage in forests, thereby amplifying rates of climate change. While such reductions are often presumed to be greatest in semi‐arid forests that experience widespread tree mortality, the consequences of drought may also be important in temperate mesic forests of Eastern North America (ENA) if tree growth is significantly curtailed by drought. Investigations of the environmental conditions that determine drought sensitivity are critically needed to accurately predict ecosystem feedbacks to climate change. We matched site factors with the growth responses to drought of 10,753 trees across mesic forests of ENA, representing 24 species and 346 stands, to determine the broad‐scale drivers of drought sensitivity for the dominant trees in ENA. Here we show that two factors—the timing of drought, and the atmospheric demand for water (i.e., local potential evapotranspiration; PET)—are stronger drivers of drought sensitivity than soil and stand characteristics. Drought‐induced reductions in tree growth were greatest when the droughts occurred during early‐season peaks in radial growth, especially for trees growing in the warmest, driest regions (i.e., highest PET). Further, mean species trait values (rooting depth and ψ50) were poor predictors of drought sensitivity, as intraspecific variation in sensitivity was equal to or greater than interspecific variation in 17 of 24 species. From a general circulation model ensemble, we find that future increases in early‐season PET may exacerbate these effects, and potentially offset gains in C uptake and storage in ENA owing to other global change factors.  相似文献   

3.
Abstract 1 To maintain biodiversity in forests more wind‐felled trees must be left where they fall. However, there is concern among forest owners that this may result in higher tree mortality caused by the spruce bark beetle, Ips typographus (L.) (Col.: Scolytidae). 2 In the 5 years following a major storm disturbance the number of standing spruces killed by I. typographus was determined in a total of 53 stands. In five of the stands all wind‐thrown trees were left (unmanaged stands) and in 48 of the stands, which were situated at distances of 1.4–10.0 km from each focal unmanaged stand, the wind‐felled trees were removed directly after the storm (managed stands). In the winter preceding the fifth summer new storm‐fellings occurred in the study area. 3 In the 4‐year period between the first and second storm‐fellings, 50–322 standing trees were killed by I. typographus per unmanaged stand. There was a direct linear relationship between the number of storm‐felled spruces colonized by I. typographus and the number of trees subsequently killed in the unmanaged stands. 4 Tree mortality caused by I. typographus in the unmanaged stands was almost nil in the first year, peaked in the second or third year, and decreased markedly to a low level in the fourth and fifth years. 5 In the 4‐year period between the first and second storm‐fellings twice as many trees were killed per ha in the unmanaged stands than in the managed stands: the average difference being 6.2 killed trees per ha, equivalent to 19% of the number of spruce trees felled by the first storm in the unmanaged stands. 6 Much higher numbers of trees were killed per ha in the stand edges than in the interiors of both the unmanaged and the managed stands.  相似文献   

4.
We synthesize insights from current understanding of drought impacts at stand‐to‐biogeographic scales, including management options, and we identify challenges to be addressed with new research. Large stand‐level shifts underway in western forests already are showing the importance of interactions involving drought, insects, and fire. Diebacks, changes in composition and structure, and shifting range limits are widely observed. In the eastern US, the effects of increasing drought are becoming better understood at the level of individual trees, but this knowledge cannot yet be confidently translated to predictions of changing structure and diversity of forest stands. While eastern forests have not experienced the types of changes seen in western forests in recent decades, they too are vulnerable to drought and could experience significant changes with increased severity, frequency, or duration in drought. Throughout the continental United States, the combination of projected large climate‐induced shifts in suitable habitat from modeling studies and limited potential for the rapid migration of tree populations suggests that changing tree and forest biogeography could substantially lag habitat shifts already underway. Forest management practices can partially ameliorate drought impacts through reductions in stand density, selection of drought‐tolerant species and genotypes, artificial regeneration, and the development of multistructured stands. However, silvicultural treatments also could exacerbate drought impacts unless implemented with careful attention to site and stand characteristics. Gaps in our understanding should motivate new research on the effects of interactions involving climate and other species at the stand scale and how interactions and multiple responses are represented in models. This assessment indicates that, without a stronger empirical basis for drought impacts at the stand scale, more complex models may provide limited guidance.  相似文献   

