首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Agricultural residues, such as straw, offer an opportunity to produce biofuels and chemicals in biorefineries without compromising food production. The ideal “dual‐purpose cultivar” would have high yield of grain and straw. In addition, the straw should be easy to process in a biorefinery: It should have good degradability, high concentration of carbohydrates, and low concentration of ash. Nitrogen (N) is an essential nutrient important for plant growth, crop yield and grain quality. However, N production and application comes with a high cost and high environmental footprint. The N application should consequently be based on an economical optimum. Limited knowledge exists on how N application affects the potential of straw for biorefining, for example, straw yield and quality. This study, conducted over three cropping seasons, investigated the effect of N supply on the biorefining potential and included 14 wheat cultivars and one triticale cultivar. The N supply directly affected the yield of straw and grain. In addition, the protein concentration in grain and straw increased, but the composition of the straw with respect to carbohydrates and lignin was largely unaffected by N supply. The only significant change was a lower silicon concentration at increasing N application rate, which could be beneficial for lignin valorization in biorefineries. Likely due to the negligible changes in cell wall composition, the effect of N application rate on straw degradability was not significant. N application should therefore primarily be optimized with respect to grain quality and overall yield of grain and straw. Differences between cultivars were also minor with respect to their performance in a biorefinery process. From a breeding and agronomic perspective, focus should therefore be put on maximizing the biomass output from the field, that is, selecting the cultivar with highest grain and straw yield and optimizing the application of fertilizer to get optimum N use efficiency.  相似文献   

2.
This study evaluates the effect of agronomic uncertainty on bioenergy crop production as well as endogenous commodity and biomass prices on the feedstock composition of cellulosic biofuels under a binding mandate in the United States. The county‐level simulation model focuses on both field crops (corn, soybean, and wheat) and biomass feedstocks (corn stover, wheat straw, switchgrass, and Miscanthus). In addition, pasture serves as a potential area for bioenergy crop production. The economic model is calibrated to 2022 in terms of yield, crop demand, and baseline prices and allocates land optimally among the alternative crops given the binding cellulosic biofuel mandate. The simulation scenarios differ in terms of bioenergy crop type (switchgrass and Miscanthus) and yield, biomass production inputs, and pasture availability. The cellulosic biofuel mandates range from 15 to 60 billion L. The results indicate that the 15 and 30 billion L mandates in the high production input scenarios for switchgrass and Miscanthus are covered entirely by agricultural residues. With the exception of the low production input for Miscanthus scenario, the share of agricultural residues is always over 50% for all other scenarios including the 60 billion L mandate. The largest proportion of agricultural land dedicated to either switchgrass or Miscanthus is found in the southern Plains and the southeast. Almost no bioenergy crops are grown in the Midwest across all scenarios. Changes in the prices for the three commodities are negligible for cellulosic ethanol mandates because most of the mandate is met with agricultural residues. The lessons learned are that (1) the share of agricultural residue in the feedstock mix is higher than previously estimated and (2) for a given mandate, the feedstock composition is relatively stable with the exception of one scenario.  相似文献   

3.
Bioprocess and Biosystems Engineering - Wheat straw is a low-cost feedstock for the production of biofuel. Pretreatment process is an important stage in producing biofuels since it makes the fibers...  相似文献   

4.
Increasing production of biofuels has led to concerns about indirect land‐use change (ILUC). So far, significant efforts have been made to assess potential ILUC effects. But limited attention has been paid to strategies for reducing the extent of ILUC and controlling the type of LUC. This case study assesses five key ILUC mitigation measures to quantify the low‐ILUC‐risk production potential of miscanthus‐based bioethanol in Lublin province (Poland) in 2020. In 2020, a total area of 196 to 818 thousand hectare of agricultural land could be made available for biomass production by realizing above‐baseline yield developments (95–413 thousand ha), increased food chain efficiencies (9–30 thousand ha) and biofuel feedstock production on underutilized lands (92–375 thousand ha). However, a maximum 203–269 thousand hectare is considered legally available (not protected) and biophysically suitable for miscanthus production. The resulting low‐ILUC‐risk bioethanol production potential ranges from 12 to 35 PJ per year. The potential from this region alone is higher than the national Polish target for second‐generation bioethanol consumption of 9 PJ in 2020. Although the sustainable implementation potential may be lower, the province of Lublin could play a key role in achieving this target. This study shows that the mitigation or prevention of ILUC from bioenergy is only possible when an integrated perspective is adopted on the agricultural and bioenergy sectors. Governance and policies on planning and implementing ILUC mitigation are considered vital for realizing a significant bioenergy potential with low ILUC risk. One important aspect in this regard is monitoring the risk of ILUC and the implementation of ILUC mitigation measures. Key parameters for monitoring are land use, land cover and crop yields.  相似文献   

