共查询到20条相似文献,搜索用时 15 毫秒
1.
Lo?c Nazaries Kevin R Tate Des J Ross Jagrati Singh John Dando Surinder Saggar Elizabeth M Baggs Peter Millard J Colin Murrell Brajesh K Singh 《The ISME journal》2011,5(11):1832-1836
Methanotrophs use methane (CH4) as a carbon source. They are particularly active in temperate forest soils. However, the rate of change of CH4 oxidation in soil with afforestation or reforestation is poorly understood. Here, soil CH4 oxidation was examined in New Zealand volcanic soils under regenerating native forests following burning, and in a mature native forest. Results were compared with data for pasture to pine land-use change at nearby sites. We show that following soil disturbance, as little as 47 years may be needed for development of a stable methanotrophic community similar to that in the undisturbed native forest soil. Corresponding soil CH4-oxidation rates in the regenerating forest soil have the potential to reach those of the mature forest, but climo-edaphic fators appear limiting. The observed changes in CH4-oxidation rate were directly linked to a prior shift in methanotrophic communities, which suggests microbial control of the terrestrial CH4 flux and identifies the need to account for this response to afforestation and reforestation in global prediction of CH4 emission. 相似文献
2.
ERIKA MARIN-SPIOTTA WHENDEE L. SILVER CHRISTOPHER W. SWANSTON† REBECCA OSTERTAG‡ 《Global Change Biology》2009,15(6):1584-1597
Our research takes advantage of a historical trend in natural reforestation of abandoned tropical pastures to examine changes in soil carbon (C) during 80 years of secondary forest regrowth. We combined a chronosequence approach with differences in the natural abundance of 13 C between C3 (forest) and C4 (pasture) plants to estimate turnover times of C in the bulk soil and in density fractions. Overall, gains in secondary forest C were compensated for by the loss of residual pasture-derived soil C, resulting in no net change in bulk soil C stocks down to 1 m depth over the chronosequence. The free light fraction (LF), representing physically unprotected particulate organic matter, was most sensitive to land-use change. Reforestation replenished C in the free LF that had been depleted during conversion to pastures. Turnover times varied with model choice, but in general, soil C cycling rates were rapid for the 0–10 cm depth, with even the heavy fraction (HF) containing C cycling in decadal time scales. Turnover times of C in the free LF from the 0–10 cm depth were shorter than for the occluded and HFs, highlighting the importance of physical location in the soil matrix for residence time in the soil. The majority of the soil C pool (82±21%) was recovered in the mineral-associated density fraction. Carbon-to-nitrogen ratios and differences in natural abundance 15 N of soil organic matter (SOM) showed an increasing degree of decomposition across density fractions with increasing mineral association. Our data show that the physical distribution of C in the soil has a large impact on soil C turnover and the ability of soils to maintain SOM stocks during land-use and land-cover change. 相似文献
3.
Samples from diverse upland soils that oxidize atmospheric methane were characterized with regard to methane oxidation activity and the community composition of methanotrophic bacteria (MB). MB were identified on the basis of the detection and comparative sequence analysis of the pmoA gene, which encodes a subunit of particulate methane monooxygenase. MB commonly detected in soils were closely related to Methylocaldum spp., Methylosinus spp., Methylocystis spp., or the "forest sequence cluster" (USC alpha), which has previously been detected in upland soils and is related to pmoA sequences of type II MB (Alphaproteobacteria). As well, a novel group of sequences distantly related (<75% derived amino acid identity) to those of known type I MB (Gammaproteobacteria) was often detected. This novel "upland soil cluster gamma" (USC gamma) was significantly more likely to be detected in soils with pH values of greater than 6.0 than in more acidic soils. To identify active MB, four selected soils were incubated with (13)CH(4) at low mixing ratios (<50 ppm of volume), and extracted methylated phospholipid fatty acids (PLFAs) were analyzed by gas chromatography-online combustion isotope ratio mass spectrometry. Incorporation of (13)C into PLFAs characteristic for methanotrophic Gammaproteobacteria was observed in all soils in which USC gamma sequences were detected, suggesting that the bacteria possessing these sequences were active methanotrophs. A pattern of labeled PLFAs typical for methanotrophic Alphaproteobacteria was obtained for a sample in which only USC alpha sequences were detected. The data indicate that different MB are present and active in different soils that oxidize atmospheric methane. 相似文献
4.
