首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Long-term storage at +4°C and cultivation at +30°C changes the spontaneous mutation rate of the yeast Saccharomyces cerevisiae double mutants rad52hsm3Δ and rad52hsm6-1. Combinations of hsm3 and hsm6 mutations with rad52 mutation lead to a decrease of the spontaneous mutation rate mediated by DNA repair synthesis in multiply replanted strains in comparison with the same strains investigated right after RAD52 gene decay. Combinations of hsm3 and hsm6 mutations with mutations in other genes of the RAD52 epistatic group did not provide a spontaneous mutation rate decrease.  相似文献   

2.
Sensitivity to the lethal action of the anticancer substance cisplatin was studied in the yeast mutants him1, hsm2, hsm3, and hsm6, deficient for repair of spontaneous and induced mutations. The him1 and hsm3 mutants were as resistant to the agent under study as the wild-type strain. The survival of the double mutant rad2 hsm3 was higher than that of the single mutant rad2. The hsm2 and hsm6 mutants were more cisplatin-sensitive than the wild type. Cisplatin was shown to have high mutagenic and recombinogenic effects on yeast cells.  相似文献   

3.
Mutants with enhanced spontaneous mutability (hsm) to canavanine resistance were induced by N-methyl-N-nitrosourea in Saccharomyces cerevisiae. One bearing the hsm3-1 mutation was used for this study. This mutation does not increase sensitivity to the lethal action of different mutagens. The hsm3-1 mutation produces a mutator phenotype, enhancing the rates of spontaneous mutation to canavanine resistance and reversions of lys1-1 and his1-7. This mutation increases the rate of intragenic mitotic recombination at the ADE2 gene. The ability of the hsm3 mutant to correct DNA heteroduplex is reduced in comparison with the wild-type strain. All these phenotypes are similar to ones caused by pms1, mlhl and msh2 mutations. In contrast to these mutations, hsm3-1 increases the frequency of ade mutations induced by 6-HAP and UV light. Epistasis analysis of double mutants shows that the PMS1 and HSM3 genes control different mismatch repair systems. The HSM3 gene maps to the right arm of chromosome II, 25 cM distal to the HIS7 gene. Strains that bear a deleted open reading frame YBR272c have the genetic properties of the hsm3 mutant. The HSM3 product shows weak similarity to predicted products of the yeast MSH genes (homologs of the Escherichia coli mutS gene). The HSM3 gene may be a member of the yeast MutS homolog family, but its function in DNA metabolism differs from the functions of other yeast MutS homologs.  相似文献   

4.
Multiphytoadaptogene (MPA) consists of plant extracts components including adaptogenes. Genotoxicity analysis revealed the antimutagenic activity of MPA. MPA decreased the direct mutations frequency in ADE4-ADE8 loci induced by UV radiation and nitrous acid by 3.7 and 33 times, respectively. The lethal effect of UV radiation was inhibited when the preparation preparation MFA was used on complete medium with ethanol. MPA had no effect on replicative mutagenesis. At the same time it depressed mutagenesis caused by repair errors. The data obtained suggest the antimutagenic activity of multiphytoadaptogene is associated with postreplicative repair activation.  相似文献   

5.
We have identified a new Saccharomyces cerevisiae gene, HIM1, mapped on the right arm of the chromosome IV (ORF YDR317w), mutations in which led to an increase in spontaneous mutation rate and elevated the frequencies of mutations, induced by UV-light, nitrous acid, ethylmethane sulfonate and methylmethane sulfonate. At the same time, him1 mutation did not result in the increase of the sensitivity to the lethal action of these DNA-damaging agents. We tested the induced mutagenesis in double mutants carrying him1 mutation and mutations in other repair genes: apn1, blocking base excision repair; rad2, rev3, and rad54, blocking three principal DNA repair pathways; pms1, blocking mismatch repair; hsm2 and hsm3 mutations, which lead to a mutator effect. Epistatic analysis showed a synergistic interaction of him1 with pms1, apn1, and rad2 mutations, and epistasis with the rev3, the rad54, the hsm2, and the hsm3. To elucidate the role of the HIM1 in control of spontaneous mutagenesis, we checked the repair of DNA mispaired bases in the him1 mutant and discovered that it was not altered in comparison to the wild-type strain. In our opinion, our results suggest that HIM1 gene participates in the control of processing of mutational intermediates appearing during error-prone bypass of DNA damage.  相似文献   

