首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A broad variety of microbes are present in atherosclerotic plaques and chronic bacterial infection increases the risk of atherosclerosis by mechanisms that have remained vague. One possible mechanism is that bacteria or bacterial products activate plaque mast cells that are known to participate in the pathogenesis of atherosclerosis. Here, we show by real-time PCR analysis and ELISA that Chlamydia pneumoniae (Cpn) and a periodontal pathogen, Aggregatibacter actinomycetemcomitans (Aa), both induce a time and concentration-dependent expression and secretion of interleukin 8 (IL-8), tumour necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) by cultured human peripheral blood-derived mast cells, but not anti-inflammatory molecules, such as IL-10 or transforming growth factor β1 (TGF-β1). The IL-8 and MCP-1 responses were immediate, whereas the onset of TNF-α secretion was delayed. The Cpn-mediated pro-inflammatory effect was attenuated when the bacteria were inactivated by UV-treatment. Human monocyte-derived macrophages that were pre-infected with Cpn also induced a significant pro-inflammatory response in human mast cells, both in cocultures and when preconditioned media from Cpn-infected macrophages were used. Intranasal and intravenous administration of live Cpn and Aa, respectively induced an accumulation of activated mast cells in the aortic sinus of apolipoprotein E-deficient mice, however, with varying responses in the systemic levels of lipopolysaccharide (LPS) and TNF-α. Pro-atherogenic Cpn and Aa induce a pro-inflammatory response in cultured human connective tissue-type mast cells and activation of mouse aortic mast cells in vivo .  相似文献   

2.
Aging is characterized by numerous molecular changes, such as accumulation of molecular damage and altered gene expression, many of which are linked to DNA methylation. Here, we characterize the blood DNA methylome across 16 age groups of mice and report numerous global, region‐ and site‐specific features, as well as the associated dynamics of methylation changes. Transition of the methylome throughout lifespan was not uniform, with many sites showing accelerated changes in late life. The associated genes and promoters were enriched for aging‐related pathways, pointing to a fundamental link between DNA methylation and control of the aging process. Calorie restriction both shifted the overall methylation pattern and was accompanied by its gradual age‐related remodeling, the latter contributing to the lifespan‐extending effect. With age, both highly and poorly methylated sites trended toward intermediate levels, and aging was accompanied by an accelerated increase in entropy, consistent with damage accumulation. However, the entropy effects differed for the sites that increased, decreased and did not change methylation with age. Many sites trailed behind, whereas some followed or even exceeded the entropy trajectory and altered the developmental DNA methylation pattern. The patterns we observed in certain genomic regions were conserved between humans and mice, suggesting common principles of functional DNA methylome remodeling and its critical role in aging. The highly resolved DNA methylome remodeling provides an excellent model for understanding systemic changes that characterize the aging process.  相似文献   

3.
Many studies of influenza severity have focused on viral properties that confer virulence, whereas the contributory role of the host genetic background on infection severity remains largely unexplored. In this study, we measure the impact of inoculation with influenza virus in four strains of inbred mice - BALB/cByJ, C57BL/6 J, A/J, and DBA/2 J. To evaluate the extent to which responses are inherent to lung per se, as opposed to effects of the systemic response to lung infection, we also measured cytokines and chemokines in lung slices exposed to the virus in vitro. Finally, we evaluate the in vivo responses of recombinant inbred (RI) and select consomic strains of mice to search for genomic loci that contribute to phenotypic variance in response to influenza infection. We found marked variation among mouse strains after challenge with virus strain A/HKX31(H3N2), consistent with previous reports using more virulent strains. Furthermore, response patterns differ after in vivo versus in vitro exposure of lung to virus, supporting a predominant role of the systemic host inflammatory response in generating the strain differences. These results add to the body of information pointing to host genotype as a crucial factor in mediating the severity of influenza infections.  相似文献   