5.
Secure access to energy and food are two of the challenges facing the Northeast region of the United States. Traditional biofuel feedstocks, such as corn and oil seed, are able to satisfy energy requirements. However, they compete with food production for desirable land and water resources and, in any case, are not likely to exploit the region's current comparative advantages. This study investigates a potential solution to the energy security problem in the Northeast: biofuel from advanced feedstock in the form of net forest growth and woody wastes, of which the region has abundant endowments. The federal government has committed to requiring 79.5 billion liters (BL) of advanced biofuel production annually by 2022. We evaluate both the physical capacity for its production and its cost competitiveness using an input‐output model of consumption, production, and trade in the 13‐state region. The model minimizes resource use required to satisfy given consumer demand using alternative technological options and subject to resource constraints. We compile data from the technical literature quantifying state‐level biofuel feedstock endowments and the technological requirements for cellulosic ethanol production. We find that exploiting the region's endowment of cellulosic feedstock requires either making the price of biofuels competitive with gasoline through subsidies or restricting imports of gasoline. Based on this initial investigation, we conclude that the region can produce significant amounts of advanced biofuel, up to 20.28 BL of cellulosic ethanol per year, which could displace nearly 12.5% of the gasoline that is now devoted to motorized transport in the region.  相似文献   

6.
在全球性能源紧缺和我国能源植物大规模种植困难等大背景下,优质、充足的原料供应已成为制约生物质能源产业发展的主要限制因素。在确保能源植物高效生产和克服"与粮争地、与人争粮"现实的同时,挖掘我国边际土壤高产高效生产能源植物的土地优势和增产潜力。通过筛选评价适宜西北干旱地区高抗逆的新型能源植物种类,开发应用能源植物与粮经作物间套作栽培技术,实现新型能源植物对逆境资源的高效利用和可持续规模化种植,提高能源植物的生产力和优化能源物种的区域配置,增加土地产值和农民收入,缓解能源紧缺,达到经济、生态和社会效益多赢,为我国能源和粮食安全提供技术支撑。  相似文献   

7.
New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society’s energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.  相似文献   

8.
Renewable fuel standards in the US and elsewhere mandate the production of large quantities of cellulosic biofuels with low greenhouse gas (GHG) footprints, a requirement which will likely entail extensive cultivation of dedicated bioenergy feedstock crops on marginal agricultural lands. Performance data for such systems is sparse, and non‐linear interactions between the feedstock species, agronomic management intensity, and underlying soil and land characteristics complicate the development of sustainable landscape design strategies for low‐impact commercial‐scale feedstock production. Process‐based ecosystem models are valuable for extrapolating field trial results and making predictions of productivity and associated environmental impacts that integrate the effects of spatially variable environmental factors across diverse production landscapes. However, there are few examples of ecosystem model parameterization against field trials on both prime and marginal lands or of conducting landscape‐scale analyses at sufficient resolution to capture interactions between soil type, land use, and management intensity. In this work we used a data‐diverse, multi‐criteria approach to parameterize and validate the DayCent biogeochemistry model for upland and lowland switchgrass using data on yields, soil carbon changes, and soil nitrous oxide emissions from US field trials spanning a range of climates, soil types, and management conditions. We then conducted a high‐resolution case study analysis of a real‐world cellulosic biofuel landscape in Kansas in order to estimate feedstock production potential and associated direct biogenic GHG emissions footprint. Our results suggest that switchgrass yields and emissions balance can vary greatly across a landscape large enough to supply a biorefinery in response to variations in soil type and land‐use history, but that within a given land base both of these performance factors can be widely modulated by changing management intensity. This in turn implies a large sustainable cellulosic biofuel landscape design space within which a system can be optimized to meet economic or environmental objectives.  相似文献   

