首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Cell cycle regulation by light in Prochlorococcus strains   总被引:1,自引:0,他引:1  
The effect of light on the synchronization of cell cycling was investigated in several strains of the oceanic photosynthetic prokaryote Prochlorococcus using flow cytometry. When exposed to a light-dark (L-D) cycle with an irradiance of 25 micromol of quanta x m(-2) x s(-1), the low-light-adapted strain SS 120 appeared to be better synchronized than the high-light-adapted strain PCC 9511. Submitting L-D-entrained populations to shifts (advances or delays) in the timing of the "light on" signal translated to corresponding shifts in the initiation of the S phase, suggesting that this signal is a key parameter for the synchronization of population cell cycles. Cultures that were shifted from an L-D cycle to continuous irradiance showed persistent diel oscillations of flow-cytometric signals (light scatter and chlorophyll fluorescence) but with significantly reduced amplitudes and a phase shift. Complete darkness arrested most of the cells in the G1 phase of the cell cycle, indicating that light is required to trigger the initiation of DNA replication and cell division. However, some cells also arrested in the S phase, suggesting that cell cycle controls in Prochlorococcus spp. are not as strict as in marine Synechococcus spp. Shifting Prochlorococcus cells from low to high irradiance translated quasi-instantaneously into an increase of cells in both the S and G2 phases of the cell cycle and then into faster growth, whereas the inverse shift induced rapid slowing of the population growth rate. These data suggest a close coupling between irradiance levels and cell cycling in Prochlorococcus spp.  相似文献   

4.
5.
6.
ftsZ is an essential cell division gene in Escherichia coli.   总被引:28,自引:21,他引:7       下载免费PDF全文
The ftsZ gene is thought to be an essential cell division gene in Escherichia coli. We constructed a null allele of ftsZ in a strain carrying additional copies of ftsZ on a plasmid with a temperature-sensitive replication defect. This strain was temperature sensitive for cell division and viability, confirming that ftsZ is an essential cell division gene. Further analysis revealed that after a shift to the nonpermissive temperature, cell division ceased when the level of FtsZ started to decrease, indicating that septation is very sensitive to the level of FtsZ. Subsequent studies showed that nucleoid segregation was normal while FtsZ was decreasing and that ftsZ expression was not autoregulated. The null allele could not be complemented by lambda 16-2, even though this bacteriophage can complement the thermosensitive ftsZ84 mutation and carries 6 kb of DNA upstream of the ftsZ gene.  相似文献   

7.
8.
9.
10.
The marine cyanobacterium Prochlorococcus , the most abundant phototrophic organism on Earth, numerically dominates the phytoplankton in nitrogen (N)-depleted oceanic gyres. Alongside inorganic N sources such as nitrite and ammonium, natural populations of this genus also acquire organic N, specifically amino acids. Here, we investigated using isotopic tracer and flow cytometric cell sorting techniques whether amino acid uptake by Prochlorococcus is subject to a diel rhythmicity, and if so, whether this was linked to a specific cell cycle stage. We observed, in contrast to diurnally similar methionine uptake rates by Synechococcus cells, obvious diurnal rhythms in methionine uptake by Prochlorococcus cells in the tropical Atlantic. These rhythms were confirmed using reproducible cyclostat experiments with a light-synchronized axenic Prochlorococcus (PCC9511 strain) culture and 35S-methionine and 3H-leucine tracers. Cells acquired the tracers at lower rates around dawn and higher rates around dusk despite >104 times higher concentration of ammonium in the medium, presumably because amino acids can be directly incorporated into protein. Leucine uptake rates by cells in the S+G2 cell cycle stage were consistently 2.2 times higher than those of cells at the G1 stage. Furthermore, S+G2 cells upregulated amino acid uptake 3.5 times from dawn to dusk to boost protein synthesis prior to cell division. Because Prochlorococcus populations can account from 13% at midday to 42% at dusk of total microbial uptake of methionine and probably of other amino acids in N-depleted oceanic waters, this genus exerts diurnally variable, strong competitive pressure on other bacterioplankton populations.  相似文献   