Methane-oxidizing bacteria (methanotrophs) consume a significant but variable fraction of greenhouse-active methane gas produced in wetlands and rice paddies before it can be emitted to the atmosphere. Temporal and spatial dynamics of methanotroph populations in California rice paddies were quantified using phospholipid biomarker analyses in order to evaluate the relative importance of type I and type II methanotrophs with depth and in relation to rice roots. Methanotroph population fluctuations occurred primarily within the top 0-2 cm of soil, where methanotroph cells increased by a factor of 3-5 over the flooded rice-growing season. The results indicate that rice roots and rhizospheres were less important than the soil-water interface in supporting methanotroph growth. Both type I and type II methanotrophs were abundant throughout the year. However, only type II populations were strongly correlated with soil porewater methane concentrations and rice growth. 相似文献
5.
F M Tyutikov I A Bespalova B A Rebentish N N Aleksandrushkina A S Krivisky 《Journal of bacteriology》1980,144(1):375-381
Bacteriophages of methanotrophic bacteria have been found in 16 out of 88 studied samples (underground waters, pond water, soil, gas and oil installation waters, fermentor cultural fluids, bacterial paste, and rumen of cattle) taken in different geographic zones of the Soviet Union. Altogether, 23 phage strains were isolated: 10 strains that specifically lysed only Methylosinus sporium strains, 2 strains that each lysed 1 of 5 Methylosinus trichosporium strains studied, and 11 strains that lysed Flavobacterium gasotypicum and, at the same time, 1 M. sporium strain. By fine structure, the phages were divided into two types (with very short or long noncontractile tails); by host range and serological properties, they fell into three types. One-step growth characteristics of the phages differed only slightly; the latent period varied from 6 to 8 h, the rise period varied from 4 to 6 h, and the average burst size was 100. All phages had guanine- and cytosine-rich double-stranded deoxyribonucleic acid consisting of common nitrogen bases. The molecular mass of the deoxyribonucleic acid as determined by restriction endonuclease analysis was 29.4 X 10(6) for M. sporium phages and 44 X 10(6) for F. gasotypicum phages. By all of the above-mentioned properties, all phages within each of the groups were completely identical to one another, but differed from phages of other groups. Bacteriophages lysing M. sporium and M. trichosporium GB2 were identical to phages M1 and M4, respectively, which were isolated earlier in the German Democratic Republic on the same methanotrophic species. 相似文献
6.
Structural and functional characteristics of the regular glycoprotein layers in prokaryotes are analyzed with a special emphasis on aerobic methanotrophic bacteria. S-Layers are present at the surfaces of Methylococcus, Methylothermus, and Methylomicrobium cells. Different Methylomicrobium species either synthesize S-layers with planar (p2, p4) symmetry or form cup-shaped or conical structures with hexagonal (p6) symmetry. A unique, copper-binding polypeptide ‘CorA’/MopE (27/45 kDa), which is coexpressed with the diheme periplasmic cytochrome c peroxidase ‘CorB’/Mca (80 kDa) was found in Methylomicrobium album BG8, Methylomicrobium alcaliphilum 20Z, and Methylococcus capsulatus Bath. This tandem of the surface proteins is functionally analogous to a new siderophore: methanobactin. Importantly, no ‘CorA’/MopE homologue was found in methanotrophs not forming S-layers. The role of surface proteins in copper metabolism and initial methane oxidation is discussed. 相似文献
7.
The reaction of hemagglutination with trypsin-treated rabbit erythrocytes was used to reveal lectins on the cell surface of
methanotrophic bacteria and in their culture liquids. By this method, no lectins were detected on the cell surface ofMethylococcus capsulatus IMV B-3001 andMethylomonas rubra IMV B-3075 or in the culture liquid of any of the species studied. With intact cells ofMethylocystis parvus IMV B-3491, the positive hemagglutination reaction observed was nonspecific and most probably occurred due to the high cell
surface hydrophobicity characteristic of this species. 相似文献
8.