9.
Rice straw can serve as potential material for bioenergy production. However, the quantitative effects of increasing atmospheric carbon dioxide concentration [CO2] on rice straw quality and the resulting consequences for bioenergy utilization are largely unknown. In this study, two rice varieties, WYJ and LY, that have been shown previously to have a weak and strong stimulatory response to rising [CO2], respectively, were grown with and without additional CO2 at China free‐air carbon dioxide enrichment (FACE) platform. Qualitative and quantitative measurements in response to [CO2] included straw biomass (including leaf, sheath, and stem), the concentration of nonstructural and structural carbohydrates, the syringyl‐to‐guaiacyl (S/G) ratio of lignin, glucose and xylose release from structural carbohydrate, total sugar release by enzymatic saccharification, and sugar yield and the ratio of cellulose and hemicellulose degradation. Elevated [CO2] significantly increased straw biomass and nonstructural carbohydrate contents while enhancing the degraded ratio of structural carbohydrates as indicated by the decreased lignin content and increased S/G ratio. Overall, total sugar yield (g m?2) in rice straw significantly increased by 27.1 and 57% for WYJ and LY at elevated [CO2], respectively. These findings, while preliminary, suggest that rice straw quality and potential biofuel utilization may improve as a function of rising [CO2].  相似文献   

10.
Short rotation coppice (SRC) willow is currently emerging as an important dedicated lignocellulosic energy crop in the UK. However, investigation into the variation between species and genotypes in their suitability for liquid transport biofuel processing has been limited. To address this, four traits relevant to biofuel processing (composition, enzymatic saccharification, response to pretreatment and projected ethanol yields) were studied in 35 genotypes of willow including Europe’s leading SRC willow cultivars. Large, genotype-specific variation was observed for all four traits. Significant positive correlations were identified between the accessibility of glucan to enzymatic saccharification before and after pretreatment as well as glucose release and xylose release via acid hydrolysis during pretreatment. Of particular interest is that the lignin content of the biomass did not correlate with accessibility of glucan to enzymatic saccharification. The genotype-specific variations identified have implications for SRC willow breeding and for potential reductions in both the net energy expenditure and environmental impact of the lignocellulosic biofuel process chain. The large range of projected ethanol yields demonstrate the importance of feedstock selection based on an ideotype encompassing the performance of both field biomass growth and ease of conversion.  相似文献   

11.
A substantial increase in grain yield potential is required, along with better use of water and fertilizer, to ensure food security and environmental protection in future decades. For improvements in photosynthetic capacity to result in additional wheat yield, extra assimilates must be partitioned to developing spikes and grains and/or potential grain weight increased to accommodate the extra assimilates. At the same time, improvement in dry matter partitioning to spikes should ensure that it does not increase stem or root lodging. It is therefore crucial that improvements in structural and reproductive aspects of growth accompany increases in photosynthesis to enhance the net agronomic benefits of genetic modifications. In this article, six complementary approaches are proposed, namely: (i) optimizing developmental pattern to maximize spike fertility and grain number, (ii) optimizing spike growth to maximize grain number and dry matter harvest index, (iii) improving spike fertility through desensitizing floret abortion to environmental cues, (iv) improving potential grain size and grain filling, and (v) improving lodging resistance. Since many of the traits tackled in these approaches interact strongly, an integrative modelling approach is also proposed, to (vi) identify any trade-offs between key traits, hence to define target ideotypes in quantitative terms. The potential for genetic dissection of key traits via quantitative trait loci analysis is discussed for the efficient deployment of existing variation in breeding programmes. These proposals should maximize returns in food production from investments in increased crop biomass by increasing spike fertility, grain number per unit area and harvest index whilst optimizing the trade-offs with potential grain weight and lodging resistance.  相似文献   

