首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Along the western margin of North America, the winter expression of the North Pacific High (NPH) strongly influences interannual variability in coastal upwelling, storm track position, precipitation, and river discharge. Coherence among these factors induces covariance among physical and biological processes across adjacent marine and terrestrial ecosystems. Here, we show that over the past century the degree and spatial extent of this covariance (synchrony) has substantially increased, and is coincident with rising variance in the winter NPH. Furthermore, centuries‐long blue oak (Quercus douglasii) growth chronologies sensitive to the winter NPH provide robust evidence that modern levels of synchrony are among the highest observed in the context of the last 250 years. These trends may ultimately be linked to changing impacts of the El Niño Southern Oscillation on midlatitude ecosystems of North America. Such a rise in synchrony may destabilize ecosystems, expose populations to higher risks of extinction, and is thus a concern given the broad biological relevance of winter climate to biological systems.  相似文献   

2.
Biogeographical affinities among Neotropical cloud forests   总被引:3,自引:0,他引:3  
 Biogeographical affinities among cloud forests in the Neotropical region were studied through a track approach, by constructing generalised tracks based on the results of a parsimony analysis of endemicity (PAE). Distributional data on 946 genera and 1,266 species of vascular plants (Pteridophyta, angiosperms, and gymnosperms) from 26 cloud forest patches from Colombia, Costa Rica, Cuba, Honduras, Jamaica, Mexico, Peru, Puerto Rico, and Venezuela were analysed; and four localities from eastern and western United States were also included as outgroups. The track analysis identified six generalised tracks: a first one that includes the majority of the cloud forests of Mexico, Central America, the Antilles, and northern Colombia; a second one that includes southern Mexico and northern Central America; a third one that includes the mountains in northwestern South America; a fourth one that includes the mountains in southwestern South America; and two others in western and eastern United States. It is concluded that the Neotropical cloud forests are closely related and that those of the Caribbean subregion exhibit complex relationships, which could be due to the complex tectonic history of the area. Received February 22, 2001 Accepted May 1, 2001  相似文献   

3.
A new compilation of pollen and packrat midden data from western North America provides a refined reconstruction of the composition and distribution of biomes in western North America for today and for 6000 and 18,000 radiocarbon years before present (14C yr bp ). Modern biomes in western North America are adequately portrayed by pollen assemblages from lakes and bogs. Forest biomes in western North America share many taxa in their pollen spectra and it can be difficult to discriminate among these biomes. Plant macrofossils from packrat middens provide reliable identification of modern biomes from arid and semiarid regions, and this may also be true in similar environments in other parts of the world. However, a weighting factor for trees and shrubs must be used to reliably reconstruct modern biomes from plant macrofossils. A new biome, open conifer woodland, which includes eurythermic conifers and steppe plants, was defined to categorize much of the current and past vegetation of the semiarid interior of western North America. At 6000 14C yr bp , the forest biomes of the coastal Pacific North‐west and the desert biomes of the South‐west were in near‐modern positions. Biomes in the interior Pacific North‐west differed from those of today in that taiga prevailed in modern cool/cold mixed forests. Steppe was present in areas occupied today by open conifer woodland in the northern Great Basin, while in the central and southern Rocky Mountains forests grew where steppe grows today. During the mid‐Holocene, cool conifer forests were expanded in the Rocky Mountains (relative to today) but contracted in the Sierra Nevada. These differences from the forests of today imply different climatic histories in these two regions between 6000 14C yr bp and today. At 18,000 14C yr bp , deserts were absent from the South‐west and the coverage of open conifer woodland was greatly expanded relative to today. Steppe and tundra were present in much of the region now covered by forests in the Pacific North‐west.  相似文献   

4.
The distributional patterns of the seven species of Rhizoprionodon were analysed using the panbiogeographical method of track analysis. The individual tracks of Rhizoprionodon suggest that the genus is mainly an Indian–Atlantic Ocean group. Five generalized tracks were found: (1) Caribbean, defined by R. porosus and R. terraenovae; (2) eastern coast of South America, defined by R. porosus and R. lalandei; (3) Indian Ocean, defined by R. acutus and R. oligolinx; (4) north‐western Australia, defined by R. acutus, R. oligolinx and R. taylori; (5) north‐north‐eastern Australia, defined by R. acutus and R. taylori. Only R. longurio was not included in any generalized track, and its distribution is restricted to the eastern Pacific Ocean. Two biogeographical nodes were found at the intersection of the generalized tracks 1 and 2 (Caribbean Sea) and generalized tracks 4 and 5 (north Australia). The generalized tracks overlap with those found in several unrelated marine taxa. Overall, the generalized tracks are associated with warm currents. The biogeographical nodes found (Caribbean and Australian) are coincident with the global distribution of mangroves.  相似文献   