Two methods of preservation (L-drying and liquid nitrogen storage) are examined as a means of successfully keeping and transporting stocks of methane utilizing bacteria. Polyvinylpyrrolidone and methanol appear to be good overall cryoprotectants for any of these organisms. 相似文献
9.
Nitrous oxide, a potent greenhouse gas and ozone-depleting molecule, continues to accumulate in the atmosphere as a product of anthropogenic activities and land-use change. Nitrogen oxides are intermediates of nitrification and denitrification and are released as terminal products under conditions such as high nitrogen load and low oxygen tension among other factors. The rapid completion and public availability of microbial genome sequences has revealed a high level of enzymatic redundancy in pathways terminating in nitrogen oxide metabolites, with few enzymes involved in returning nitrogen oxides to dinitrogen. The aerobic methanotrophic bacteria are particularly useful for discovering and analysing diverse mechanisms for nitrogen oxide production, as these microbes both nitrify (oxidize ammonia to nitrite) and denitrify (reduce nitrate/nitrite to nitrous oxide via nitric oxide), and yet do not rely on these pathways for growth. The fact that methanotrophs have a rich inventory for nitrogen oxide metabolism is, in part, a consequence of their evolutionary relatedness to ammonia-oxidizing bacteria. Furthermore, the ability of individual methanotrophic taxa to resist toxic intermediates of nitrogen metabolism affects the relative abundance of nitrogen oxides released into the environment, the composition of their community, and the balance between nitrogen and methane cycling. 相似文献
10.
The growth rate and the maximum cell concentration of methanotrophic bacteria are limited by the transfer of methane and oxygen to the culture fluid. The operation under moderate pressure results in an increase in driving force for the mass transfer of both nutrients and, therefore, in a large increase in the attainable biomass concentration. Our laboratory pressure fermenter with a volume of 12 litres operates under a system pressure of up to 0.5 MPa. In this reactor a maximum productivity of 6 g biomass/lh is achieved. However, operating under moderate system pressure and exhaust gas recycling has also disadvantages because the concentrations of the gas phase components may inhibit the growth process. From the results of the laboratory fermenter we have developed kinetic models of the influence of dissolved oxygen and carbon dioxide on the specific growth rate of the methanotrophic strain GB 25. These models are the basis for processing under increased system pressure and exhaust gas recycling. 相似文献
11.
Abstract The effect of a range of dichloromethane (DCM) concentrations on the growth of five obligate methanotrophic bacteria of the genera Methylomonas, “Methylosinus” , and Methylocystis was assessed. DCM concentrations of 78 mM were bactericidal for all strains. Concentrations of 7.8 mM–156 μM were bacteriostatic for Methylocystis parvus ACM 3309 and Methylomonas aurantiaca HB2, and partially inhibitory for Methylomonas methanica strains ACM 3307 and HB1. “Methylosinus trichosporium” ACM 3311 grew in the presence of up to 780 μm DCM, but a concentration of 7.8 mM was bacteriostatic. 相似文献
12.
Aerobic methanotrophic bacteria of cold ecosystems 总被引:2,自引:0,他引:2
This review summarizes the recent advances in understanding the ecophysiological role and structure-function features of methanotrophic bacteria living in various cold ecosystems. The occurrence of methanotrophs in a majority of psychrosphere sites was verified by direct measurement of their methane-utilizing activity, by electron microscopy and immunofluorescent observations, and analyses of specific signatures in cellular phospholipids and total DNAs extracted from environmental samples. Surprisingly, the phenotypic and genotypic markers of virtually all extant methanotrophs were detected in various cold habitats, such as underground waters, Northern taiga and tundra soils, polar lakes and permafrost sediments. Also, recent findings indicated that even after long-term storage in permafrost, some methanotrophs can oxidize and assimilate methane not only at positive but also at subzero temperatures. Pure cultures of psychrophilic and psychrotolerant methanotrophs were isolated and characterized as new genera and species: Methylobacter psychrophilus, Methylosphaera hansonii, Methylocella palustris, Methylocella silvestris, Methylocella tundrae, Methylocapsa acidiphila and Methylomonas scandinavica. However, our knowledge about their adaptive mechanisms and survival in cold ecosystems remains limited and needs to be established using both traditional and molecular microbiological methods. 相似文献
13.