12.
Shrub willow has great potential as a dedicated bioenergy crop, but commercialization and adoption by growers and end-users will depend upon the identification and selection of high-yielding cultivars with biomass chemistry and quality amenable to conversion to biofuels and bioenergy. In this study, critical traits for biomass production were evaluated among new genotypes of shrub willow produced through hybrid breeding. This study assessed the variation in yield, pest and disease resistance, biomass composition, and wood density in shrub willow, as well as the impact of genotypic and environmental factors on these particular phenotypes. Analysis of clonal genotypes established on two contrasting sites in New York State, Tully and Belleville, showed statistical differences by site for all of the traits. The greatest yield was observed at Belleville, NY, for two cultivars, ‘Fish Creek’ (41 Mg?ha?1) and ‘Onondaga’ (40 Mg?ha?1). Yields of Salix eriocephala genotypes were lowest, and they displayed susceptibility to rust and beetle damage. Variation in cellulose content in the stem biomass was controlled by environmental factors, with the majority of the genotypes displaying greater cellulose content at Belleville compared with Tully. In contrast, wood density was significantly greater at Tully than Belleville, and cellulose content was correlated with wood density. There were no significant correlations between biomass yield and density or any of the composition traits. These trials demonstrate that new genotypes produce improved yield and pest and disease resistance, with diverse compositional traits that can be matched with conversion technologies.  相似文献   

13.
This paper explores the economic viability of producing biofuels from Agave in Mexico and the potential for it to complement the production of tequila or mescal. We focus on Agave varieties currently being used by the tequila industry to produce two beverages, tequila and mescal, and explore the potential for biofuel production from these plants. Without competing directly with beverage production, we discuss the economic costs and benefits of converting Agave by‐products to liquid fuel as an additional value‐added product and expanding cultivation of Agave on available land. We find that the feedstock cost for biofuel from the Agave piña alone could be more than US$3 L?1 on average. This is considerably higher than the feedstock costs of corn ethanol and sugarcane ethanol. However, there may be potential to reduce these costs with higher conversion efficiencies or by using sugar present in other parts of the plant. The costs of cellulosic biofuels using the biomass from the entire plant could be lower depending on the conversion efficiency of biomass to fuel and the additional costs of harvesting, collecting and transporting that biomass.  相似文献   

14.
Caffeic acid O‐methyltransferase (COMT), the lignin biosynthesis gene modified in many brown‐midrib high‐digestibility mutants of maize and sorghum, was targeted for downregulation in the small grain temperate cereal, barley (Hordeum vulgare), to improve straw properties. Phylogenetic and expression analyses identified the barley COMT orthologue(s) expressed in stems, defining a larger gene family than in brachypodium or rice with three COMT genes expressed in lignifying tissues. RNAi significantly reduced stem COMT protein and enzyme activity, and modestly reduced stem lignin content while dramatically changing lignin structure. Lignin syringyl‐to‐guaiacyl ratio was reduced by ~50%, the 5‐hydroxyguaiacyl (5‐OH‐G) unit incorporated into lignin at 10‐–15‐fold higher levels than normal, and the amount of p‐coumaric acid ester‐linked to cell walls was reduced by ~50%. No brown‐midrib phenotype was observed in any RNAi line despite significant COMT suppression and altered lignin. The novel COMT gene family structure in barley highlights the dynamic nature of grass genomes. Redundancy in barley COMTs may explain the absence of brown‐midrib mutants in barley and wheat. The barley COMT RNAi lines nevertheless have the potential to be exploited for bioenergy applications and as animal feed.  相似文献   