5.
Aim To use biogeographical, palaeomagnetic, palaeosedimentary, and plate circuit data from Late Cretaceous regions in and around the Pacific to test the plate tectonic hypothesis of a pre‐Pacific superocean. Location East Asia, Australia, Antarctica, the western Americas, and the Pacific. Methods Literature surveys of the distributions of Cretaceous, circum‐Pacific taxa were compared with palaeomagnetic and palaeosedimentary data. Uncontroversial plate motions based on seafloor spreading data were also used to test the results of the biogeographical and palaeomagnetic analyses. Results The distributions of Cretaceous terrestrial taxa, mostly dinosaurs, imply direct, continental connections between Australia and East Asia, East Asia and North America, North America and South America, South America and Antarctica, and Antarctica and Australia. Palaeomagnetic, palaeosedimentary, and basic plate circuit analyses require little to no latitudinal motion of the Pacific plate with respect to the surrounding continents. Specifically, the data implies that western North America, East Asia, and the Pacific plate all increased in latitude by roughly the same amount (c. 11 ± 5°) since the Campanian – and that the Pacific Ocean Basin has increased in length north‐to‐south. Main conclusions Each of the analyses provides independent corroboration for the same conclusion: the Late Cretaceous Pacific plate was completely enclosed by the surrounding continents and has not experienced significant latitudinal motion with respect to North America, East Asia, or the Bering land bridge. This contrasts significantly with the plate tectonic history of the Pacific, implying instead that the Pacific plate formed in situ, pushing the continents apart as the plate and basin expanded. These results also substantiate recent biogeographical analyses that have concluded that a narrower Pacific Ocean Basin in the Mesozoic and early Tertiary provides the most reasonable explanation for the great number of trans‐Pacific disjunctions of poor dispersing taxa.  相似文献   

6.
Decadal‐ to multi‐decadal variations have been reported in many regional ecosystems in the North Pacific, resulting in an increasing demand to elucidate the link between long‐term climatic forcing and marine ecosystems. We detected phenological and quantitative changes in the copepod community in response to the decadal climatic variation in the western subarctic North Pacific by analyzing the extensive zooplankton collection taken since the 1950s, the Odate Collection. Copepod species were classified into five seasonal groups depending on the timing of the annual peak in abundance. The abundance of the spring community gradually increased for the period 1960–2002. The spring–summer community also showed an increasing trend in May, but a decadal oscillation pattern of quasi‐30‐year cycles in July. Phenological changes coincided with the climate regime shift in the mid‐1970s, indicated by the Pacific decadal oscillation index (PDO). After the regime shift, the timing of the peak abundance was delayed one month, from March–April to April–May, in the spring community, whereas it peaked earlier, from June–July to May–June, in the spring–summer community, resulting in an overlap of the high productivity period for the two communities in May. Wintertime cooling, followed by rapid summertime warming, was considered to be responsible for delayed initiation and early termination of the productive season after the mid‐1970s. Another phenological shift, quite different from the previous decade, was observed in the mid‐1990s, when warm winters followed by cool summers lengthened the productive season. The results suggest that climatic forcing with different decadal cycles may operate independently during winter–spring and spring–summer to create seasonal and interannual variations in hydrographic conditions; thus, combinations of these seasonal processes may determine the annual biological productivity.  相似文献   