6.
We have previously reported about a new Saccharomyces cerevisiae mutation, hsm2-1, that results in increase of both spontaneous and UV-induced mutation frequencies but does not alter UV-sensitivity. Now HSM2 gene has been genetically and physically mapped and identified as a gene previously characterized as HMO1, a yeast homologue of human high mobility group genes HMG1/2. We found that hsm2 mutant is slightly deficient in plasmid-borne mismatch repair. We tested UV-induced mutagenesis in double mutants carrying hsm2-1 mutation and a mutation in a gene of principal damaged DNA repair pathways (rad2 and rev3) or in a mismatch repair gene (pms1 and recently characterized in our laboratory hsm3). The frequency of UV-induced mutations in hsm2 rev3 was not altered in comparison with single rev3 mutant. In contrast, the interaction of hsm2-1 with rad2 and pms1 was characterized by an increased frequency of UV-induced mutations in comparison with single rad2 and pms1 mutants. The UV-induced mutation frequency in double hsm2 hsm3 mutant was lower than in the single hsm2 and hsm3 mutants. The role of the HSM2 gene product in control of mutagenesis is discussed.  相似文献   

7.
Previously, we isolated mutant yeasts Saccharomyces cerevisiae with an increased rate of spontaneous mutagenesis. Here, we studied the properties of HSM6 gene, the hsm6-1 mutation of which increased the frequency of UV-induced mutagenesis and decreased the level of UV-induced mitotic crossover at the region between the centromere and ADE2 gene. HSM6 gene was mapped on the left arm of chromosome II in the region where the PSY4 gene is located. The epistatic analysis has shown that the hsm6-1 mutation represents an allele of PSY4 gene. Sequencing of hsm6-1 mutant allele has revealed a frameshift mutation, which caused the Lys218Glu substitution and the generation of a stop codon in the next position. The interactions of hsm6-1 and rad52 mutations were epistatic. Our data show that the PSY4 gene plays a key role in the regulation of cell withdrawal from checkpoint induced by DNA disturbances.  相似文献   

8.
Sensitivity to the lethal action of the anticancer substance cisplatin was studied in the yeast mutants himl, hsm2, hsm3, and hsm6, deficient for repair of spontaneous and induced mutations. The himl and hsm3 mutants were as resistant to the agent under study as the wild-type strain. The survival of the double mutant rad2 hsm3 was higher than that of the single mutant rad2. The hsm2 and hsm6 mutants were more cisplatin-sensitive than the wild type. Cisplatin was shown to have high mutagenic and recombinogenic effects on yeast cells.  相似文献   

9.
The influence of five nonallelic mutations hsm-1-hsm-5 on the frequency of mutations induced by UV-light, 6-hydroxyl-aminopurine (GAP) and nitrosomethylurea (NMM) at the ADE1 and ADE2 loci was studied. All hsm mutants were resistant to the lethal effect of these mutagens. The frequency of mutations induced by UV-light was increased in hsm2-1, hsm3-1, hsm5-1 and especially in hsm1-1 mutants, the hsm4-1 mutant not differing from the HSM strain. GAP-induced mutagenesis was elevated in all hsm mutants and, particularly, in hsm3-1. No influence of hsm mutations on the frequency of NMM-induced mutations was observed. The frequency of spontaneous mitotic gene conversion was studied in the diploids heteroallelic for mutations in the gene ADE2 (ade2-58 ade2-i) and homo- and heterozygous for the hsm mutations (HSMHSM and HSMhsm). The mutations hsm2-1, hsm3-1 and especially hsm5-1 strongly increased the conversion frequency for all heteroallelic combinations studied. The mutations hsm1-1, hsm4-1 affected this process weakly. The properties of the hsm mutations under study demonstrated common genetic control of spontaneous and induced mutagenesis and recombination in the yeast. Possible belonging of hsm mutations to the class of mutations destroying the repair pathway for mismatch correction is under discussion.  相似文献   

10.
Sister chromatid exchange (SCE) can occur by several recombination mechanisms, including those directly initiated by double-strand breaks (DSBs), such as gap repair and break-induced replication (BIR), and those initiated when DNA polymerases stall, such as template switching. To elucidate SCE recombination mechanisms, we determined whether spontaneous and DNA damage-associated SCE requires specific genes within the RAD52 and RAD3 epistasis groups in Saccharomyces cerevisiae strains containing two his3 fragments, his35′ and his33::HOcs. SCE frequencies were measured after cells were exposed to UV, X-rays, 4-nitroquinoline 1-oxide (4-NQO) and methyl methanesulfonate (MMS), or when an HO endonuclease-induced DSB was introduced at his33::HOcs. Our data indicate that genes involved in gap repair, such as RAD55, RAD57 and RAD54, are required for DNA damage-associated SCE but not for spontaneous SCE. RAD50 and RAD59, genes required for BIR, are required for X-ray-associated SCE but not for SCE stimulated by HO-induced DSBs. In comparison with wild type, rates of spontaneous SCE are 10-fold lower in rad51 rad1 but not in either rad51 rad50 or rad51 rad59 double mutants. We propose that gap repair mechanisms are important in DNA damage-associated recombination, whereas alternative pathways, including a template switch pathway, play a role in spontaneous SCE.  相似文献   