5.
One of the most significant challenges in developing a predictive understanding of the long-term effects of hurricanes on tropical forests is the development of quantitative models of the relationships between variation in storm intensity and the resulting severity of tree damage and mortality. There have been many comparative studies of interspecific variation in resistance of trees to wind damage based on aggregate responses to individual storms. We use a new approach, based on ordinal logistic regression, to fit quantitative models of the susceptibility of a tree species to different levels of damage across an explicit range of hurricane intensity. Our approach simultaneously estimates both the local intensity of the storm within a plot and the susceptibility to storm damage of different tree species within plots. Using the spatial variation of storm intensity embedded in two hurricanes (Hugo in 1989 and Georges in 1998) that struck the 16 ha Luquillo Forest Dynamics Plot in eastern Puerto Rico, we show that variation in susceptibility to storm damage is an important aspect of life history differentiation. Pioneers such as Cecropia schreberiana are highly susceptible to stem damage, while the late successional species Dacryodes excelsa suffered very little stem damage but significant crown damage. There was a surprisingly weak relationship between tree diameter and the susceptibility to damage for most of the 12 species examined. This may be due to the effects of repeated storms and trade winds on the architecture of trees and forest stands in this Puerto Rican subtropical wet forest.
Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp .  相似文献   

6.
Norway spruce is a widely cultivated species in Central Europe; however, it is highly susceptible to droughts, which are predicted to become more frequent in the future. A solution to adapt spruce forests to droughts could be the conversion to mixed-species stands containing species which are less sensitive to drought and do not increase the drought stress in spruce. Here we assessed the drought response of spruce and the presumably more drought-tolerant silver fir and Douglas fir in mixed-conifer stands. We measured tree ring widths of 270 target trees, which grew in mixed and mono-specific neighbourhoods in 18 managed stands in the Black Forest, to quantify the complementarity effects caused by species interactions on growth during the extreme drought event of 2003 and for a number of years with “normal” growth and climatic conditions. Mixed-species neighbourhoods did not significantly affect tree ring growth in normal years. However, during the drought, silver fir benefitted from mixing, while Douglas fir was more drought-stressed in the mixture. The drought response of spruce was dependent on the density and species composition of the neighbourhood, showing both positive and negative mixing effects. Mixed stands containing these tree species could improve adaptation to drought because the risks of extreme events are spread across species, and the performance of individual species is improved. Our knowledge about specific species interactions needs to be improved to manage tree mixtures more effectively with regard to the participating species and stand density.  相似文献   

7.
The effects of El Niño‐induced droughts on dipterocarp forests must be quantified to evaluate the implications of future global climatic changes for the tropical forests of Southeast Asia. We studied the mortality of trees ≥ 1 cm in diameter in a lowland dipterocarp forest in Borneo before, during, and after the 1997/1998 El Niño drought. The annual mortality rates were 1.30, 1.75, and 1.66 percent/yr for the pre‐drought, drought, and post‐drought periods, respectively. The effect of drought was tree size‐dependent being greater for larger trees. Modified logistic regression analysis revealed a significant interaction effect between species' habitat association and edaphic condition on mortality rates in all periods. For species associated with wet habitat, drought effect was greater in dry conditions than in wet conditions, in both the drought and post‐drought periods. The mortality rates of dry‐habitat species were less affected by the drought both in dry and wet conditions. A similar pattern was also found in common Dipterocarpaceae species; mortality rates increased more in species associated with wet‐habitat in the drought and post‐drought periods. Species and families with higher mortality in the pre‐drought period tended to experience greater mortality increases during the drought and post‐drought periods. These results suggest that changes in drought regimes alter the species composition and spatial distribution of dipterocarp forests.  相似文献   