4.
Extracellular superoxide dismutase (EC-SOD) is neuroprotective, but its role in cerebral ischemia remains to be determined. We herein describe the topographical localization and quantitative changes in EC-SOD and its mRNA expression following cerebral ischemia in mice. Mice were subjected to transient forebrain ischemia and varied intervals of reperfusion. The measurements of EC-SOD using ELISA showed increased brain EC-SOD after 24 h of reperfusion and an increase in EC-SOD brain/serum ratio after 3 h. The immunohistochemical examination in normal mice showed strong EC-SOD immunoreactivity in the choroid plexus, pia mater, and ventral tuberal area of the hypothalamus. EC-SOD immunoreactivity in cortical and striatal capillary wall was conspicuous after 3 h. EC-SOD immunoreactivity was also noted in cortical neurons after 24 h. Northern blot analysis showed an increased EC-SOD mRNA expression in the brain after 24 h. An in situ hybridization study in normal mice demonstrated the mRNA expression of EC-SOD in choroid plexus and neurons through the brain especially in the cortex or ventral tuberal area of the hypothalamus, but demonstrated no mRNA expression of EC-SOD in the capillary wall. These findings suggest that EC-SOD accumulates on endothelial cells in response to this injury by an unknown mechanism, while cortical neurons produce EC-SOD themselves after cerebral ischemia with reperfusion.  相似文献   

5.
Hyaluronic acid (HA) may exert different action depending on its degree of polymerization. Small HA fragments induce proinflammatory responses, while highly polymerized HA exerts a protective effect in inflammatory pathologies such as rheumatoid arthritis. In both cases the toll-like receptor 4 (TLR-4) seems to be involved in the modulation of the inflammation process. The aim of this study was to investigate the influence of short HA oligosaccharides (HA 4-mers) and high molecular weight HA (HMWHA) in the inflammatory response in normal mouse chondrocytes. Messenger RNA and related protein levels were measured for TLR-4, tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and interleukin-18 (IL-18) in cells with and without the addition of HA. NF-kB activation was also evaluated. 4-mer HA treatment produced a significant up-regulation of all parameters considered while HMWHA did not exert any activity in untreated cells although it was able to reduce the effects of 4- mers HA significantly. Specific TLR-4 small interference RNA (siRNA) was used to confirm TLR-4 as the target of HA action. This study suggests that HA may modulate proinflammatory cytokines via its different degree of polymerization and inflammatory action may be modulated as a result of the interaction between HA and TLR-4.  相似文献   

6.
The etiology of colon cancer is a complex phenomenon that involves both genetic and environmental factors. However, only about 20% have a familial basis with the largest fraction being attributed to environmental causes that can lead to chronic inflammation. While the link between inflammation and colon cancer is well established, the temporal sequence of the inflammatory response in relation to tumorigenesis has not been characterized. We examined the timing and magnitude of the intestinal inflammatory cytokine response in relation to tumorigenesis in the ApcMin/+ mouse. ApcMin/+ mice and wildtype mice were sacrificed at one of 4 time-points: 8, 12, 16, and 20 weeks of age. Intestinal tissue was analyzed for polyp burden (sections 1, 4 and 5) and mRNA expression and protein concentration of MCP-1, IL-1β, IL-6 and TNF-α (sections 2 and 3). The results show that polyp burden was increased at 12, 16 and 20 weeks compared to 8 weeks (P < 0.05). Gene expression (mRNA) of MCP-1, IL-1β, IL-6 and TNF-α was increased in sections 2 and 3 starting at week 12 (P < 0.05), with further increases in MCP-1, IL-1β and IL-6 at 16 weeks (P < 0.05). Protein concentration for these cytokines followed a similar pattern in section 3. Similarly, circulating MCP-1 was increased at 12 weeks (P < 0.05) and then again at 20 weeks (P < 0.05). In general, overall polyp number and abundance of large polyps were significantly correlated with the inflammatory cytokine response providing further support for a relationship between polyp progression and these markers. These data confirm the association between intestinal cytokines and tumorigenesis in the ApcMin/+ mouse and provide new information on the timing and magnitude of this response in relation to polyp development. These findings may lead to the development of inflammatory mediators as important biomarkers for colon cancer progression. Further, these data may be relevant in the design of future investigations of therapeutic interventions to effectively target inflammatory processes in rodent models.  相似文献   

7.
The response of mouse lung to repeated doses of 60Co gamma-rays of as low as 115 cGy per fraction was measured using death from pneumonitis between 80 and 120 days after irradiation as the endpoint. A fractionation interval of 3 h was maintained for most regimens but in the longer experiments some 12 h intervals were introduced for logistic reasons. The longest overall duration (for a 43 fraction regimen) was 8 days. The total doses required to produce 50 per cent mortality increased continuously as dose/fraction was decreased, even from 160 to 115 cGy per fraction. Of clinical relevance, the steepness of the isoeffect curve over the dose range 115-500 cGy indicates that the lung shows greater sparing from dose fractionation than is characteristic of more rapidly-responding normal tissues, resembling, in this respect, other more slowly-responding tissues such as spinal cord. The plot of the reciprocal of the LD50 values as a function of dose per fraction was non-linear, suggesting that a linear quadratic dose response model may not be appropriate or that repair of cellular injury in lung is not complete in 3 h, or both.  相似文献   

8.