7.
Aim The plant genus Bursera, with 104 species of trees and shrubs, has been used as a model for biogeographical analyses because of its high species richness and large number of endemic species. The biogeographical patterns of Bursera and their implications for its phylogenetic classification are reviewed in order that some hypotheses on the historical biogeography of tropical Mexico can be proposed. Location Bursera is found in the south‐western USA, most of Mexico, mainly below 1700 m elevation in tropical forests, with some species in xeric shrublands, diversifying along the Pacific slope, Central America, and north‐western South America. A few species occur on the Galapagos and Revillagigedo archipelagos, some of which are endemics, whereas in the Antilles species are distributed extensively, with several endemics in the Bahamas, Cuba, Jamaica, and Hispaniola. Methods Data from specimens in herbaria and the literature were used to construct a matrix of 104 species in 160 areas. Distributional patterns of the species of Bursera were inferred applying track analysis, parsimony analysis of endemicity (PAE), and Brooks parsimony analysis (BPA). Results Track analysis revealed four individual tracks: (1) a circum‐Caribbean track, comprising species of the Bursera simaruba species group; (2) an Antillean track, including species that have been transferred to Commiphora based on their pollen traits; (3) a Mexican Pacific track, including species of the B. fragilis, B. microphylla, and B. fagaroides species groups, called ‘cuajiotes’; and (4) a Neotropical Pacific track, including the two species groups assigned to section Bullockia, in which the individual track of the Bursera copallifera species group is nested within the track of the B. glabrifolia species group. The four tracks overlap in a node in the Mexican Pacific slope, where they are highly diversified. PAE allowed us to identify 22 areas of endemism: 12 in Mexico (11 along the Mexican Pacific slope), six in the Antilles, two in Central America, one in South America, and one in the Galapagos. The general area cladogram obtained by BPA has two main clades: one includes the greater Antilles; and the other, 12 Mexican areas of endemism. Main conclusions Bursera fragilis, B. microphylla, and B. fagaroides species groups can be treated together as a new section within Bursera, sect. Quaxiotea, because they are segregated from the other groups of sect. Bursera based on morphological, anatomical, molecular and geographical evidence.  相似文献   

8.
9.
We undertook a panbiogeographic analysis of the broad‐nosed weevils of the genera Naupactus Dejean, 1821, Pantomorus Schönherr, 1840 and Phacepholis Horn, 1876 (Coleoptera: Curculionidae) from North and Central America to propose a biogeographic scenario to explain their biotic diversification. Based on individual tracks of 30 species, we obtained six generalized tracks: Mesoamerican, Chiapas, Sierra Madre del Sur, Mexican Pacific Coast, Southern Great Plains and Northern Great Plains tracks. The Sierra Madre del Sur generalized track is the best supported, based on 10 species of the three genera. We found two nodes, one at the intersection of the Mesoamerican and Chiapas tracks, and another at the intersection of the Chiapas and Sierra Madre del Sur tracks. Species of Naupactus are primarily distributed in lowlands, associated mostly with dry forests and xeric environments. Species of Pantomorus and Phacepholis would have diversified from South American Naupactus‐like ancestors, mainly in montane habitats and lowlands of North and Central America, between sea level to about 2500 m of altitude.  相似文献   

10.
Abstract: New dinosaur tracksites are described from the Bajocian–Bathonian Bemaraha Formation of western Madagascar. Two track‐bearing surfaces can be followed over a distance of at least 4 km, suggesting the existence of a hitherto unrecognized megatracksite. The track assemblage is theropod dominated, but sauropod tracks also occur at one site. Qualitative and quantitative analysis of the abundant theropod track material suggests that most, if not all, theropod footprints are attributable to a single trackmaker and are referred to Kayentapus isp. Although this ichnogenus, originally described from the Lower Jurassic of North America, has never been recorded from Gondwana nor from the Middle Jurassic, track morphology strongly suggests this attribution. Palaeogeographical, sedimentological and ichnological data suggest that the dinosaur tracks formed in an intertidal to supratidal setting where the coastline influenced the preferred walking direction of the animals.  相似文献   

11.
Tree growth at northern treelines is generally temperature‐limited due to cold and short growing seasons. However, temperature‐induced drought stress was repeatedly reported for certain regions of the boreal forest in northwestern North America, provoked by a significant increase in temperature and possibly reinforced by a regime shift of the pacific decadal oscillation (PDO). The aim of this study is to better understand physiological growth reactions of white spruce, a dominant species of the North American boreal forest, to PDO regime shifts using quantitative wood anatomy and traditional tree‐ring width (TRW) analysis. We investigated white spruce growth at latitudinal treeline across a >1,000 km gradient in northwestern North America. Functionally important xylem anatomical traits (lumen area, cell‐wall thickness, cell number) and TRW were correlated with the drought‐sensitive standardized precipitation–evapotranspiration index of the growing season. Correlations were computed separately for complete phases of the PDO in the 20th century, representing alternating warm/dry (1925–1946), cool/wet (1947–1976) and again warm/dry (1977–1998) climate regimes. Xylem anatomical traits revealed water‐limiting conditions in both warm/dry PDO regimes, while no or spatially contrasting associations were found for the cool/wet regime, indicating a moisture‐driven shift in growth‐limiting factors between PDO periods. TRW reflected only the last shift of 1976/1977, suggesting different climate thresholds and a higher sensitivity to moisture availability of xylem anatomical traits compared to TRW. This high sensitivity of xylem anatomical traits permits to identify first signs of moisture‐driven growth in treeline white spruce at an early stage, suggesting quantitative wood anatomy being a powerful tool to study climate change effects in the northwestern North American treeline ecotone. Projected temperature increase might challenge growth performance of white spruce as a key component of the North American boreal forest biome in the future, when drier conditions are likely to occur with higher frequency and intensity.  相似文献   

