首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species migrations in response to climate change have already been observed in many taxonomic groups worldwide. However, it remains uncertain if species will be able to keep pace with future climate change. Keeping pace will be especially challenging for tropical lowland rainforests due to their high velocities of climate change combined with high rates of deforestation, which may eliminate potential climate analogs and/or increase the effective distances between analogs by blocking species movements. Here, we calculate the distances between current and future climate analogs under various climate change and deforestation scenarios. Under even the most sanguine of climate change models (IPSL_CM4, A1b emissions scenario), we find that the median distance between areas in the Amazon rainforest and their closest future (2050) climate analog as predicted based on just temperature changes alone is nearly 300 km. If we include precipitation, the median distance increases by over 50% to >475 km. Since deforestation is generally concentrated in the hottest and driest portions of the Amazon, we predict that the habitat loss will have little direct impact on distances between climate analogs. If, however, deforested areas also act as a barrier to species movements, nearly 30% or 55% of the Amazon will effectively have no climate analogs anywhere in tropical South America under projections of reduced or Business‐As‐Usual deforestation, respectively. These ‘disappearing climates’ will be concentrated primarily in the southeastern Amazon. Consequently, we predict that several Amazonian ecoregions will have no areas with future climate analogs, greatly increasing the vulnerability of any populations or species specialized on these conditions. These results highlight the importance of including multiple climatic factors and human land‐use in predicting the effects of climate change, as well as the daunting challenges that Amazonian diversity faces in the near future.  相似文献   

2.
3.
Current understanding of historic climate oscillations that have occurred over the past few million years has modified scientific views on evolution. Major climatic events have caused local and global extinction of plants and animals and have impacted the spatial distribution of many species. The endangered golden snub‐nosed monkey (Rhinopithecus roxellana) currently inhabits three isolated regions of China: the Sichuan and Gansu provinces (SG), the Qinling Mountains in Shaanxi province (QL), and the Shennongjia Forestry District in Hubei province (SNJ). However, considerable uncertainty still exists about their historical dispersal routes under the influence of environment change. To date, two dispersal routes have been proposed: (1) the QL and SNJ populations originated from the SG population; and (2) the SG population recolonized from the QL and SNJ populations. We used the mitochondrial DNA complete control region to perform statistical assessments of the relative probability of alternative migration scenarios and the role of environmental change on the geographic dispersal of Rhinopithecus roxellana. Thirty haplotypes were identified from the three geographic regions and a high degree of genetic structure was observed. The most recent common ancestor among the mitochondrial DNA haplotypes was estimated to live around 0.47–1.88 million years ago and five notable haplotype clusters were found. Phylogenetic analysis and historical gene flow estimates suggested that the QL and SNJ populations originated from the SG population, with at least two dispersal events from the SG population occurring during the Pleistocene (1.17±0.70 and 0.53±0.30 Ma). Composite dispersal history of the golden snub‐nosed monkey can be explained by both environmental change inducing global climate change and the influence of the Tibetan Plateau uplift. Such range shifts involved considerable demographic changes, as revealed in the dramatic decreases in population size during the last 25,000 years.  相似文献   

4.
Aim The role of dispersal versus vicariance for plant distribution patterns has long been disputed. We study the temporal and spatial diversification of Ranunculeae, an almost cosmopolitan tribe comprising 19 genera, to understand the processes that have resulted in the present inter‐continental disjunctions. Location All continents (except Antarctica). Methods Based on phylogenetic analyses of nuclear and chloroplast DNA sequences for 18 genera and 89 species, we develop a temporal–spatial framework for the reconstruction of the biogeographical history of Ranunculeae. To estimate divergence dates, Bayesian uncorrelated rates analyses and four calibration points derived from geological, fossil and external molecular information were applied. Parsimony‐based methods for dispersal–vicariance analysis (diva and Mesquite ) and a maximum likelihood‐based method (Lagrange ) were used for reconstructing ancestral areas. Six areas corresponding to continents were delimited. Results The reconstruction of ancestral areas is congruent in the diva and maximum likelihood‐based analyses for most nodes, but Mesquite reveals equivocal results at deep nodes. Our study suggests a Northern Hemisphere origin for the Ranunculeae in the Eocene and a weakly supported vicariance event between North America and Eurasia. The Eurasian clade diversified between the early Oligocene and the late Miocene, with at least three independent migrations to the Southern Hemisphere. The North American clade diversified in the Miocene and dispersed later to Eurasia, South America and Africa. Main conclusions Ranunculeae diversified between the late Eocene and the late Miocene. During this time period, the main oceanic barriers already existed between continents and thus dispersal is the most likely explanation for the current distribution of the tribe. In the Southern Hemisphere, a vicariance model related to the break‐up of Gondwana is clearly rejected. Dispersals between continents could have occurred via migration over land bridges, such as the Bering Land Bridge, or via long‐distance dispersal.  相似文献   