Background

Oxygen may damage the lung directly via generation of reactive oxygen species (ROS) or indirectly via the recruitment of inflammatory cells, especially neutrophils. Overexpression of extracellular superoxide dismutase (EC-SOD) has been shown to protect the lung against hyperoxia in the newborn mouse model. The CXC-chemokine receptor antagonist (Antileukinate) successfully inhibits neutrophil influx into the lung following a variety of pulmonary insults. In this study, we tested the hypothesis that the combined strategy of overexpression of EC-SOD and inhibiting neutrophil influx would reduce the inflammatory response and oxidative stress in the lung after acute hyperoxic exposure more efficiently than either single intervention.

Methods

Neonate transgenic (Tg) (with an extra copy of hEC-SOD) and wild type (WT) were exposed to acute hyperoxia (95% FiO2 for 7 days) and compared to matched room air groups. Inflammatory markers (myeloperoxidase, albumin, number of inflammatory cells), oxidative markers (8-isoprostane, ratio of reduced/oxidized glutathione), and histopathology were examined in groups exposed to room air or hyperoxia. During the exposure, some mice received a daily intraperitoneal injection of Antileukinate.

Results

Antileukinate-treated Tg mice had significantly decreased pulmonary inflammation and oxidative stress compared to Antileukinate-treated WT mice (p < 0.05) or Antileukinate-non-treated Tg mice (p < 0.05).

Conclusion

Combined strategy of EC-SOD and neutrophil influx blockade may have a therapeutic benefit in protecting the lung against acute hyperoxic injury.  相似文献   

9.
10.
Blood monocytes are well-characterized precursors for macrophages and dendritic cells. Subsets of human monocytes with differential representation in various disease states are well known. In contrast, mouse monocyte subsets have been characterized minimally. In this study we identify three subpopulations of mouse monocytes that can be distinguished by differential expression of Ly-6C, CD43, CD11c, MBR, and CD62L. The subsets share the characteristics of extensive phagocytosis, similar expression of M-CSF receptor (CD115), and development into macrophages upon M-CSF stimulation. By eliminating blood monocytes with dichloromethylene-bisphosphonate-loaded liposomes and monitoring their repopulation, we showed a developmental relationship between the subsets. Monocytes were maximally depleted 18 h after liposome application and subsequently reappeared in the circulation. These cells were exclusively of the Ly-6C(high) subset, resembling bone marrow monocytes. Serial flow cytometric analyses of newly released Ly-6C(high) monocytes showed that Ly-6C expression on these cells was down-regulated while in circulation. Under inflammatory conditions elicited either by acute infection with Listeria monocytogenes or chronic infection with Leishmania major, there was a significant increase in immature Ly-6C(high) monocytes, resembling the inflammatory left shift of granulocytes. In addition, acute peritoneal inflammation recruited preferentially Ly-6C(med-high) monocytes. Taken together, these data identify distinct subpopulations of mouse blood monocytes that differ in maturation stage and capacity to become recruited to inflammatory sites.  相似文献   

11.
The influence of stress and diazepam treatment on airway inflammation was investigated in ovalbumin (OVA)-sensitized rats. Animals were injected with OVA plus aluminum hydroxide intraperitoneally (day 0) and boosted with OVA subcutaneously (day 7). From the first to 13th day after sensitization, rats were treated with diazepam, and 1 h later they were placed in a shuttle box where they received 50 mild escapable foot shocks/day preceded by a sound signal (S). Response during the warning (S) canceled shock delivery and terminated the S. On day 14, rats were submitted to a single session of 50 inescapable foot shocks preceded by S and then were challenged with OVA. High levels of stress were detected in shocked animals, manifested as ultrasonic vocalizations. Morphometric analysis of stressed animals revealed a significant increase in both edema and lymphomononucleated cells in airways compared with controls. Diazepam treatment reduced edema in stressed and nonstressed rats. No differences were found in polymorphonucleated cell infiltration. Diazepam treatment reduced lymphomononucleated cell infiltration in stressed animals. These data suggest that stress and diazepam treatment play relevant roles in edema and lymphomononucleated airway inflammation in OVA-sensitized rats.  相似文献   

