首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract. Electrical potential differences (PDs) were measured continuously at six points in line on the surface of primary roots of cress ( Lepidium sativum L.). The root-to-hypocotyl transition was used as the reference. A gradient of extracellular potentials existed along the root axis. The most negative potentials were observed at the root tip. Whenever the growth rate declined to 0·10 mm h−1 or less, the PDs were nearly constant in space and time. Otherwise, the PDs showed different types of changes with time. Roots with growth rates between 0·65 and 1·10 mm h−1 preferably showed PDs characterized by approximately sinoidal oscillations. Maximal amplitudes appeared in the middle of the elongation zone. Roots which were exposed to a N2-atmosphere exhibited a reversible disappearance of the electrical oscillations and a decrease in the PD-gradient. Similar effects were obtained by the application of the metabolic inhibitor azide (N3). These results proved that the electrical oscillations are dependent on the aerobic cell metabolism.  相似文献   

2.
3.
4.
The epidermal surface of the maize root tip   总被引:2,自引:2,他引:0  
  相似文献   

5.
6.
How much ABA can be supplied by the roots is a key issue for modelling the ABA-mediated influence of drought on shoot physiology. We quantified accumulation rates of ABA ( S ABA) in maize roots that were detached from well-watered plants and dehydrated to various extents by air-drying. S ABA was estimated from changes in ABA content in root segments incubated at constant relative water content (RWC). Categories of root segments, differing in age and branching order, were compared (root branches, and nodal roots subdivided into root tips, subapical unbranched sections, and mature sections). All categories of roots accumulated ABA, including turgid and mature tissues containing no apex. S ABA measured in turgid roots changed with root age and among root categories. This variability was largely accounted for by differences in water content among different categories of turgid roots. The response of S ABA to changes in root water potential ( Ψ root) induced by dehydration was common to root tips, nodal roots and branches of several ages, while this was not the case if root dehydration was expressed in terms of RWC. Differences among root categories in the response of S ABA to RWC were due to different RWC values among categories at a given Ψ root, and not to differences in the response of S ABA to Ψ root.  相似文献   

7.
Frictional resistance to a penetrating body can account for more than 80% of the total resistance to penetration of soil. We measured the frictional resistance between growing root caps of maize and pea and ground and smooth glass surfaces, which was linearly correlated to load, allowing calculation of the coefficient of kinetic friction and adhesion. Coefficients of kinetic friction between the root caps and the ground and smooth glass surfaces were approximately 0.04 and 0.02, respectively, the first measurements of the frictional properties of root tips at rates approaching those of root elongation, and an order of magnitude smaller than those previously reported. Results suggest that roots are well designed for penetrating soil, and encounter only small frictional resistance on the root cap. These data provide important parameters for modelling soil stresses and deformation around growing root tips.  相似文献   

8.
The relative importance of root system structure, plant carbon status and soil environment in the determination of lateral root diameter remains unclear, and was investigated in this study. Banana (Musa acuminata) plants were grown at various moderate levels of soil compaction in two distinct experiments, in a field experiment (FE) and in a glasshouse experiment (GE). Radiant flux density was 5 times lower in GE. The distribution of root diameter was measured for several root branching orders. Root diameters ranged between 0.09 and 0.52 mm for secondary roots and between 0.06 and 0.27 mm for tertiary roots. A relationship was found between the diameter of the parent bearing root and the median diameter of its laterals, which appears to be valid for a wide range of species. Mean lateral root diameter increased with distance to the base of the root and decreased with branching density [number of lateral roots per unit length of bearing root (cm(-1))]. Typical symptoms of low light availability were observed in GE. In this case, lateral root diameter variability was reduced. Although primary root growth was affected by soil compaction, no effects on lateral root diameter were observed.  相似文献   

9.
10.
The extracellular proton activity along primary roots of Phleum pratense L. was measured using proton-selective microelectrodes. Removal of the root cap caused a reduction of the proton influx in the transitional region between the meristem and the apical elongation zone of the vertical root and inhibited the development of pH differences between the physically upper and lower flanks of the gravistimulated root. Disruption of the actin filament system of the root with 5 mmol m-3 cytochalasin D did not result in an altered proton flux and pH pattern compared with untreated vertical control roots, but inhibited the gravity-induced development of pH differences between the physically upper and lower root flanks as well as gravitropic curvature. These results provide evidence that pH changes following gravistimulation are induced by a signal transmitted from the root cap and that the actin filament system is involved in the gravity perception/transduction mechanism.  相似文献   