5.
African rainforests have undergone major distribution range shifts during the Quaternary, but few studies have investigated their impact on the genetic diversity of plant species and we lack knowledge on the extent of gene flow to predict how plant species can cope with such environmental changes. Analysis of the spatial genetic structure (SGS) of a species is an effective method to determine major directions of the demographic history of its populations and to estimate the extent of gene dispersal. This study characterises the SGS of an African tropical timber tree species, Distemonanthus benthamianus, at various spatial scales in Cameroon and Gabon. Displaying a large continuous distribution in the Lower Guinea domain, this is a model species to detect signs of past population fragmentation and recolonization, and to estimate the extent of gene dispersal. Ten microsatellite loci were used to genotype 295 adult trees sampled from eight populations. Three clearly differentiated gene pools were resolved at this regional scale and could be linked to the biogeographical history of the region, rather than to physical barriers to gene flow. A comparison with the distribution of gene pools observed for two other tree species living in the same region invalidates the basic assumption that all species share the same Quaternary refuges and recolonization pathways. In four populations, significant and similar patterns of SGS were detected. Indirect estimates of gene dispersal distances (sigma) obtained for three populations ranged from 400 to 1200 m, whereas neighbourhood size estimates ranged from 50 to 110.  相似文献   

6.
7.
Human‐induced climate change is projected to increase ocean temperature and modify circulation patterns, with potential widespread implications for the transport and survival of planktonic larvae of marine organisms. Circulation affects the dispersal of larvae, whereas temperature impacts larval development and survival. However, the combined effect of changes in circulation and temperature on larval dispersal and survival has rarely been studied in a future climate scenario. Such understanding is crucial to predict future species distributions, anticipate ecosystem shifts and design effective management strategies. We simulate contemporary (1990s) and future (2060s) dispersal of lobster larvae using an eddy‐resolving ocean model in south‐eastern Australia, a region of rapid ocean warming. Here we show that the effects of changes in circulation and temperature can counter each other: ocean warming favours the survival of lobster larvae, whereas a strengthened western boundary current diminishes the supply of larvae to the coast by restricting cross‐current larval dispersal. Furthermore, we find that changes in circulation have a stronger effect on connectivity patterns of lobster larvae along south‐eastern Australia than ocean warming in the future climate so that the supply of larvae to the coast reduces by ~4% and the settlement peak shifts poleward by ~270 km in the model simulation. Thus, ocean circulation may be one of the dominant factors contributing to climate‐induced changes of species ranges.  相似文献   

8.
Fuller's rose weevil (FRW; Asynonychus cervinus (Boheman)) is a pest of quarantine concern in many Asian markets for Australian citrus. We investigated vertical (tree climbing) and horizontal movements (inter‐tree movements) of FRW adults in a citrus orchard during 2009–2011 with mark‐recapture experiments. Trunk traps were used to intercept tree‐climbing adults. The results showed that the majority of the adults released on the foliage stayed in the canopy, however considerable numbers did drop and some dropped multiple times. The rate of drops appeared to be fixed, independent of how many times the weevils had dropped before. Inter‐tree movements of adults in the canopy occurred mainly within rows, probably because of touching foliage between within‐row neighboring trees. Movement directions on the ground were more random, when reliance on touching foliage was not necessary. According to fitted dispersal equations, the average dispersal distance was 38 m for weevils released on foliage and 127 m for those released on the ground. Trunk banding with chemicals is an important control tactic for FRW, and based on our results, chemicals should be applied at a high enough rate (or in a wide enough band) to ensure the weevils are killed by a single crossing. For maximum reductions of FRW populations in citrus, control actions should be applied not only to infested blocks but also to neighboring blocks in the orchard.  相似文献   