12.
High concentrations of neutrophil defensins from airway and blood have been reported in patients with inflammatory lung diseases, but their exact role is unclear. We investigated the direct effect of defensins on the lungs of mice. Intratracheal instillation of purified defensins (5-30 mg/kg) induced a progressive reduction in peripheral arterial O(2) saturation, increased lung permeability, and enhanced the lung cytochrome c content. These indexes of acute lung dysfunction were associated with an increased total cell number and a significant neutrophil influx into the lung [5.1 +/- 0.04% in control vs. 48.6 +/- 12.7% in the defensin (30 mg/kg) group, P < 0.05]. Elastase concentrations in the bronchoalveolar lavage (BAL) fluids increased from 38 +/- 11 ng/ml (control) to 80 +/- 4 ng/ml (defensins, P < 0.05). Five hours after defensin instillation, concentrations of tumor necrosis factor-alpha and macrophage inflammatory protein-2 in BAL fluid were significantly increased. High levels of monocyte chemoattractant protein-1 in BAL fluid and plasma were also found after defensin stimulation. We conclude that intratracheal instillation of defensins causes acute lung inflammation and dysfunction, suggesting that high concentrations of defensins in the airways may play an important role in the pathogenesis of inflammatory lung diseases.  相似文献   

13.
The aim of the present study was to examine the relationship between adiponectin and the systemic inflammatory response in weight-losing patients with non-small cell lung cancer (NSCLC). Measurement of anthropometry, acute phase proteins, interleukin-6, leptin (total and free) and adiponectin were carried out on healthy subjects (n = 13) and non-small cell lung cancer patients with weight loss (n = 20). The groups were age and sex matched. Compared with the controls the cancer group had a lower BMI (p < 0.01), mid-upper arm circumference (p < 0.001), triceps skinfold thickness (p < 0.05) and circulating concentrations of albumin (p < 0.001), haemoglobin (p < 0.05), free and total leptin (p < 0.05) and adiponectin (p < 0.01). In contrast, the cancer group had elevated circulating concentrations of interleukin-6 and C-reactive protein concentrations (p < 0.001). In the cancer group circulating adiponectin concentrations were significantly inversely correlated with both free (rs = -0.675, p = 0.001) and total leptin concentrations (rs = -0.690, p = 0.001). However, neither weight loss, interleukin-6 or C-reactive protein concentrations were correlated with either adiponectin, free or total leptin concentrations in the cancer group. These results suggest that adipokine production is normal and is unlikely to play a major role in the abnormal fat metabolism in weight-losing cancer patients.  相似文献   

14.
Hyaluronan (HA) fragments are able to induce inflammation by stimulating both CD44 and toll-like receptor 4 (TLR-4). CD44 and TLR-4 activation stimulates the liberation of NF-kB and pro-inflammatory cytokine responses. The aim of this study was to investigate the effects of hyaluronidase (HYAL) treatment, which depolymerises HA into small fragments, and of the addition of specific hyaluronan synthases-1, 2, and 3 small interference RNA (HASs siRNA), which silence HASs activity, on normal mouse synovial fibroblasts (NSF) and on rheumatoid arthritis synovial fibroblasts (RASF) obtained from mice subjected to collagen induced arthritis (CIA). The addition of HYAL to NSF and/or RASF significantly increased the TLR-4, CD44 and NF-kB activity, as well as the pro-inflammatory cytokines, interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and interleukin-33 (IL-33) in both groups, but to a greater extent in RASF. The addition to NSF and/or RASF of the HASs siRNA, which block HASs activity and therefore the availability of HA substrate for HYAL, was able to reduce HYAL effects in both NSF and RASF. Finally, the HA evaluation confirmed the increment of HA at low molecular weight after HYAL treatment.  相似文献   