The reaction of hemagglutination with trypsin-treated rabbit erythrocytes was used to reveal lectins on the cell surface of methanotrophic bacteria and in their culture liquids. By this method, no lectins were detected on the cell surface of Methylococcus capsulatus IMV B-3001 and Methylomonas rubra IMV B-3075 or in the culture liquid of any of the species studied. With intact cells of Methylocystis parvus IMV B-3491, the positive hemagglutination reaction observed was nonspecific and most probably occurred due to the high cell surface hydrophobicity characteristic of this species. 相似文献
14.
The intact phospholipid profiles (IPPs) of seven species of methanotrophs from all three physiological groups, type I, II and X, were determined using liquid chromatography/electrospray ionization/mass spectrometry. In these methanotrophs, two major classes of phospholipids were found, phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) as well as its derivatives phosphatidylmethylethanolamine (PME) and phosphatidyldimethylethanolamine (PDME). Specifically, the type I methanotrophs, Methylomonas methanica, Methylomonas rubra and Methylomicrobium album BG8 were characterized by PE and PG phospholipids with predominantly C16:1 fatty acids. The type II methanotrophs, Methylosinus trichosporium OB3b and CSC1 were characterized by phospholipids of PG, PME and PDME with predominantly C18:1 fatty acids. Methylococcus capsulatus Bath, a representative of type X methanotrophs, contained mostly PE (89% of the total phospholipids). Finally, the IPPs of a recently isolated acidophilic methanotroph, Methylocella palustris, showed it had a preponderance of PME phospholipids with 18:1 fatty acids (94% of total). Principal component analysis showed these methanotrophs could be clearly distinguished based on phospholipid profiles. Results from this study suggest that IPP can be very useful in bacterial chemotaxonomy. 相似文献
15.
Activity of methanotrophic bacteria in Green Bay sediments 总被引:3,自引:0,他引:3
Lorie A. Buchholz J.Val Klump Mary Lynne Perille Collins Christine A. Brantner Charles C. Remsen 《FEMS microbiology ecology》1995,16(1):1-8
Abstract Sediment pore water samples obtained from a 19 m station in Green Bay in Lake Michigan were examined for levels of ambient dissolved methane and copper, and for the potential for in situ methane oxidation by methanotrophs found within surface sediments. The in situ methane concentration in the upper oxic sediment layer ranged from 20–150 μmol · 1−1 at this station. The activity of methanotrophs and the kinetics of methane oxidation in these sediments were demonstrated by the uptake of radiolabeled methane. Ks values varied between 4.1–9.6 nmol · cm3 of sediment slurry. High Vmax values (12.7–35.2 nmol · cm−3 · h−1 ) suggest a large population of methanotrophs in the sediments. An average methane flux to the oxic sediments of 0.24 mol · m−2 · year−1 was calculated from the pore water methane gradients. Pore water concentrations of copper in the upper sediment layer ranged from 10–120 nmol · 1−1 . Based upon the copper concentration, other measured parameters, and equilibrium conditions defined by WATEQF4, an estimate for dissolved free Cu2+ concentration of 5–38 nmol · 1−1 pore water was obtained. Several factors control the rate of methane oxidation, including oxygen, methane, and the bioavailability of free Cu2+ . 相似文献
16.
17.