8.
Dyer  James M.  Baird  Philip R. 《Plant Ecology》1997,129(2):121-134
Strong winds are an important disturbance agent in northern Minnesota forests. On June 19, 1994, strong winds (>160 km h(-1)) associated with a tornado damaged forested areas within the Rydell National Wildlife Refuge, situated in Polk County Minnesota along the prairie-forest boundary. Field sampling was conducted immediately following the storm to quantify the type and extent of damage in four different community types, and to project future composition based on the nature of the storm damage and current understory characteristics, including the impact of overbrowsing by deer. Basal area in six sampled remnant forest stands was reduced by 33.5%, although the damage was heterogeneous; basal area in one stand was reduced by 68.1%. The overall effect of the storm was the removal of early- successional species (primarily Populus tremuloides) in larger size classes. Trees situated at stand edges were not more susceptible to snapping or uprooting than interior trees. Projections of future stand composition indicate that wind disturbance, unlike other agents of disturbance such as fire, may accelerate succession on the Refuge, such that early-successional stands will assume a later-successional character, while Acer-Tilia stands should maintain their late-successional character. Overbrowsing and preferential foraging by deer may significantly alter stand recovery patterns.  相似文献   

9.
Ice storms cause periodic disturbance to temperate forests of eastern North America. They are the primary agents of disturbance in some eastern forests. In this paper, a forest gap model is employed to explore consequences of ice storms for the long‐term dynamics of Tsuga canadensis‐northem hardwoods forests. The gap model LINKAGES was modified to simulate periodic ice storm disturbance in the Adirondack Mountains of New York. To adapt the gap model for this purpose, field data on ice storm disturbance are used to develop a polytomous logistic regression model of tree damage. The logistic regression model was then incorporated into the modified forest gap model, LINK ADIR, to determine the type of damage sustained by each simulated tree. The logistic regression model predicts high probabilities of bent boles or severe bole damage (leaning, snapping, or uprooting) in small‐diameter trees, and increasing probability of canopy damage as tree size increases. Canopy damage is most likely on gentle slopes; the probability of severe bole damage increases with increasing slope angle. In the LINKADIR simulations, tree damage type determines the probability of mortality; trees with severe bole damage are assigned the highest mortality rate. LINKADIR predicts Tsuga canadensis dominance in mesophytic old‐growth forests not disturbed by ice storms. When ice storms are simulated, the model predicts Acer saccharum‐dominated forests with higher species richness. These results suggest that ice storms may function as intermediate disturbances that enhance species richness in forested Adirondack landscapes.  相似文献   

10.
Naturally regenerating and restored second growth forests account for over 70% of tropical forest cover and provide key ecosystem services. Understanding climate change impacts on successional trajectories of these ecosystems is critical for developing effective large‐scale forest landscape restoration (FLR) programs. Differences in environmental conditions, species composition, dynamics, and landscape context from old growth forests may exacerbate climate impacts on second growth stands. We compile data from 112 studies on the effects of natural climate variability, including warming, droughts, fires, and cyclonic storms, on demography and dynamics of second growth forest trees and identify variation in forest responses across biomes, regions, and landscapes. Across studies, drought decreases tree growth, survival, and recruitment, particularly during early succession, but the effects of temperature remain unexplored. Shifts in the frequency and severity of disturbance alter successional trajectories and increase the extent of second growth forests. Vulnerability to climate extremes is generally inversely related to long‐term exposure, which varies with historical climate and biogeography. The majority of studies, however, have been conducted in the Neotropics hindering generalization. Effects of fire and cyclonic storms often lead to positive feedbacks, increasing vulnerability to climate extremes and subsequent disturbance. Fragmentation increases forests’ vulnerability to fires, wind, and drought, while land use and other human activities influence the frequency and intensity of fire, potentially retarding succession. Comparative studies of climate effects on tropical forest succession across biogeographic regions are required to forecast the response of tropical forest landscapes to future climates and to implement effective FLR policies and programs in these landscapes.  相似文献   