9.
Climate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition‐induced changes in community composition can be relatively slow. Disturbances may speed changes in community composition, but the interactions among climate change, disturbance and competitive interactions to produce range shifts are poorly understood. We used a physiologically based mechanistic landscape model to study these interactions in the northeastern United States. We designed a series of disturbance scenarios to represent varied disturbance regimes in terms of both disturbance extent and intensity. We simulated forest succession by incorporating climate change under a high‐emissions future, disturbances, seed dispersal, and competition using the landscape model parameterized with forest inventory data. Tree species range boundary shifts in the next century were quantified as the change in the location of the 5th (the trailing edge) and 95th (the leading edge) percentiles of the spatial distribution of simulated species. Simulated tree species range boundary shifts in New England over the next century were far below (usually <20 km) that required to track the velocity of temperature change (usually more than 110 km over 100 years) under a high‐emissions scenario. Simulated species` ranges shifted northward at both the leading edge (northern boundary) and trailing edge (southern boundary). Disturbances may expedite species' recruitment into new sites, but they had little effect on the velocity of simulated range boundary shifts. Range shifts at the trailing edge tended to be associated with photosynthetic capacity, competitive ability for light and seed dispersal ability, whereas shifts at the leading edge were associated only with photosynthetic capacity and competition for light. This study underscores the importance of understanding the role of interspecific competition and disturbance when studying tree range shifts.  相似文献   

10.
Plant disjunctions have provided some of the most intriguing distribution patterns historically addressed by biogeographers. We evaluated the three hypotheses that have been postulated to explain these patterns [vicariance, stepping‐stone dispersal and long‐distance dispersal (LDD)] using Munroa, an American genus of grasses with six species and a disjunct distribution between the desert regions of North and South America. The ages of clades, cytology, ancestral characters and areas of distribution were investigated in order to establish relationships among species, to determine the time of divergence of the genus and its main lineages, and to understand further the biogeographical and evolutionary history of this genus. Bayesian inference recovered the North American M. pulchella as sister species to the rest. Molecular dating and ancestral area analyses suggest that Munroa originated in North America in the late Miocene–Pliocene (7.2 Mya; 8.2–6.5 Mya). Based on these results, we postulate that two dispersal events modelled the current distribution patterns of Munroa: the first from North to South America (7.2 Mya; 8.2–6.5 Mya) and the second (1.8 Mya; 2–0.8 Mya) from South to North America. Arid conditions of the late Miocene–Pliocene in the Neogene and Quaternary climatic oscillations in North America and South America were probably advantageous for the establishment of populations of Munroa. We did not find any relationship between ploidy and dispersal events, and our ancestral character analyses suggest that shifts associated with dispersal and seedling establishment, such as habit, reproductive system, disarticulation of rachilla, and shape and texture of the glume, have been important in these species reaching new areas. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 110–125.  相似文献   