11.
The Origin of Spontaneous Mutation in SACCHAROMYCES CEREVISIAE   总被引:4,自引:2,他引:2  
Characterization of two antimutator loci in yeast shows that both are members of the same mutagenic repair system known to be responsible for almost all induced mutation (Lawrence and Christensen 1976, 1979a,b; Prakash 1976). One of the these newly isolated antimutator mutations is an allele of rev3 (Lemontt 1971b). Two other alleles of rev3 were tested and were also found to be antimutators. Double mutants carrying rev3 and mutator mutations of rad3, rad51 or rad18 are like rev3 single mutants with respect to spontaneous mutation rate, supporting the hypothesis (Hastings, Quah and von Borstel 1976) that many mutators in yeast act by channelling spontaneous lesions from accurate to mutagenic repair. However, the enhanced mutation rate seen in a radiation-resistant mutator mutant mut1 is not dependent on REV3, but is dependent on another gene designated ANT1. An additive effect on the reduction in spontaneous mutation, seen in the ant1 rev3 double-mutant strain, leads to the conclusion that at least 90% of spontaneous mutations seen in the wild type are caused by mutagenic repair of spontaneous lesions.  相似文献   

12.
Inverted repeats (IRs) and trinucleotide repeats (TNRs) that have the potential to form secondary structures in vivo are known to cause genome rearrangements. Expansions of TNRs in humans are associated with several neurological disorders. Both IRs and TNRs stimulate spontaneous unequal sister-chromatid exchange (SCE) in yeast. Secondary structure-associated SCE events occur via double-strand break repair. Here we show that the rate of spontaneous IR-stimulated unequal SCE events in yeast is significantly reduced in strains with mutations in the mismatch repair genes MSH2 or MSH3, but unaffected by a mutation in the nucleotide excision-repair gene RAD1. Non-IR-associated unequal SCE events are increased in both MMR- and rad1-mutant cells; however, SCE events for both IR- and non-IR-containing substrates occur at a higher level in the exo1 background. Our results suggest that spontaneous SCE occurs by a template switching mechanism. Like IRs, TNRs have been shown to generate double-strand breaks (DSBs) in yeast. TNR expansions in mice are MSH2-dependent. Since IR-mediated SCE events are reduced in msh2 cells, we propose that TNR expansion mutations arise when DSBs are repaired using the sister or the homolog as a template.  相似文献   

13.
Drug resistance has become a major problem in the treatment of Candida albicans infections. Genome changes, such as aneuploidy, translocations, loss of heterozygosity, or point mutations, are often observed in clinical isolates that have become resistant to antifungal drugs. To determine whether these types of alterations result when DNA repair pathways are eliminated, we constructed yeast strains bearing deletions in six genes involved in mismatch repair (MSH2 and PMS1) or double-strand break repair (MRE11, RAD50, RAD52, and YKU80). We show that the mre11Δ/mre11Δ, rad50Δ/rad50Δ, and rad52Δ/rad52Δ mutants are slow growing and exhibit a wrinkly colony phenotype and that cultures of these mutants contain abundant elongated pseudohypha-like cells. These same mutants are susceptible to hydrogen peroxide, tetrabutyl hydrogen peroxide, UV radiation, camptothecin, ethylmethane sulfonate, and methylmethane sulfonate. The msh2Δ/msh2Δ, pms1Δ/pms1Δ, and yku80Δ/yku80Δ mutants exhibit none of these phenotypes. We observed an increase in genome instability in mre11Δ/mre11Δ and rad50Δ/rad50Δ mutants by using a GAL1/URA3 marker system to monitor the integrity of chromosome 1. We investigated the acquisition of drug resistance in the DNA repair mutants and found that deletion of mre11Δ/mre11Δ, rad50Δ/rad50Δ, or rad52Δ/rad52Δ leads to an increased susceptibility to fluconazole. Interestingly, we also observed an elevated frequency of appearance of drug-resistant colonies for both msh2Δ/msh2Δ and pms1Δ/pms1Δ (MMR mutants) and rad50Δ/rad50Δ (DSBR mutant). Our data demonstrate that defects in double-strand break repair lead to an increase in genome instability, while drug resistance arises more rapidly in C. albicans strains lacking mismatch repair proteins or proteins central to double-strand break repair.  相似文献   