12.
A diverse assemblage of dinosaur and bird tracks from Niobrara County, Wyoming, represents the first vertebrate ichnofauna reported from the bone-rich Lance Formation (Maastrichtian, Upper Cretaceous). The ichnofauna includes a hadrosaur track with skin impressions; three theropod track types, including the tetradactyl track Saurexallopus zerbsti (ichnosp. nov.); a tridactyl dinosaur footprint with a fusiform digit III; possible Tyrannosaurus tracks; four distinctive avian ichnites; and invertebrate traces. The footprints are generally well-preserved and so offer a unique insight into the ecology of a small river valley during the Maastrichtian.

Saurexallopus zerbsti ichnosp. nov. from the Lance is similar to Saurexallopus lovei recently reported from the Maastrichtian, Harebell Formation, of northwestern Wyoming, but is represented by much better material, facilitating amendment of the ichnogenus. Skeletal equivalents for Saurexallopus are not currently known. Similarly, the tridactyl track with fusiform digit III is similar to footprints reported from the coeval Laramie Formation of Colorado and may also be similar to ichnogenus Ornithomimipus from the Edmonton Group of Alberta (though not necessarily of ornithomimid affinity). The hadrosaurian track with the skin impression is reminiscent of a similar ichnite reported from the Maastrichtian, St. Mary River Formation in Alberta, which is herein named Hadrosauropodus langstoni as part of a reassessment of Cretaceous ornithopod track ichnotaxonomy. Such correlations demonstrate the utility of tracks for local or regional biostratigraphy (palichnostratigraphy) in western North America. It is also clear that tracks add to our knowledge of the composition and distribution of dinosaurian and avian components of Maastrichtian faunas. In particular the bird tracks indicate a diversity of at least four species, one of which was a semi-palmate form, hitherto unknown in the ichnological record and named Sarjeantichnus semipalmatus.  相似文献   

13.
Biogeographic tracks are mapped for Galapagos endemics representing 25 plant and animal taxa and including organisms with good and poor means of dispersal. These patterns confirm standard biogeographic tracks linking Galapagos with Central America, western North and South America, the Caribbean, Asia and Australasia. Discovery of the Galapagos Gore in the 1970s corroborates the biogeographic prediction for a major tectonic centre associated with the Galapagos. The biogeographic model developed by Croizat in 1958 of Galapagos colonization involving an ancestral biota inhabiting eastern Pacific geosynclinal forelands is congruent with plate tectonic models supporting a Pacific island arc origin for western American terranes. American relatives of Galapagos endemics may have originated within an eastern Pacific paleogeography rather than representing centres of origin for dispersal to the Galapagos. Galapagos colonization by an eastern Pacific biota between late Cretaceous and mid-Tertiary has significant implications for understanding the tempo and mode for both the origins of island biota and general models of evolutionary differentiation. Popular assertions that overwater dispersal represents the only viable origin for the entire Galapagos biota is no longer biogeographically or geologically tenable.  相似文献   