11.
Dispersal ability will largely determine whether species track their climatic niches during climate change, a process especially important for populations at contracting (low‐latitude/low‐elevation) range limits that otherwise risk extinction. We investigate whether dispersal evolution at contracting range limits is facilitated by two processes that potentially enable edge populations to experience and adjust to the effects of climate deterioration before they cause extinction: (i) climate‐induced fitness declines towards range limits and (ii) local adaptation to a shifting climate gradient. We simulate a species distributed continuously along a temperature gradient using a spatially explicit, individual‐based model. We compare range‐wide dispersal evolution during climate stability vs. directional climate change, with uniform fitness vs. fitness that declines towards range limits (RLs), and for a single climate genotype vs. multiple genotypes locally adapted to temperature. During climate stability, dispersal decreased towards RLs when fitness was uniform, but increased when fitness declined towards RLs, due to highly dispersive genotypes maintaining sink populations at RLs, increased kin selection in smaller populations, and an emergent fitness asymmetry that favoured dispersal in low‐quality habitat. However, this initial dispersal advantage at low‐fitness RLs did not facilitate climate tracking, as it was outweighed by an increased probability of extinction. Locally adapted genotypes benefited from staying close to their climate optima; this selected against dispersal under stable climates but for increased dispersal throughout shifting ranges, compared to cases without local adaptation. Dispersal increased at expanding RLs in most scenarios, but only increased at the range centre and contracting RLs given local adaptation to climate.  相似文献   

12.
Aim African–Asian disjunctions are common in palaeotropical taxa, and are typically explained by reference to three competing hypotheses: (1) ‘rafting’ on the Indian tectonic plate, enabling Africa‐to‐Asia dispersal; (2) migration via Eocene boreotropical forests; and (3) transoceanic long‐distance dispersal. These hypotheses are tested using Uvaria (Annonaceae), which is distributed in tropical regions of Africa, Asia and Australasia. Recent phylogenetic reconstructions of the genus show a clear correlation with geographical provenance, indicating a probable origin in Africa and subsequent dispersal to Asia and then Australasia. Ancestral areas and migration routes are inferred and compared with estimates of divergence times in order to distinguish between the prevailing dispersal hypotheses. Location Palaeotropics. Methods Divergence times in Uvaria are estimated by analysing the sequences of four DNA regions (matK, psbA–trnH spacer, rbcL and trnL–F) from 59 Uvaria species and 77 outgroup species, using a Bayesian uncorrelated lognormal (UCLD) relaxed molecular clock. The ancestral area of Uvaria and subsequent dispersal routes are inferred using statistical dispersal–vicariance analysis (s‐diva ). Results Uvaria is estimated to have originated in continental Africa 31.6 Ma [95% highest posterior density (HPD): 38.4–25.1 Ma] between the Middle Eocene and Late Oligocene. Two main migration events during the Miocene are identified: dispersal into Madagascar around 17.0 Ma (95% HPD: 22.3–12.3 Ma); and dispersal into Asia between 21.4 Ma (95% HPD: 26.7–16.7 Ma) and 16.1 Ma (95% HPD: 20.1–12.1 Ma). Main conclusions Uvaria fruits are widely reported to be consumed by primates, and are therefore unlikely candidates for successful long‐distance transoceanic dispersal. The other biogeographical hypotheses, involving rafting on the Indian tectonic plate, and dispersal via the European boreotropical forests associated with the Eocene thermal maximum, can be discounted due to incongruence with the divergence time estimates. An alternative scenario is suggested, involving dispersal across Arabia and central Asia via the tropical forests that developed during the late Middle Miocene thermal maximum (17–15 Ma), associated with the ‘out‐of‐Africa’ dispersal of primates. The probable route and mechanism of overland dispersal between Africa and Asia for tropical plant groups during the Miocene climatic optimum are clarified based on the Uvaria data.  相似文献   