15.
Growing concerns about energy security and climate change have prompted interest in Australia and worldwide to look for alternatives of fossil fuels. Among the renewable fuel sources, biofuels are one such alternative that have received unprecedented attention in the past decade. Cellulosic biofuels, derived from agricultural and wood biomass, could potentially increase Australia's oil self‐sufficiency. In this study, we carry out a hybrid life‐cycle assessment (LCA) of a future cellulose‐refining industry located in the Green Triangle region of South Australia. We assess both the upstream and downstream refining stages, and consider as well the life‐cycle effects occurring in conventional industries displaced by the proposed biofuel supply chains. We improve on conventional LCA method by utilising multi‐region input–output (IO) analysis that allows a comprehensive appraisal of the industry's supply chains. Using IO‐based hybrid LCA, we evaluate the social, economic and environmental impacts of lignocellulosic biofuel production. In particular, we evaluate the employment, economic stimulus, energy consumption and greenhouse gas impacts of the biofuel supply chain and also quantify the loss in economic activity and employment in the paper, pulp and paperboard industry resulting from the diversion of forestry biomass to biofuel production. Our results reveal that the loss in economic activity and employment will only account for 10% of the new jobs and additional stimulus generated in the economy. Lignocellulosic biofuel production will create significant new jobs and enhance productivity and economic growth by initiating the growth of new industries in the economy. The energy return on investment for cellulosic biofuel production lies between 2.7 and 5.2, depending on the type of forestry feedstock and the travel distance between the feedstock industry and the cellulose refinery. Furthermore, the biofuel industry will be a net carbon sequester.  相似文献   

16.
Concerns about access to oil supplies have encouraged the exploration of renewable fuel and energy sources. Industrial ecology offers tools to compare the energy implications and benefits of differing strategies, but using botanical sources of raw materials to replace nonrenewable ones also requires appreciation of plant science, especially the variation in genetic potential within species. Whereas cultivation methods determine whether genetic potential is realized, different methods impact the environment to varying degrees. Experience with barley variety mixtures, aimed at reducing chemical input, has shown them to improve yield and reduce disease, while maintaining or even enhancing quality. Yield improvements still occurred in the absence of disease and increased in proportion to the number of component varieties. Because other research showed mixtures to be similarly effective in wheat, a protocol to grow and exploit a complex mixture of soft wheat is proposed, offering a cost‐effective and energy efficient feedstock for a possible bioethanol industry in the United Kingdom. Ethanol would be produced initially from grain, with the straw used for heating or electricity generation. Fertilizer production and use and vehicle fuels have been shown as the main forms of energy consumption in growing a crop, and targets for enhancing the energy balance, by growing mixtures under an integrated farming system, are postulated. A close but negative association between grain protein and alcohol yield is demonstrated and a mixture giving comparable grain yield, but superior alcohol yield, to its best component is identified. Mixing varieties differing in plant morphology may also increase total biomass yield and, therefore, the energy generated from the crop. Pesticide reduction has another positive, though small, effect on the energy balance, from using mixtures. Eliminating prophylactic spraying also reduces vehicle fuel consumption, and may provide the low‐toxicity benefits of organic agriculture without the yield penalty. A range of alternative uses for straw and other by‐products is also discussed.  相似文献   

17.
Mercury pollution in fields has become a potential threat to human health. Planting wheat cultivars with low mercury accumulation in slight or medium mercury-polluted fields is an efficient solution to ensure food safety. Therefore, this study evaluated the mercury resistance and accumulation characteristics of 30 generalized wheat cultivars in major wheat-producing areas of China. A modified membership function that considers the weight of each trait was used.Results demonstrated that the plant height of wheat significantly increased under both low mercury and high mercury stresses. The uppermost internode length significantly increased while the spikelet number significantly decreased under low mercury stress. Yield-related traits, including total grain number, fresh grain yield, and dry grain yield, significantly decreased under high mercury stress. The mercury concentrations in wheat grains presented a significant negative correlation with the mercury resistance coefficients of plant height (−0.38*), spike length (−0.39*), and fresh grain yield (−0.38*) under high mercury stress. The heritability of all traits reached medium to high levels, ranging from 0.31 to 0.68. This finding suggested that the investigated traits are stable and suitable for the assessment system. Selection criteria for wheat mercury resistance were established using discriminant analysis, which integrated the mercury resistance coefficients of effective tiller number, fresh grain yield, and dry biomass into the discriminant function under low mercury stress and the mercury resistance coefficients of dry grain yield and dry biomass under high mercury stress. Ultimately, Liangxing-99, Nongda-3163, and Gaocheng-8901 were screened for high mercury resistance and low mercury accumulation. These wheat cultivars could be planted in fields with low or medium mercury pollution to obtain safe grains.  相似文献   