14.
It was assumed previously that the mutator phenotype of the hms3 mutant was determined by processes taking place in the D-loop. As a next step, genetic analysis was performed to study the interactions between the hsm3 mutation and mutations of the genes that control the initial steps of the D-loop formation. The mutations of the MMS4 and XRS2 genes, which initiate the double-strand break formation and subsequent repair, were shown to completely block HSM3-dependent UV-induced mutagenesis. Mutations of the RAD51, RAD52, and RAD54 genes, which are also involved in the D-loop formation, only slightly decreased the level of UV-induced mutagenesis in the hsm3 mutant. Similar results were observed for the interaction of hsm3 with the mph1 mutation, which stabilizes the D-loop. In contrast, the shu1 mutation, which destabilizes the D-loop structure, led to an extremely high level of UV-induced mutagenesis and displayed epistatic interactions with the hsm3 mutation. The results made it possible to assume that the hsm3 mutation destabilizes the D-loop, which is a key substrate of both Rad5- and Rad52-dependent postreplicative repair pathways.  相似文献   

15.
The budding yeast Srs2 is the archetype of helicases that regulate several aspects of homologous recombination (HR) to maintain genomic stability. Srs2 inhibits HR at replication forks and prevents high frequencies of crossing-over. Additionally, sensitivity to DNA damage and synthetic lethality with replication and recombination mutants are phenotypes that can only be attributed to another role of Srs2: the elimination of lethal intermediates formed by recombination proteins. To shed light on these intermediates, we searched for mutations that bypass the requirement of Srs2 in DNA repair without affecting HR. Remarkably, we isolated rad52-L264P, a novel allele of RAD52, a gene that encodes one of the most central recombination proteins in yeast. This mutation suppresses a broad spectrum of srs2Δ phenotypes in haploid cells, such as UV and γ-ray sensitivities as well as synthetic lethality with replication and recombination mutants, while it does not significantly affect Rad52 functions in HR and DNA repair. Extensive analysis of the genetic interactions between rad52-L264P and srs2Δ shows that rad52-L264P bypasses the requirement for Srs2 specifically for the prevention of toxic Rad51 filaments. Conversely, this Rad52 mutant cannot restore viability of srs2Δ cells that accumulate intertwined recombination intermediates which are normally processed by Srs2 post-synaptic functions. The avoidance of toxic Rad51 filaments by Rad52-L264P can be explained by a modification of its Rad51 filament mediator activity, as indicated by Chromatin immunoprecipitation and biochemical analysis. Remarkably, sensitivity to DNA damage of srs2Δ cells can also be overcome by stimulating Rad52 sumoylation through overexpression of the sumo-ligase SIZ2, or by replacing Rad52 by a Rad52-SUMO fusion protein. We propose that, like the rad52-L264P mutation, sumoylation modifies Rad52 activity thereby changing the properties of Rad51 filaments. This conclusion is strengthened by the finding that Rad52 is often associated with complete Rad51 filaments in vitro.  相似文献   

16.
Rad54 plays key roles in homologous recombination (HR) and double-strand break (DSB) repair in yeast, along with Rad51, Rad52, Rad55 and Rad57. Rad54 belongs to the Swi2/Snf2 family of DNA-stimulated ATPases. Rad51 nucleoprotein filaments catalyze DNA strand exchange and Rad54 augments this activity of Rad51. Mutations in the Rad54 ATPase domain (ATPase) impair Rad54 function in vitro, sensitize yeast to killing by methylmethane sulfonate and reduce spontaneous gene conversion. We found that overexpression of ATPase Rad54 reduced spontaneous direct repeat gene conversion and increased both spontaneous direct repeat deletion and spontaneous allelic conversion. Overexpression of ATPase Rad54 decreased DSB-induced allelic conversion, but increased chromosome loss and DSB-dependent lethality. Thus, ATP hydrolysis by Rad54 contributes to genome stability by promoting high-fidelity DSB repair and suppressing spontaneous deletions. Overexpression of wild-type Rad54 did not alter DSB-induced HR levels, but conversion tract lengths were reduced. Interestingly, ATPase Rad54 decreased overall HR levels and increased tract lengths. These tract length changes provide new in vivo evidence that Rad54 functions in the post-synaptic phase during recombinational repair of DSBs.  相似文献   