11.
We have earlier published observations showing that endogenous alterations in growth rate during gravitropism in maize roots (Zea mays L.) are unaffected by the orientation of cuts which remove epidermal and cortical tissue in the growing zone (Björkman and Cleland, 1988, Planta 176, 513–518). We concluded that the epidermis and cortex are not essential for transporting a growth-regulating signal in gravitropism or straight growth, nor for regulating the rate of tissue expansion. This conclusion has been challenged by Yang et al. (1990, Planta 180, 530–536), who contend that a shallow girdle around the entire perimeter of the root blocks gravitropic curvature and that this inhibition is the result of a requirement for epidermal cells to transport the growth-regulating signal. In this paper we demonstrate that the entire epidermis can be removed without blocking gravitropic curvature and show that the position of narrow girdles does not affect the location of curvature. We therefore conclude that the epidermis is not required for transport of a growth-regulating substance from the root cap to the growing zone, nor does it regulate the growth rate of the elongating zone of roots.  相似文献   

12.
The stationary radial volume flows across maize (Zea mays L.) root segments without steles (sleeves) were measured under isobaric conditions. The driving force of the volume flow is an osmotic difference between the internal and external compartment of the root preparations. It is generated by differences in the concentrations of sucrose, raffinose or polyethylene glycol. The flows are linear functions of the corresponding osmotic differences ( ) up to osmotic values which cause plasmolysis. The straight lines obtained pass through the origin. No asymmetry of the osmotic barrier could be detected within the range of driving forces applied ( =±0.5 MPa), corresponding to volume-flow densities of jv, s=±7·10–8 m·s–1. Using the literature values for the reflection coefficients of sucrose and polyethylene glycol in intact roots (E. Steudle et al. (1987) Plant Physiol.84, 1220–1234), values for the sleeve hydraulic conductivity of about 1·10–7 m·s–1 MPa–1 were calculated. They are of the same order of magnitude as those reported in the literature for the hydraulic conductivity of intact root segments when hydrostatic pressure is applied.Abbreviations and symbols a s outer surface of sleeve segment - c concentration of osmotically active solute - j v, s radial volume flow density across sleeve segment - Lps hydraulic conductivity of sleeves - Lpr hydraulic conductivity of intact roots - N thickness of Nernst diffusion layer - reflection coefficient of root for solute - osmotic value of bulk phase - osmotic coefficient  相似文献   

13.
添加GA3和CCC虽然影响栝楼毛状根的生物量积累 ,但是有利于促进天花粉蛋白 (TCN)的合成 ,当GA3的添加量为 2mg/L时 ,天花粉蛋白含量增加了 18 9% ,添加 1mg/L~ 2mg/LCCC的天花粉蛋白提高了 2 8%。分别添加维生素B1或B5会延长毛状根的生长迟滞期 ,但是 ,后期的生长非常迅速 ,并可以促进天花粉蛋白的合成。同时添加维生素B1和B5可以缩短生长迟滞期 ,并能促进毛状根的生长 ,同时添加1mg/LB1 4mg/LB5有利于促进天花粉蛋白总量的增加。  相似文献   

14.
白杨派杂种无性系生根特性研究   总被引:3,自引:0,他引:3  
通过对采用杂交育种方法选育出的白杨无性系生根性状进行研究。结果表明,新无性系在最早生根时间、主侧根总数量、主侧根总长度等指标上均存在极显著差异,说明各无性系的生根能力具有显著差异。主根平均根数和侧根平均根数两个性状的遗传方差均大于环境方差,其重复力分别可达95%和87%。进一步分析结果表明易生根的无性系根原基数量最多,平均每段插穗约14.7~7.3个.而较难生根的无性系平均每段插穗约5.5~6.8个,难生根的毛白杨根原基数量最少,平均每段插穗约3.3个。通过层次分析法(AHP)对各无性系生根特性的综合评价结果表明:9606、9603、9608、9607、9614、9610、9602等7个无性系生根能力均优于其亲本和毛白杨。  相似文献   