13.
The leafy liverwort genus Herbertus exhibits considerably variable morphology and widely disjunct distributions in both hemispheres. Here, the biogeographic history of the genus and its phylogenetic relationships with the focus on the taxonomically difficult, northern hemispheric disjunct species, were investigated. We conducted a time-calibrated, molecular-based phylogenetic analysis using psbA, trnL-F, and ITS1-2 loci and different approaches for ancestral range inference of the genus. Herbertus is inferred to have originated in the Cenozoic era about 51 million years ago, in an ancestral area including southern South America, the Neotropics, Oceania, and South-east Asia. The current distribution of the genus is supported to have resulted from long-term in situ persistence, short and long distance dispersals, extinctions and recolonizations. Postglacial range shifts between the southern and northern hemisphere in the genus show distinct patterns. In the southern hemisphere, Herbertus is characterized by in situ persistence, not showing further dispersal until the uplift of the Andean Cordillera. Species of the northern hemisphere showed wide range expansions and repeated recolonizations, including north- and southward dispersals, recolonizations and extinctions. Our results support that the ancestor of South-east Asiatic Herbertus had a Gondwanan origin and arrived in Asia via Indian Plate migration. The uplift of high mountains must have had a strong influence in the diversification and dispersal of the genus. Our results further suggest that climate changes must have had a profound effect on the evolution and biogeography of the species of Herbertus in the northern hemisphere, and might also have influenced the reproductive strategies of the genus. Few genetic differentiations amongst currently recognized species H. aduncus, H. dicranus, H. hutchinsiae, H. stramineus, H. delavayi, and H. kurzii, and amongst H. sendtneri, H. armitanus, and H. circinatus were shown, suggesting that the morphological characters that are currently used for delimiting species should be re-evaluated.  相似文献   

14.
Aim Recent colonization of northern Portuguese shores by Patella rustica Linnaeus, 1758, led to the bridging of a historical gap in the distribution known since the 1900s. Long‐term oceanographic data collected over the last half‐century were examined in order to detect possible mechanisms for the observed change in its distribution. Location This study was carried out along the entire Portuguese coastline, from 41°50′ to 37°06′ N. Time‐series of hydrographical variables (sea surface temperature and salinity) were derived for the Atlantic coast of the Iberian Peninsula. Methods Abundance and size‐frequency distributions of the newly observed limpet populations were compared with those from well‐established populations in southern Portugal. Anomalies were computed for sea surface temperature (1950–2000) and sea surface salinity (1958–2001) data, covering the whole Atlantic coast of the Iberian Peninsula. An upwelling index (1967–2005) was derived for a single location within the distributional gap of P. rustica. Split moving window analysis was performed to detect significant discontinuities in hydrographical data sets. Results Patella rustica has gradually been expanding in northern Iberia, and in the late 1990s the historical gap in distribution in northern Portugal was bridged. Size‐frequency distribution differed between historical and recent populations, the latter lacking small‐sized individuals. At the same time, several anomalous oceanographic events occurred off the Portuguese coast and were probably related to this expansion. Main conclusions Although sea surface temperature might be a major determinant of the reproductive success of P. rustica and hence its dispersal potential, it is more likely that a coincidence of several factors occurring in the late 1990s provided exceptional conditions that allowed the geographical expansion of this species.  相似文献   

15.
16.
Seed traits are related to several ecological attributes of a plant species, including its distribution. While the storage physiology of desiccation‐sensitive seeds has drawn considerable attention, their ecology has remained sidelined, particularly how the strong seasonality of precipitation in monsoonal climate affects their temporal and spatial distribution. We compiled data on seed mass, seed desiccation behavior, seed shedding, and germination periodicity in relation to monsoon and altitude for 198 native tree species of Indian Himalayas and adjoining plains to find out (1) the adaptive significance of seed mass and seed desiccation behavior in relation to monsoon and (2) the pattern of change in seed mass in relation to altitude, habitat moisture, and succession. The tree species fall into three categories with respect to seed shedding and germination periodicities: (1) species in which both seed shedding and germination are synchronized with monsoon, referred to as monsoon‐synchronized (MS, 46 species); (2) species in which seed germination is synchronized with monsoon, but seeds are shed several months before monsoon, referred to as partially monsoon‐synchronized (PMS, 112 species); and (3) species in which both shedding and germination occur outside of monsoon months, referred to as monsoon‐desynchronized (MD, 39 species). The seed mass of MS species (1,718 mg/seed) was greater than that of PMS (627 mg/seed) and MD (1,144 mg/seed). Of the 40 species with desiccation‐sensitive seeds, 45% belong to the MS category, almost similar (approx. 47%) to woody plants with desiccation‐sensitive seeds in evergreen rain forests. Seed mass differed significantly as per seed desiccation behavior and successional stage. No relationship of seed mass was found with altitude alone and on the basis of seed desiccation behavior. However, seed mass trend along the altitude differed among monsoon synchronization strategies. Based on our findings, we conclude that in the predicted climate change (warming and uncertain precipitation pattern) scenario, a delay or prolonged break‐spell of monsoon may adversely affect the regeneration ecology of desiccation‐sensitive seed‐bearing species dominant over large forest areas of monsoonal climate.  相似文献   