Biodegradation of low-molecular-weight halogenated hydrocarbons by methanotrophic bacteria 总被引:5,自引:0,他引:5
R S Hanson H C Tsien K Tsuji G A Brusseau L P Wackett 《FEMS microbiology reviews》1990,7(3-4):273-278
Low-molecular-weight halogenated hydrocarbons are susceptible to degradation by anaerobic and aerobic bacteria. The methanotrophic bacterium Methylosinus trichosporium 0B3b degrades trichloroethylene more rapidly than other bacteria examined to date. Expression of soluble methane monooxygenase (MMO) is correlated with high rates of biodegradation. An analysis of 16 S rRNA sequences of 11 ribosomal RNAs from type I, type II and type X methanotrophs and methanol-utilizing bacteria have revealed four clusters of phylogenetically related methylotrophs. This information may be useful for the identification and enumeration of methylotrophs in bioreactors and other environments during remediation of contaminated waters. 相似文献
18.
R.S. Hanson H.C. Tsien K. Tsuji G.A. Brusseau L.P. Wackett 《FEMS microbiology letters》1990,87(3-4):273-278
Abstract Low-molecular-weight halogenated hydrocarbons are susceptible to degradation by anaerobic and aerobic bacteria. The methanotrophic bacterium Methylosinus trichosporium 0B3b degrades trichloroethylene more rapidly than other bacteria examined to date. Expression of soluble methane monooxygenase (MMO) is correlated with high rates of biodegradation.
An analysis of 16 S rRNA sequences of 11 ribosomal RNAs from type I, type II and type X methanotrophs and methanol-utilizing bacteria have revealed four clusters of phytogenetically related methylotrophs. This information may be useful for the identification and enumeration of methylotrophs in bioreactors and other environments during remediation of contaminated waters. 相似文献
An analysis of 16 S rRNA sequences of 11 ribosomal RNAs from type I, type II and type X methanotrophs and methanol-utilizing bacteria have revealed four clusters of phytogenetically related methylotrophs. This information may be useful for the identification and enumeration of methylotrophs in bioreactors and other environments during remediation of contaminated waters. 相似文献
19.
Jia-ying Xin Jun-ru Cui Jian-zhong Niu Shao-feng Hua Chun-gu Xia Shu-ben Li Li-min Zhu 《Biocatalysis and Biotransformation》2004,22(3):225-229
Methanotrophs can oxidize methane to carbon dioxide through sequential reactions catalyzed by a series of enzymes including methane monooxygenase, methanol dehydrogenase, formaldehyde dehydrogenase, and formate dehydrogenase. When suspensions of methanotrophic bacteria of Methylosinus trichosporium IMV 3011 were incubated at 32°C with methane and oxygen, there was an extracellular accumulation of methanol from methane oxidation in response to carbon dioxide addition. Maximal accumulation of methanol was achieved with 40% carbon dioxide in the mixed reaction gases. A continuous experiment was performed in a continuous ultrafiltration reactor. The optimum gas mixture containing 20% (v v-1) methane, 20% oxygen, 20% nitrogen and 40% carbon dioxide was used to provide substrates and to maintain the transmembrane pressure. The product (methanol) was removed in the eluate buffer. The initial methanol concentration in the eluate buffer was 8.22 μmol L-1. The bioreactor was operated continuously for 198 h without obvious loss of productivity. 相似文献
20.
Jia-ying Xin Jun-ru Cui Jian-zhong Niu Shao-feng Hua Chun-gu Xia 《Biocatalysis and Biotransformation》2013,31(3):225-229
Methanotrophs can oxidize methane to carbon dioxide through sequential reactions catalyzed by a series of enzymes including methane monooxygenase, methanol dehydrogenase, formaldehyde dehydrogenase, and formate dehydrogenase. When suspensions of methanotrophic bacteria of Methylosinus trichosporium IMV 3011 were incubated at 32°C with methane and oxygen, there was an extracellular accumulation of methanol from methane oxidation in response to carbon dioxide addition. Maximal accumulation of methanol was achieved with 40% carbon dioxide in the mixed reaction gases. A continuous experiment was performed in a continuous ultrafiltration reactor. The optimum gas mixture containing 20% (v v?1) methane, 20% oxygen, 20% nitrogen and 40% carbon dioxide was used to provide substrates and to maintain the transmembrane pressure. The product (methanol) was removed in the eluate buffer. The initial methanol concentration in the eluate buffer was 8.22 μmol L?1. The bioreactor was operated continuously for 198 h without obvious loss of productivity. 相似文献