15.
16.
17.
Ishikawa H  Hasenstein KH  Evans ML 《Planta》1991,183(3):381-390
We used a video digitizer system to measure surface extension and curvature in gravistimulated primary roots of maize (Zea mays L.). Downward curvature began about 25 +/- 7 min after gravistimulation and resulted from a combination of enhanced growth along the upper surface and reduced growth along the lower surface relative to growth in vertically oriented controls. The roots curved at a rate of 1.4 +/- 0.5 degrees min-1 but the pattern of curvature varied somewhat. In about 35% of the samples the roots curved steadily downward and the rate of curvature slowed as the root neared 90 degrees. A final angle of about 90 degrees was reached 110 +/- 35 min after the start of gravistimulation. In about 65% of the samples there was a period of backward curvature (partial reversal of curvature) during the response. In some cases (about 15% of those showing a period of reverse bending) this period of backward curvature occurred before the root reached 90 degrees. Following transient backward curvature, downward curvature resumed and the root approached a final angle of about 90 degrees. In about 65% of the roots showing a period of reverse curvature, the roots curved steadily past the vertical, reaching maximum curvature about 205 +/- 65 min after gravistimulation. The direction of curvature then reversed back toward the vertical. After one or two oscillations about the vertical the roots obtained a vertical orientation and the distribution of growth within the root tip became the same as that prior to gravistimulation. The period of transient backward curvature coincided with and was evidently caused by enhancement of growth along the concave and inhibition of growth along the convex side of the curve, a pattern opposite to that prevailing in the earlier stages of downward curvature. There were periods during the gravitropic response when the normally unimodal growth-rate distribution within the elongation zone became bimodal with two peaks of rapid elongation separated by a region of reduced elongation rate. This occurred at different times on the convex and concave sides of the graviresponding root. During the period of steady downward curvature the elongation zone along the convex side extended farther toward the tip than in the vertical control. During the period of reduced rate of curvature, the zone of elongation extended farther toward the tip along the concave side of the root. The data show that the gravitropic response pattern varies with time and involves changes in localized elongation rates as well as changes in the length and position of the elongation zone. Models of root gravitropic curvature based on simple unimodal inhibition of growth along the lower side cannot account for these complex growth patterns.  相似文献   

18.
Root (wilt) disease (RWD) caused by phytoplasma is one of the most devasting diseases of coconut palms. The major symptoms of the disease in leaves are wilting and drooping and flaccidity; ribbing, paling/yellowing and necrosis of leaflets are typical symptoms of foliar diseases. Unopened pale yellow leaflets of spindle leaves are more susceptible to leaf rot disease, which is caused by Exerohilum rostratum and Colletotrichum gloeosporioides. RWD is caused by phytoplasmas, the cell wall-less prokaryotes that are bounded by a “unit” membrane. In ultrathin sections, they appear as a complex multi-branched, beaded, filamentous or spheroidal pleomorphic bodies. The disease was transmitted by plant hoppers (Proutista moesta) and lace wing bug (Stephanitis typica). Phytoplasmas are generally present in the phloem sieve tubes and in the salivary glands of these insect vectors. Phytoplasmas cannot be cultured in vitro, and hence it is very difficult to identify them. Using polymerase chain reaction technique, group-specific primers have been applied to detect mixed-phytoplasma infections in a single host. RWD, is a non-lethal, debilitating disease, and hence an integrated approach for the management of this disease in coconut palms has been discussed in this study.  相似文献   

19.
Aluminum (Al) is toxic to plants when solubilized into Al(3+) in acidic soils, and becomes a major factor limiting plant growth. However, the primary cause for Al toxicity remains unknown. Nitric oxide (NO) is an important signaling molecule modulating numerous physiological processes in plants. Here, we investigated the role of NO in Al toxicity to Hibiscus moscheutos. Exposure of H. moscheutos to Al(3+) led to a rapid inhibition of root elongation, and the inhibitory effect was alleviated by NO donor sodium nitroprusside (SNP). NO scavenger and inhibitors of NO synthase (NOS) and nitrate reductase had a similar inhibitory effect on root elongation. The inhibition of root elongation by these treatments was ameliorated by SNP. Aluminum inhibited activity of NOS and reduced endogenous NO concentrations. The alleviation of inhibition of root elongation induced by Al, NO scavenger and NOS inhibitor was correlated with endogenous NO concentrations in root apical cells, suggesting that reduction of endogenous NO concentrations resulting from inhibition of NOS activity could underpin Al-induced arrest of root elongation in H. moscheutos.  相似文献   

20.
Oyanagi  A. 《Plant and Soil》1994,165(2):323-326
Recent work on root distribution, growth angles and gravitropic responses in Japanese cultivars of winter wheat are reviewed. Vertical distribution of roots, which influences the environmental stress tolerance of plants, was observed in the 12 Japanese cultivars in the field. The root depth index (RDI: the depth at which 50% of the root length has been reached) differed among the cultivars at the stem elongation stage. Since the RDI was closely related to the growth angle of seminal roots obtained in a pot experiment, it was assumed that growth angle is useful for predicting vertical root distribution among wheat genotypes. Gravitropic responses of the primary seminal root of 133 Japanese wheat cultivars assessed by measuring the growth angle in agar medium, were larger in the northern Japanese cultivars and smaller in the southern ones. It was also found that the geographical variation resulted from the wheat breeding process, i.e. genotypes with limited gravitropic responses of roots had been selected in the southern part of Japan where excessive soil moisture is one of the most serious problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号