11.
A nutritional shift-up from glucose minimal medium to LB broth was previously shown to cause a division delay of about 20 min in synchronized cultures of Escherichia coli, and a similar delay was observed after a nutritional pulse (a shift-up followed rapidly by a return to glucose minimal medium). Using synchronized cultures, we show here that the pulse-induced division delay does not require protein synthesis during the period in LB broth, suggesting that a nonprotein signal is generated by the shift-up and transmitted to the cell division machinery. The cell division protein FtsZ, target of the SOS-associated division inhibitor SfiA (or SulA), seems to be involved in the postshift division delay. Mutants in which the FtsZ-SfiA interaction is reduced, either sfiA (loss of SfiA) or ftsZ(SfiB) (modification of FtsZ), have a 50- to 60-min division delay after a shift-up. Furthermore, after a nutritional pulse, the ftsZ(SfiB) mutant had only a 10- to 16-min delay. These results suggest that the FtsZ protein is the target element of the cell division machinery to which the shift-up signal is transmitted.  相似文献   

12.
To study the role of cell division in the process of nucleoid segregation, we measured the DNA content of individual nucleoids in isogenic Escherichia coli cell division mutants by image cytometry. In pbpB(Ts) and ftsZ strains growing as filaments at 42 degrees C, nucleoids contained, on average, more than two chromosome equivalents compared with 1.6 in wild-type cells. Because similar results were obtained with a pbpB recA strain, the increased DNA content cannot be ascribed to the occurrence of chromosome dimers. From the determination of the amount of DNA per cell and per individual nucleoid after rifampicin inhibition, we estimated the C and D periods (duration of a round of replication and time between termination and cell division respectively), as well as the D' period (time between termination and nucleoid separation). Compared with the parent strain and in contrast to ftsQ, ftsA and ftsZ mutants, pbpB(Ts) cells growing at the permissive temperature (28 degrees C) showed a long D' period (42 min versus 18 min in the parent) indicative of an extended segregation time. The results indicate that a defective cell division protein such as PbpB not only affects the division process but also plays a role in the last stage of DNA segregation. We propose that PbpB is involved in the assembly of the divisome and that this structure enhances nucleoid segregation.  相似文献   

13.
Species of the widespread marine prokaryote Prochlorococcus exhibited ultradian growth (faster than 1 division per day) both in situ and in culture, even though cell division is strictly phased to the light-dark cycle. Under optimal conditions a second DNA replication and cell division closely followed, but did not overlap with, the first division. The timing of cell cycle events was not affected by light intensity or duration, suggesting control by a light-triggered timer or circadian clock rather than by completion of a light-dependent assimilation phase. This mode of ultradian growth has not been observed previously and poses new questions about the regulation of cellular rhythms in prokaryotes. In addition, it implies that conclusions regarding the lack of nutrient limitation of Prochlorococcus in the open ocean, which were based on the appearance that cells were growing at their maximal rate, need to be reconsidered.  相似文献   

14.
The correlation between termination of DNA replication and cell division in Escherichia coli was studied under conditions in which DNA replication was slowed down without inducing SOS functions. The experimental system used involved amino acid starvation of synchronized cells in the presence of methionine. The results further support the essential correlation between termination of DNA replication and initiation of division processes.  相似文献   

15.
The effect of X-irradiation on the cell cycle progression of synchronized populations of the human cell line NHIK 3025 has been studied in terms of the radiation-induced delay of DNA replication and cell division. Results were obtained by flow cytometric measurement of histograms of cellular DNA content and parallel use of conventional methods for cell cycle analysis, such as pulse labelling with [3H]thymidine and counting of cell numbers. The two sets of methods were generally in good agreement, but the advantages of employing two independent techniques are pointed out. Irradiation was found to have a minor influence on DNA replication. As compared with unirradiated populations, half-completed DNA replication was 20--30 min delayed in populations 580 rad in mid-G1 or 290 rad in early S. Cell cycle progression was markedly delayed in G2. The sensitivity induction of this delay was 0.6 min/rad for populations irradiated in mid-G1, and 1.4 min/rad for populations irradiated in early S.  相似文献   

16.
The impact of ciliary regeneration upon cell-cycle progression of the ciliate Tetrahymena was studied. It was found that cell division ceases during ciliary regeneration, and starts again about 4 h after deciliation. Deciliation of an asynchronously multiplying culture results in a rapid interruption of DNA synthesis, followed by resumption 1 h later. This was shown by pulse-labelling the cells with [3H]thymidine at various times after deciliation. Cytophotometric determinations of the macronuclear DNA content substantiated these observations, since the average DNA content per cell remained constant within the first hour of regeneration, confirming the labelling experiments, after which it rose. At its maximum, the average DNA content was more than doubled as compared with the beginning of the experiment. This indicates that a substantial proportion of the regenerating cells performed two rounds of DNA replication prior to cell division. The massive drop in the average DNA content during the fifth hour after deciliation indicates that the culture becomes partly synchronized for cell division by the deciliation procedure. The division synchrony results from a greater delay of the next cell division when G2 cells are deciliated than occurs in G1 cells. This was shown by deciliating cultures of Tetrahymena thermophila cells in the respective stages of the cell cycle, which had been partly synchronized by elutriator centrifugation. Thus, deciliation followed by ciliary regeneration causes a varying degree of retardation in progression through the cell cycle, being greatest for G2 cells and least for G1 cells.  相似文献   