17.
We have analysed the correction of defined mismatches in wild-type and msh2, msh3, msh6 and msh3 msh6 mutants of Saccharomyces cerevisiae in two different yeast strain backgrounds by transformation with plasmid heteroduplex DNA constructs. Ten different base/base mismatches, two single-nucleotide loops and a 38-nucleotide loop were tested. Repair of all types of mismatches was severely impaired in msh2 and msh3 msh6 mutants. In msh6 mutants, repair efficiency of most base/base mismatches was reduced to a similar extent as in msh3 msh6 double mutants. G/T and A/C mismatches, however, displayed residual repair in msh6 mutants in one strain background, implying a role for Msh3p in recognition of base/base mismatches. Furthermore, the efficiency of repair of base/base mismatches was considerably reduced in msh3 mutants in one strain background, indicating a requirement for MSH3 for fully efficient mismatch correction. Also the efficiency of repair of the 38-nucleotide loop was reduced in msh3 mutants, and to a lesser extent in msh6 mutants. The single-nucleotide loop with an unpaired A was less efficiently repaired in msh3 mutants and that with an unpaired T was less efficiently corrected in msh6 mutants, indicating non-redundant functions for the two proteins in the recognition of single-nucleotide loops.  相似文献   

18.
We have identified in the fission yeast Schizosaccharomyces pombe a MutS homolog that shows highest homology to the Msh2 subgroup. msh2 disruption gives rise to increased mitotic mutation rates and increased levels of postmeiotic segregation of genetic markers. In bandshift assays performed with msh2Δ cell extracts, a general mismatch-binding activity is absent. By complementation assays, we showed that S. pombe msh2 is allelic with the previously identified swi8 and mut3 genes, which are involved in mating-type switching. The swi8-137 mutant has a mutation in the msh2 gene which causes a truncated Msh2 peptide lacking a putative DNA-binding domain. Cytological analysis revealed that during meiotic prophase of msh2-defective cells, chromosomal structures were frequently formed; such structures are rarely found in the wild type. Our data show that besides having a function in mismatch repair, S. pombe msh2 is required for correct termination of copy synthesis during mating-type switching as well as for proper organization of chromosomes during meiosis.  相似文献   

19.
Homologous recombination (HR) is critical for DNA double-strand break (DSB) repair and genome stabilization. In yeast, HR is catalyzed by the Rad51 strand transferase and its “mediators,” including the Rad52 single-strand DNA-annealing protein, two Rad51 paralogs (Rad55 and Rad57), and Rad54. A Rad51 homolog, Dmc1, is important for meiotic HR. In wild-type cells, most DSB repair results in gene conversion, a conservative HR outcome. Because Rad51 plays a central role in the homology search and strand invasion steps, DSBs either are not repaired or are repaired by nonconservative single-strand annealing or break-induced replication mechanisms in rad51Δ mutants. Although DSB repair by gene conversion in the absence of Rad51 has been reported for ectopic HR events (e.g., inverted repeats or between plasmids), Rad51 has been thought to be essential for DSB repair by conservative interchromosomal (allelic) gene conversion. Here, we demonstrate that DSBs stimulate gene conversion between homologous chromosomes (allelic conversion) by >30-fold in a rad51Δ mutant. We show that Rad51-independent allelic conversion and break-induced replication occur independently of Rad55, Rad57, and Dmc1 but require Rad52. Unlike DSB-induced events, spontaneous allelic conversion was detected in both rad51Δ and rad52Δ mutants, but not in a rad51Δ rad52Δ double mutant. The frequencies of crossovers associated with DSB-induced gene conversion were similar in the wild type and the rad51Δ mutant, but discontinuous conversion tracts were fivefold more frequent and tract lengths were more widely distributed in the rad51Δ mutant, indicating that heteroduplex DNA has an altered structure, or is processed differently, in the absence of Rad51.  相似文献   

20.
The Rad51 paralogs Rad55 and Rad57 form a heterodimer required to mediate the formation and/or stabilization of the Rad51 filament. To further characterize the function of Rad55-Rad57, we used a combination of rad57 partial suppressors to determine whether the DNA repair and recombination defects of the rad57 mutant could be completely suppressed. The combination of all suppressors, elevated temperature, srs2, rad51-I345T, and mating-type (MAT) heterozygosity resulted in almost complete suppression of the rad57 mutant defect in the recruitment of Rad51 to DNA-damaged sites, as well as survival in response to ionizing radiation and camptothecin. In a physical assay to monitor the kinetics of double-strand-break (DSB)-induced gene conversion, the rad57 mutant defect was effectively suppressed by srs2 and MAT heterozygosity, but these same suppressors failed to suppress the spontaneous recombination defect. Thus the Rad55-Rad57 heterodimer appears to have a unique function in spontaneous recombination that is not essential for DSB repair. Furthermore, we investigated the currently unknown mechanism of rad57 suppression by MAT heterozygosity and found that it is independent of DNL4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号