15.
Myocardial fibrosis is an integral component of most cardiac pathologic conditions and contributes to the development of both systolic and diastolic dysfunction. Because of the availability of genetically manipulated animals, mouse models are essential for understanding the mechanisms involved in the pathogenesis of cardiac fibrosis. Accordingly, we characterized the inflammatory and fibrotic response in a mouse model of cardiac pressure overload due to transverse aortic constriction (TAC). Following TAC, mouse hearts exhibited induction of chemokines and proinflammatory cytokines, associated with macrophage, but not neutrophil, infiltration. Induction of inflammatory cytokines was followed by a late upregulation of transforming growth factor (TGF)-β isoforms, activation of the Smad2/3 and Smad1/5 pathways, induction of matricellular proteins, and deposition of collagen. Inflammatory activity decreased after 28 days of TAC; at this timepoint established fibrosis was noted, accompanied by ventricular dilation and systolic dysfunction. Late induction of inhibitory mediators, such as TGF-β, may play an essential role in the transition from inflammation to fibrosis by suppressing inflammatory gene synthesis while inducing matrix deposition. Our findings identify molecular mediators and pathways with a potential role in cardiac fibrosis laying the foundations for studies exploring the pathogenesis of fibrotic cardiac remodeling using genetically targeted mice.  相似文献   

16.
Challenge of neonatal mice with an intranasal inoculation of Pneumocystis carinii results in a subclinical infection that takes 6 wk to resolve, whereas adult mice resolve a comparable challenge within 3 wk. This delayed clearance is due to a delayed inflammatory response in neonatal mice; however, the reason for this delay has been unknown. To determine whether the neonatal lung environment is sufficient to attract immunocompetent lymphocytes into the lungs, an adoptive transfer strategy was employed in which splenocytes from adult BALB/c mice were transferred into P. carinii-infected neonatal or adult SCID mice. All adults, but no pups, resolved their infections by day 37 postreconstitution. Despite reconstitution with adult splenocytes, pups had a negligible lung inflammatory response until day 24, whereas adult mice had activated CD4(+) and CD8(+) cells in the lung by day 13. The delay in neonates corresponded to delayed kinetics of expression of lung cytokines TNF-alpha and IFN-gamma mRNA and chemokines lymphotactin, RANTES, and macrophage inflammatory protein-1ss mRNA. Phagocytic cells from neonatal mice were significantly less efficient than adult cells at migrating to the draining lymph nodes after phagocytosing fluorescent beads. There were fewer dendritic cells and Ia(+) myeloid cells in the lungs of P. carinii-infected neonatal mice compared with adults. These data indicate that the lung environment of neonatal mice is insufficient for migration of T cells, due at least in part to inefficient phagocytosis and migration of APCs to the lymph nodes as well as delayed chemokine and TNF-alpha mRNA expression.  相似文献   

17.
Zooplankton community response to reservoir aging   总被引:1,自引:1,他引:0  
Changes in zooplankton diversity and density in response to reservoir aging in Pawnee Reservoir were investigated. Zooplankton samples collected from April 1992 through April 1993, were compared to a similar study conducted after initial impoundment by Helzer (1971), in 1968–1970. Since this initial study, increases in turbidity and resulting changes in biotic interactions significantly altered the zooplankton community. A significant increase in total zooplankton density and a decrease in species richness were observed between study periods. Density increased from 24.6 to 95.4 individuals L–1, while the number of taxa declined from fourteen to ten. During this time period, Cyclops vernalis became the dominant zooplankter in the reservoir. The density of this predatory copepod increased significantly, from 0.1 l–1 in 1968–1970, to 44.3 l–1 in 1992–1993, which accounted for most of the increase in total zooplankton density. Though a greater spring maximum of another dominant, Bosmina spp. was found during the 1992–1993 study period, the annual density of this cladoceran was not significantly different between study periods. Similar trends for Daphnia ambigua and D. parvula were also observed, as greater spring maxima levels were attained, however overall annual densities were not significantly different. The dominance of C. vernalis (46% of annual density) and Bosmina spp. (33%), indicate that these two zooplankters were tolerant of changes in physical conditions resulting from reservoir aging and biotic interactions that followed in the reservoir during the 22 years between study periods.  相似文献   