18.
Biofuel provides a globally significant opportunity to reduce fossil fuel dependence; however, its sustainability can only be meaningfully explored for individual cases. It depends on multiple considerations including: life cycle greenhouse gas emissions, air quality impacts, food versus fuel trade‐offs, biodiversity impacts of land use change and socio‐economic impacts of energy transitions. One solution that may address many of these issues is local production of biofuel on non‐agricultural land. Urban areas drive global change, for example, they are responsible for 70% of global energy use, but are largely ignored in their resource production potential; however, underused urban greenspaces could be utilized for biofuel production near the point of consumption. This could avoid food versus fuel land conflicts in agricultural land and long‐distance transport costs, provide ecosystem service benefits to urban dwellers and increase the sustainability and resilience of cities and towns. Here, we use a Geographic Information System to identify urban greenspaces suitable for biofuel production, using exclusion criteria, in 10 UK cities. We then model production potential of three different biofuels: Miscanthus grass, short rotation coppice (SRC) willow and SRC poplar, within the greenspaces identified and extrapolate up to a UK‐scale. We demonstrate that approximately 10% of urban greenspace (3% of built‐up land) is potentially suitable for biofuel production. We estimate the potential of this to meet energy demand through heat generation, electricity and combined heat and power (CHP) operations. Our findings show that, if fully utilized, urban biofuel production could meet nearly a fifth of demand for biomass in CHP systems in the United Kingdom's climate compatible energy scenarios by 2030, with potentially similar implications for other comparable countries and regions.  相似文献   

19.
The effects of a combined fungicide and growth regulator treatment on the composition and dry matter digestibility of straw samples of winter wheat cultivars, Beaver, Brigadier, Hussar, Mercia, Riband, Genesis, Hunter, Spark, Cadenza and Flame, were compared. The samples were analysed for nitrogen, ash, fibre fractions and minerals. Nitrogen content of treated samples was reduced compared to the untreated control samples and in contrast the proportion of ash increased for all the treated samples. All samples were analysed by derivative thermogravimetry (DTG) to determine changes in fibre composition. Only six cultivars were analysed by chemical fractionation methods to determine changes in lignin, cellulose and hemicellulose content. The results from the two methods of fibre analysis were broadly similar. K, Ca, Mg and Na concentrations of the treated straw samples were found to be different to the untreated samples. Increase in dry matter digestibility (DMD) of treated straw was observed for all cultivars; the effects on Beaver, Brigadier, Mercia, Riband, Genesis, Hunter and Cadenza were most pronounced, but were less for Hussar, Spark and Flame. The potential impact of these changes in straw quality on organic mushroom compost preparation is briefly discussed.  相似文献   

20.
Agricultural residues are important sources of feedstock for a cellulosic biofuels industry that is being developed to reduce greenhouse gas emissions and improve energy independence. While the US Midwest has been recognized as key to providing maize stover for meeting near‐term cellulosic biofuel production goals, there is uncertainty that such feedstocks can produce biofuels that meet federal cellulosic standards. Here, we conducted extensive site‐level calibration of the Environmental Policy Integrated Climate (EPIC) terrestrial ecosystems model and applied the model at high spatial resolution across the US Midwest to improve estimates of the maximum production potential and greenhouse gas emissions expected from continuous maize residue‐derived biofuels. A comparison of methodologies for calculating the soil carbon impacts of residue harvesting demonstrates the large impact of study duration, depth of soil considered, and inclusion of litter carbon in soil carbon change calculations on the estimated greenhouse gas intensity of maize stover‐derived biofuels. Using the most representative methodology for assessing long‐term residue harvesting impacts, we estimate that only 5.3 billion liters per year (bly) of ethanol, or 8.7% of the near‐term US cellulosic biofuel demand, could be met under common no‐till farming practices. However, appreciably more feedstock becomes available at modestly higher emissions levels, with potential for 89.0 bly of ethanol production meeting US advanced biofuel standards. Adjustments to management practices, such as adding cover crops to no‐till management, will be required to produce sufficient quantities of residue meeting the greenhouse gas emission reduction standard for cellulosic biofuels. Considering the rapid increase in residue availability with modest relaxations in GHG reduction level, it is expected that management practices with modest benefits to soil carbon would allow considerable expansion of potential cellulosic biofuel production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号