17.
Aim To identify the dominant spatial and temporal patterns of Nothofagus pumilio radial growth over its entire latitudinal range in Chile, and to find how these patterns relate to temperature and precipitation variation from instrumental records. Location This study comprises 48 tree line or high elevation N. pumilio sites in the Chilean Andes between 35° 36′ and 55° S. Nothofagus pumilio is a deciduous tree species that dominates the upper tree line of the Chilean and Argentinean Andes in this latitudinal range. Methods At each of the sampled sites, two cores from 15 to 40 living trees were collected using increment borers. Cores were processed, tree rings were measured and cross‐dated, using standard dendrochronological procedures. Radii from nearby sites were grouped into 13 study regions. A composite tree‐ring width chronology was developed for each region in order to capture and integrate the common growth patterns. For the identification of the dominant patterns of growth, as well as temperature and precipitation variation, we used principal components (PCs) analysis. Correlation analysis was used for the study of the relationship of N. pumilio tree‐ring growth with temperature and precipitation records. Results Nothofagus pumilio tree line elevation is 1600 m in the northernmost region and gradually decreases to 400 m in the southernmost region. Despite local differences along the transect, the decrease in tree line elevation is fairly constant, averaging c. 60 m per degree of latitude (111 km). Tree growth at the northernmost regions shows a positive correlation with annual precipitation (PC1‐prec) and negative correlation with mean annual temperature (PC2‐temp), under a Mediterranean‐type climate where water availability is a major limiting factor. Conversely, tree growth is positively correlated with mean annual temperature (PC1‐temp) in the southern portion of the gradient, under a relatively cooler climate with little seasonality in precipitation. Main conclusions Our findings indicate that temperature has a spatially larger control of N. pumilio growth than precipitation, as indicated by a significant (P < 0.05) either positive or negative correlation of tree growth and PC1‐temp and/or PC2‐temp for nine of the 13 regional chronologies (69.2% of the total), whereas precipitation is significantly correlated with only two chronologies (15.4% of the total). Temporal patterns of N. pumilio tree growth reflected in PC1‐growth for the period between 1778 and 1996 indicate an increasing trend with above the mean values after 1963, showing high loadings in the southern part of the gradient. This trend may be explained by a well‐documented increase in temperature in southern Patagonia. Ongoing and future research on N. pumilio growth patterns and their relationship to climate covering the Chilean and Argentinean Andes will improve the understanding of long‐term climate fluctuations of the last three to four centuries, and their relationship to global change at a wide range of spatial and temporal scales.  相似文献   

18.
19.
Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open‐air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal‐temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear‐cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7 °C, +3.4 °C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72‐7.0 m2 plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (?Tbelow) of +1.84 °C and +3.66 °C at 10 cm soil depth and (?Tabove) of +1.82 °C and +3.45 °C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small‐statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall).  相似文献   

20.
We identify two processes by which humans increase genetic exchange among groups of individuals: by affecting the distribution of groups and dispersal patterns across a landscape, and by affecting interbreeding among sympatric or parapatric groups. Each of these processes might then have two different effects on biodiversity: changes in the number of taxa through merging or splitting of groups, and the extinction/extirpation of taxa through effects on fitness. We review the various ways in which humans are affecting genetic exchange, and highlight the difficulties in predicting the impacts on biodiversity. Gene flow and hybridization are crucially important evolutionary forces influencing biodiversity. Humans alter natural patterns of genetic exchange in myriad ways, and these anthropogenic effects are likely to influence the genetic integrity of populations and species. We argue that taking a gene-centric view towards conservation will help resolve issues pertaining to conservation and management. Editor's suggested further reading in BioEssays A systemic view of biodiversity and its conservation: Processes, interrelationships, and human culture Abstract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号