17.
18.
In Escherichia coli, the ftsZ gene is thought to be an essential cell division gene. Several dominant mutations that make lon mutant cells refractory to the cell division inhibitor SulA, sulB9, sulB25, and sfiB114, have been mapped to the ftsZ gene. DNA sequence analysis of these mutations and the sfiB103 mutation confirmed that all of these mutations mapped within the ftsZ gene and revealed that the two sulB mutations were identical and by selection for resistance to higher levels of SulA, contained a second mutation within the ftsZ gene. We therefore propose that these mutations be redesignated ftsZ(Rsa) for resistance to SulA. A procedure involving mutagenesis of ftsZ cloned on low-copy-number vectors was used to isolate three additional ftsZ(Rsa) mutations. DNA sequence analysis of these mutations revealed that they were distinct from the previously isolated mutations. One of these mutations, ftsZ3(Rsa), led to an altered FtsZ protein that could no longer support cell growth but still conferred the Rsa phenotype in the presence of ftsZ+. In addition to being resistant to SulA, all ftsZ(Rsa) mutations also conferred resistance to a LacZ-FtsZ hybrid protein (ZZ). One possibility is that FtsZ functions as a multimer and that FtsZ(Rsa) mutant proteins have an increased ability for multimerization, making them resistant to SulA and ZZ.  相似文献   

19.
Borrelia burgdorferi ftsZ plays a role in cell division   总被引:1,自引:0,他引:1       下载免费PDF全文
ftsZ is essential for cell division in many microorganisms. In Escherichia coli and Bacillus subtilis, FtsZ plays a role in ring formation at the leading edge of the cell division septum. An ftsZ homologue is present in the Borrelia burgdorferi genome (ftsZ(Bbu)). Its gene product (FtsZ(Bbu)) is strongly homologous to other bacterial FtsZ proteins, but its function has not been established. Because loss-of-function mutants of ftsZ(Bbu) might be lethal, the tetR/tetO system was adapted for regulated control of this gene in B. burgdorferi. Sixty-two nucleotides of an ftsZ(Bbu) antisense DNA sequence under the control of a tetracycline-responsive modified hybrid borrelial promoter were cloned into pKFSS1. This construct was electroporated into a B. burgdorferi host strain carrying a chromosomally located tetR under the control of the B. burgdorferi flaB promoter. After induction by anhydrotetracycline, expression of antisense ftsZ RNA resulted in generation of filamentous B. burgdorferi that were unable to divide and grew more slowly than uninduced cells. To determine whether FtsZ(Bbu) could interfere with the function of E. coli FtsZ, ftsZ(Bbu) was amplified from chromosomal DNA and placed under the control of the tetracycline-regulated hybrid promoter. After introduction of the construct into E. coli and induction with anhydrotetracycline, overexpression of ftsZ(Bbu) generated a filamentous phenotype. This suggested interference of ftsZ(Bbu) with E. coli FtsZ function and confirmed the role of ftsZ(Bbu) in cell division. This is the first report of the generation of a B. burgdorferi conditional lethal mutant equivalent by tetracycline-controlled expression of antisense RNA.  相似文献   

20.
The effect of X-irradiation on the cell cycle progression of synchronized populations of the human cell line NHIK 3025 has been studied in terms of the radiation-induced delay of DNA replication and cell division. Results were obtained by flow cytometric measurement of histograms of cellular DNA content and parallel use of conventional methods for cell cycle analysis, such as pulse labelling with [3H]thymidine and counting of cell numbers. The two sets of methods were generally in good agreement, but the advantages of employing two independent techniques are pointed out. Irradiation was found to have a minor influence on DNA replication. As compared with unirradiated populations, half-completed DNA replication was 20-30 min delayed in populations given 580 rad in mid-G1 or 290 rad in early S. Cell cycle progression was markedly delayed in G2. The sensitivity induction of this delay was 0·6 min/rad for populations irradiated in mid-G1, and 1·4 min/rad for populations irradiated in early S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号