14.
Aim The coastal temperate rain forests of north‐western North America are internationally renowned as the archetypal expression of the temperate rain forest biome. Less well documented is the existence of somewhat similar forests 500–700 km inland on the windward slopes of the Columbia and Rocky Mountains. Here we attempt to show that these inland ‘wetbelt’ forests warrant rain forest status. Location North‐western North America. Methods We use tree‐dwelling macrolichens to assess the degree of environmental congruence between the coastal temperate rain forests and their inland counterparts. Results We report three key findings: (1) 40% of oceanic, epiphytic macrolichens found in Pacific coastal rain forests occur also in inland regions; (2) epiphytic species richness decreases with decreasing latitude, such that roughly 70% of disjunct oceanic species are restricted to regions north of 51° N; and (3) the southward decline in lichen diversity is correlated with a parallel decrease in summer precipitation, but not with mean annual precipitation. Main conclusions These observations are consistent with the recognition of an inland rain forest formation between 50 and 54° N. Inland rain forests represent a small, biologically significant ecosystem whose continued fragmentation and conversion to tree plantations warrant close scrutiny.  相似文献   

15.
Aim Our aim in this paper is to present the first broad‐scale quantification of species abundance for rocky intertidal communities along the Pacific coast of North America. Here we examine the community‐level marine biogeographical patterns in the context of formerly described biogeographical regions, and we evaluate the combined effects of geographical distance and environmental conditions on patterns of species similarity across this region. Location Pacific coast of North America. Methods Data on the percentage cover of benthic marine organisms were collected at 67 rocky intertidal sites from south‐eastern Alaska, USA, to central Baja California Sur, Mexico. Cluster analysis and non‐metric multidimensional scaling were used to evaluate the spatial patterns of species similarity among sites relative to those of previously defined biogeographical regions. Matrices of similarity in species composition among all sites were computed and analysed with respect to geographical distance and long‐term mean sea surface temperature (SST) as a measure of environmental conditions. Results We found a high degree of spatial structure in the similarity of intertidal communities along the coast. Cluster analysis identified 13 major community structure ‘groups’. Although breaks between clusters of sites generally occurred at major biogeographical boundaries, some of the larger biogeographical regions contained several clusters of sites that did not group according to spatial position or identifiable coastal features. Additionally, there were several outliers – sites that grouped alone or with sites outside their region – for which localized features may play an important role in driving community structure. Patterns of species similarity at the large scale were highly correlated with geographical distance among sites and with SST. Importantly, we found community similarity to be highly correlated with long‐term mean SST while controlling for the effects of geographical distance. Main conclusions These findings reveal a high degree of spatial structure in the similarity of rocky intertidal communities of the north‐east Pacific, and are generally consistent with those of previously described biogeographical regions, with some notable differences. Breaks in similarity among clusters are generally coincident with known biogeographical and oceanographic discontinuities. The strong correlations between species similarity and both geographical position and SST suggest that both geography and oceanographic conditions have a large influence on patterns of intertidal community structure along the Pacific coast of North America.  相似文献   

16.
Many of the remaining patches of untilled (native) prairie in the Northern Glaciated Plains of North America are heavily invaded by the cool‐season grasses, Bromus inermis and Poa pratensis. However, the native vegetation in these patches contains many warm‐season species. This difference in phenology can be used to benefit restoration. We conducted an experiment to examine the efficacy of restoration treatments (mowing and prescribed fire) applied early in the growing season for consecutive years to decrease cool‐season invasive plant biomass without impacting the native warm‐season species. Our treatments were successful at significantly decreasing invasive cool‐season plant biomass and increasing native warm‐season plant biomass. No differences between treatments (mowing and prescribed fire) were found. Results suggest that incorporating differences in phenology between target and nontarget species into management may increase restoration success.  相似文献   

17.
The Asian bush mosquito, Aedes japonicus japonicus, and the coastal rock pool mosquito, Aedes togoi, are potential disease vectors present in both East Asia and North America. While their ranges are fairly well‐documented in Asia, this is not the case for North America. We used maximum entropy modeling to estimate the potential distributions of Ae. togoi and Ae. j. japonicus in the United States, Canada, and northern Latin America under contemporary and future climatic conditions. Our results suggest suitable habitat that is not known to be occupied for Ae. j. japonicus in Atlantic and western Canada, Alaska, the western, midwestern, southern, and northeastern United States, and Latin America, and for Ae. togoi along the Pacific coast of North America and the Hawaiian Islands. Such areas are at risk of future invasion or may already contain undetected populations of these species. Our findings further predict that the limits of suitable habitat for each species will expand northward under future climatic conditions.  相似文献   