11.
Each year severe winter storms (≈ice storms) damage trees throughout the southern USA. Arkansas and Oklahoma have a history of severe winter storms. To extend that history back beyond the reach of written records, a distinctive tree ring pattern or signature is needed. Storm-caused breakage, branch loss and bending stress provide that signature. We found a severe storm signature in shortleaf pine (Pinus echinata). We used three published site chronologies, a set of five new site chronologies from a growth-and-yield study conducted by Oklahoma State University and the unpublished Shortleaf Canyon chronology from a master’s thesis at the University of Arkansas. Our method is based on two ring width values for the first and second growing seasons after the storm standardized to the ring widths of the seven growing seasons after the storm. Concordance between storm years predicted by tree ring patterns and actual storm years was tested using Cohen’s Kappa. Concern about confounding of ice storm signals by droughts led us to test concordance between severe storms and drought in July, August and September; results were inconclusive but stand as a warning that these two phenomena cannot be distinguished with certainty in the tree ring record. Damaging severe storms occurred in about 2.8% of all years. Two out of three storms identified as “severe” produced glaze icing.  相似文献   

12.
1 Populations of the spruce bark beetle, Ips typographus (L.), are known to grow rapidly in storm‐disturbed stands as a result of relaxation from intraspecific competition. In the present study, it was tested whether a second mechanism, escape in space from natural enemies, also contributes to the rapid population increase. 2 The experiment was conducted during the initiation phase of five local outbreaks of I. typographus triggered by a storm‐disturbance in November 1995 in southern Sweden. 3 The impact of natural enemies on the ratio of increase (number of daughters per mother) of I. typographus was compared pairwise between disturbed stands with high numbers of storm‐felled trees and undisturbed stands without wind‐felled trees. 4 Enemy impact was assessed by comparing the ratio of increase in uncaged (exposed to enemies) and caged (protected from enemies) bolts colonized by I. typographus prior to being placed in the stands. The experiment was conducted in the second and third summers after the storm‐felling. 5 Enemy impact was about twice as high in stands without wind‐felled trees compared with in stands with wind‐felled trees in the second summer whereas there was no significant difference between the stand types in the third summer. 6 The result demonstrates that spatial escape from enemies contributes to the rapid population growth of I. typographus after storm‐disturbances.  相似文献   

13.
Climate change may affect tree–pathogen interactions. This possibility has important implications for drought-prone forests, where stand dynamics and disease pathogenicity are especially sensitive to climatic stress. In addition, stand structural attributes including density-dependent tree-to-tree competition may modulate the stands’ resistance to drought events and pathogen outbreaks. To assess the effects of stand structure on root-rot-related mortality after severe droughts, we focused on Heterobasidion abietinum mortality in relict Spanish stands of Abies pinsapo, a drought-sensitive fir. We compared stand attributes and tree spatial patterns in three plots with H. abietinum root-rot disease and three plots without root-rot. Point-pattern analyses were used to investigate the scale and extent of mortality patterns and to test hypotheses related to the spread of the disease. Dendrochronology was used to date the year of death and to assess the association between droughts and growth decline. We applied a structural equation modelling approach to test if tree mortality occurs more rapidly than predicted by a simple distance model when trees are subjected to high tree-to-tree competition and following drought events. Contrary to expectations of drought mortality, the effect of precipitation on the year of death was strong and negative, indicating that a period of high precipitation induced an earlier tree death. Competition intensity, related to the size and density of neighbour trees, also induced an earlier tree death. The effect of distance to the disease focus was negligible except in combination with intensive competition. Our results indicate that infected trees have decreased ability to withstand drought stress, and demonstrate that tree-to-tree competition and fungal infection act as predisposing factors of forest decline and mortality.  相似文献   

14.
Question: Are trees sensitive to climatic variability, and do tree species differ in their responses to climatic variability? Does sensitivity of forest communities to climatic variability depend on stand composition? Location: Mixed young forest at Walker Branch Watershed near Oak Ridge, East Tennessee, USA. Methods: Using a long‐term dataset (1967–2006), we analyzed temporal forest dynamics at the tree and species level, and community dynamics for forest stands that differed in initial species composition (i.e., chestnut oak, oak–hickory, pine, and yellow poplar stands). Using summer drought and growing season temperature as defined climate drivers, we evaluated relationships between forest dynamics and climate across levels of organization. Results: Over the four‐decade study period, forest communities underwent successional change and substantially increased in biomass. Variation in summer drought and growing season temperature contributed to temporal biomass dynamics for some tree species, but not for others. Stand‐level responses to climatic variability were related to the responses of component species, except in pine stands. Pinus echinata, the dominant species in pine stands, decreased over time due to periodic outbreaks of pine bark beetle (Dendroctonus frontalis). These outbreaks at Walker Branch could not be directly related to climatic conditions. Conclusions: The results indicate that sensitivity of developing forests to climatic variability is stand type‐dependent, and hence is a function of species composition. However, in the long term, direct effects of climatic variability on forest dynamics may be small relative to autogenic successional processes or climate‐related insect outbreaks. Empirical studies testing for interactions between forest succession and climatic variability are needed.  相似文献   

15.
辽东山区天然次生林雪/风灾害成因及分析   总被引:16,自引:1,他引:16  
对2003年春发生在辽东山区的森林雪/风灾害的成因、过程、受灾情况、造成的危害、与林分结构特征的关系以及对未来次生林生态系统的影响等进行了调查分析。结果表明,雪/风的发生是在一个大的降水天气过程基础上,由于气温的异常变化形成的,受灾严重区多分布于海拔高、坡度大,林型比较单一的桦树、柞树、色树、胡桃树和杨树等林分,林分密度和受灾率及土层厚度和受害株数均呈显著的线性负相关;受灾数量与径级和树高分别呈指数负相关和指数正相关,同时探讨了雪/风害对天然次生林生态系统内病虫害发生、林下植被、生境因子和建群种变化产生的可能影响。  相似文献   

16.
The trends in the occurrence of climatic disturbances in the ChineseFagus range are described, and the relationship between woody species diversity and climatic factors in eight old-growth Chinese beech forests is characterized. In the ChineseFagus range that lies in the humid mountains of southern China, wind storms and heavy rain frequency increase towards the eastern coast. Thunderstorm frequency increases southwards. Snowfall frequency increases northwards. Glaze storm frequency peaks in the center near Lake Dongtian, but much higher in the east than in the west. Hailstorm frequency also peaks in the center. The forests sampled in this study are widely separated. Their canopies consist of either deciduous broad-leaved trees or a mixture of evergreen and deciduous broad-leaved trees. Their species diversity increases towards warmer sites and towards the east. The importance of the evergreen trees in relation to warmth and minimum temperature increases southwards. Our analysis suggests that wind storms and heavy rains enhance the species diversity of Chinese beech forests. Cold disturbances such as glaze and snow diminish the diversity and canopy dominance of evergreen broad-leaved trees but favor deciduous broad-leaved trees, especially beech. The annual precipitation received by the forests in this study varies from 1400–2550 mm. This is not correlated with diversity, however, probably because all of these forests grow in humid conditions with sufficient water being supplied by precipitation throughout the year.  相似文献   

17.
Forest mortality constitutes a major uncertainty in projections of climate impacts on terrestrial ecosystems and carbon‐cycle feedbacks. Recent drought‐induced, widespread forest die‐offs highlight that climate change could accelerate forest mortality with its diverse and potentially severe consequences for the global carbon cycle, ecosystem services, and biodiversity. How trees die during drought over multiple years remains largely unknown and precludes mechanistic modeling and prediction of forest die‐off with climate change. Here, we examine the physiological basis of a recent multiyear widespread die‐off of trembling aspen (Populus tremuloides) across much of western North America. Using observations from both native trees while they are dying and a rainfall exclusion experiment on mature trees, we measure hydraulic performance over multiple seasons and years and assess pathways of accumulated hydraulic damage. We test whether accumulated hydraulic damage can predict the probability of tree survival over 2 years. We find that hydraulic damage persisted and increased in dying trees over multiple years and exhibited few signs of repair. This accumulated hydraulic deterioration is largely mediated by increased vulnerability to cavitation, a process known as cavitation fatigue. Furthermore, this hydraulic damage predicts the probability of interyear stem mortality. Contrary to the expectation that surviving trees have weathered severe drought, the hydraulic deterioration demonstrated here reveals that surviving regions of these forests are actually more vulnerable to future droughts due to accumulated xylem damage. As the most widespread tree species in North America, increasing vulnerability to drought in these forests has important ramifications for ecosystem stability, biodiversity, and ecosystem carbon balance. Our results provide a foundation for incorporating accumulated drought impacts into climate–vegetation models. Finally, our findings highlight the critical role of drought stress accumulation and repair of stress‐induced damage for avoiding plant mortality, presenting a dynamic and contingent framework for drought impacts on forest ecosystems.  相似文献   