18.
Glacial cycles have played a dominant role in shaping the genetic structure and distribution of biota in northwestern North America. The two major ice age refugia of Beringia and the Pacific Northwest were connected by major mountain chains and bordered by the Pacific Ocean. As a result, numerous refugial options were available for the regions taxa during glacial advances. We reviewed the importance of glaciations and refugia in shaping northwestern North America’s phylogeographic history. We also tested whether ecological variables were associated with refugial history. The recurrent phylogeographic patterns that emerged were the following: (i) additional complexity, i.e. refugia within refugia, in both Beringia and the Pacific Northwest; and (ii) strong evidence for cryptic refugia in the Alexander Archipelago and Haida Gwaii, the Canadian Arctic and within the ice‐sheets. Species with contemporary ranges that covered multiple refugia, or those with high dispersal ability, were significantly more likely to have resided in multiple refugia. Most of the shared phylogeographic patterns can be attributed to multiple refugial locales during the last glacial maximum or major physiographic barriers like rivers and glaciers. However, some of the observed patterns are much older and appear connected to the orogeny of the Cascade‐Sierra chain or allopatric differentiation during historic glacial advances. The emergent patterns from this review suggest we should refine the classic Beringian‐southern refugial paradigm for northwestern North American biota and highlight the ecological and evolutionary consequences of colonization from multiple refugia.  相似文献   

19.
Qian  Hong  Klinka  Karel  Kayahara  Gordon J. 《Plant Ecology》1998,138(2):161-178
Spatial patterns of plant diversity in the North American boreal forest were examined according to three plant life forms (woody plants, herbaceous plants, and bryophytes) and two taxonomic levels (species and genus), using sixty 9-ha plots sampled in white spruce (Picea glauca (Moench) Voss) and black spruce (Picea mariana (P. Mill.) B.S.P.) ecosystems along a transcontinental transect from the Pacific coast eastwards to the Atlantic coast. The patterns of inventory diversity (represented by alpha diversity), differentiation diversity (represented by the similarity index, habitat-heterogeneity index, similarity decay rate, and length of the first axis in detrended correspondence analysis), and pattern diversity (represented by the mosaic diversity index) were assessed along the transect in both ecosystem types. At the stand level, central North America had the highest alpha diversity in terms of the number of species or genera, and western North America had a higher alpha diversity than eastern North America. At the continental scale, herbaceous plants had the highest beta diversity in terms of floristic change from the eastern to western North America, bryophytes had the lowest beta diversity, and woody plants were in the middle, regardless of ecosystem type and taxonomic level. Central North America had the lowest mosaic diversity across the boreal transect of North America. The white spruce ecosystems had a higher alpha diversity than the black spruce ecosystems regardless of plant life form, taxonomic level and geographic location. The white spruce ecosystems tended to have more bryophytes, less woody plants, and higher species:genus ratio than the black spruce ecosystems. In general, the white spruce and black spruce ecosystems shared the same patterns in diversity changes at different spatial scales, plant life forms, and taxonomic levels across the transect studied. The existing patterns of plant diversity in the North American boreal forest area resulted from a combination of ecological processes and spatial configuration.  相似文献   

20.
A long-term record of Asian dust storms showed seven high-occurrence-frequency centers in China. The intrusion of Asian dust into the downwind seas, including the China seas, the Sea of Japan, the subarctic North Pacific, the North Pacific subtropical gyre, and the western and eastern Equatorial Pacific, has been shown to add nutrients to ocean ecosystems and enhance their biological activities. To explore the relationship between the transported dust from various sources to the six seas and oceanic biological activities with different nutrient conditions, the correlation between monthly chlorophyll a concentration in each sea and monthly dust storm occurrence frequencies reaching the sea during 1997–2007 was examined in this study. No correlations were observed between dust and chlorophyll a concentration in the <50 m China seas because atmospheric deposition is commonly believed to exert less impact on coastal seas. Significant correlations existed between dust sources and many sea areas, suggesting a link between dust and chlorophyll a concentration in those seas. However, the correlation coefficients were highly variable. In general, the correlation coefficients (0.54–0.63) for the Sea of Japan were highest, except for that between the subarctic Pacific and the Taklimakan Desert, where it was as high as 0.7. For the >50 m China seas and the North Pacific subtropical gyre, the correlation coefficients were in the range 0.32–0.57. The correlation coefficients for the western and eastern Equatorial Pacific were relatively low (<0.36). These correlation coefficients were further interpreted in terms of the geographical distributions of dust sources, the transport pathways, the dust deposition, the nutrient conditions of oceans, and the probability of dust storms reaching the seas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号