18.
Abstract. Six stands located on different land forms in mixed old‐growth Nothofagus forests in the Matiri Valley (northwest of South Island, New Zealand) were sampled to examine the effects of two recent large earthquakes on tree establishment and tree‐ring growth, and how these varied across land forms. 50 trees were cored in each stand to determine age structure and the cores were cross‐dated to precisely date unusual periods of radial growth. The 1968 earthquake (M = 7.1, epicentre 35 km from the study area) had no discernible impact on the sampled stands. The impact of the 1929 earthquake (M = 7.7, epicentre 20 km from the study area) varied between stands, depending on whether or not they had been damaged by soil or rock movement. In all stands, the age structures showed a pulse of N. fusca establishment following the 1929 earthquake, with this species dominating establishment in large gaps created by landslides. Smaller gaps, created by branch or tree death, were closed by both N. fusca and N. menziesii. The long period of releases (1929–1945) indicates that direct earthquake damage was not the only cause of tree death, and that many trees died subsequently most likely of pathogen attack or a drought in the early 1930s. The impacts of the 1929 earthquake are compared to a storm in 1905 and a drought in 1974–1978 which also affected forests in the region. Our results confirm that earthquakes are an important factor driving forest dynamics in this tectonically active region, and that the diversity of earthquake impacts is a major source of heterogeneity in forest structure and regeneration.  相似文献   

19.
Extreme climatic events are key factors in initiating gradual or sudden changes in forest ecosystems through the promotion of severe, tree-killing disturbances such as fire, blowdown, and widespread insect outbreaks. In contrast to these climatically-incited disturbances, little is known about the more direct effect of drought on tree mortality, especially in high-elevation forests. Therefore projections of drought-induced mortality under future climatic conditions remain uncertain. For a subalpine forest landscape in the Rocky Mountains of northern Colorado (USA), we quantified lag effects of drought on mortality of Engelmann spruce Picea engelmannii , subalpine fir Abies lasiocarpa , and lodgepole pine Pinus contorta . For the period 1910–2004, we related death dates of 164 crossdated dead trees to early-season and late-season droughts. Following early-season droughts, spruce mortality increased over five years and fir mortality increased sharply over 11 years. Following late-season droughts, spruce showed a small increase in mortality within one year, whereas fir showed a consistent period of increased mortality over two years. Pine mortality was not affected by drought. Low pre-drought radial growth rates predisposed spruce and fir to drought-related mortality. Spruce and fir trees that died during a recent drought (2000–2004) had significantly lower pre-drought growth rates than live neighbour trees. Overall, we found large interspecific differences in drought-related mortality with fir showing the strongest effect followed by spruce and pine. This direct influence of climatic variability on differential tree mortality has the potential for driving large-scale changes in subalpine forests of the Rocky Mountains.  相似文献   

20.
River regulation and water extraction have altered the hydrology of rivers resulting in substantial changes to forest structure and the dieback of floodplain forests globally. Forest mortality, due to water extraction, is likely to be exacerbated by climate change-induced droughts. In 1965, a plantation trial was established within a natural floodplain forest to examine the effect of planting density on timber production. We used data from this trial to investigate the effect of initial stand density on the structure and dynamics of Eucalyptus camaldulensis (Dehnh.) forests. Highest density stands (8000 trees ha−1) were dominated by many slender trees, mostly<10 cm in diameter, whereas the lowest density stands produced size distributions with a wider range of stem diameters and higher mean and maximum stem diameter. After 1996, the study area experienced a sharp decline in water availability due to a substantial lowering of the water table, reduced flooding frequency, a pronounced rainfall deficit and increased maximum temperatures. The drought coincided with a dramatic increase in mortality in the high-density stands, yet remained little changed in low-density treatments. Our results highlight the importance of initial stand density as a key determinant of the development of forest structure. Early thinning of high-density stands is one component of a broader management approach to mitigate impacts of human-induced drought and water extraction on developing floodplain forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号