18.
The migration of activated antigen-specific immune cells to the target tissues of virus replication is controlled by the expression of adhesion molecules on the vascular endothelium that bind to ligands on circulating lymphocytes. Here, we demonstrate that the adhesion pathway mediated by vascular cell adhesion molecule 1 (VCAM-1) plays a role in regulating T-cell-mediated inflammation and pathology in nonlymphoid tissues, including the central nervous system (CNS) during viral infection. The ablation of VCAM-1 expression from endothelial and hematopoietic cells using a loxP-Cre recombination strategy had no major effect on the induction or overall tissue distribution of antigen-specific T cells during a systemic infection with lymphocytic choriomeningitis virus (LCMV), except in the case of lung tissue. However, enhanced resistance to lethal LCM and the significantly reduced magnitude and duration of footpad swelling observed in VCAM-1 mutant mice compared to B6 controls suggest a significant role for VCAM-1 in promoting successful local inflammatory reactions associated with efficient viral clearance and even life-threatening immunopathology under particular infection conditions. Interestingly, analysis of the infiltrating populations in the brains of intracerebrally infected mice revealed that VCAM-1 deletion significantly delayed migration into the CNS of antigen-presenting cells (macrophages and dendritic cells), which are critical for optimal stimulation of migrating virus-specific CD8+ T cells initiating a pathological cascade. We propose that the impaired migration of these accessory cells in the brain may explain the improved clinical outcome of infection in VCAM-1 mutant mice. Thus, these results underscore the potential role of VCAM-1 in regulating the immune response and inflammatory reactions against viral infections.  相似文献   

19.
This study analyzes both cell migration and exudation responses elicited by substance P (SP) in the mouse pleural cavity. SP caused, 4 h after its administration into the mouse pleural cavity, a dose-related recruitment of leukocytes (ED50 = 14.2 nmol), mainly due to mononuclears. Leukocytes peaked between 2 and 4 h, being followed by a slight decay that remained elevated for up to 24 h. Exudation, although small, was significantly elevated from 2 to 96 h after. NK1 (FK 888) or NK3 (SR 142801), but not NK2 (SR 48968) tachykinin receptor antagonists, significantly inhibited cell migration. HOE 140 and NPC 17731, bradykinin B2 receptor antagonists, caused graded inhibition of cell influx (ID50s of 0.03 and 0.04 pmol), but des-Arg9-Leu8-BK, B1 receptor antagonist, had no effect. The nitric oxide inhibitors L-NOARG and L-NAME, but not D-NAME, significantly inhibited SP-induced pleurisy. Pretreatment of the animals with indomethacin, dexamethasone, terfenadine, theophylline or salbutamol produced significant inhibition of the inflammatory parameters, whereas cromolyn only inhibited exudation. These results indicate that intrapleural injection of SP in mice elicit a long-lasting inflammatory reaction that is characterized by the participation of nitric oxide, kinins, cyclooxygenase metabolites and histamine. Antiasthmatic drugs such as theophylline, salbutamol, dexamethasone, and, to a lesser extent cromolyn, also markedly inhibit this inflammatory reaction. These results provide clear evidence supporting the role played by SP in neurogenic inflammation.  相似文献   

20.
MicroRNAs (miRNAs) have been implicated in the process of aging in many model organisms, such as Caenorhabditis elegans, and in many organs, such as the mouse lung and human epididymis. However, the role of miRNAs in the thymus tissues of the aging mouse remains unclear. To address this question, we investigated the miRNA expression profiles in the thymuses of 1-, 10- and 19-month-old mice using miRNA array and qRT-PCR assays. A total of 223 mouse miRNAs were screened, and the expression levels of those miRNAs exhibited gradual increases and decreases over the course of thymus aging. Fifty miRNAs in the 10-month-old thymus and 81 miRNAs in the 19-month-old thymus were defined as differentially expressed miRNAs (p < 0.05) in comparison with their levels in the 1-month-old mouse, and approximately one-third of these miRNAs were grouped within 11 miRNA clusters. Each miRNA cluster contained 2 to 5 miRNA genes, and most of the cluster members displayed similar expression patterns, being either increased or decreased. In addition, Ingenuity Pathway Analysis (IPA) software and the IPA database were used to analyze the 12 miRNAs that exhibited significant expression changes, revealing that as many as 15 pathways may be involved. Thus, our current study determined the expression profiles of miRNAs in the mouse thymus during the process of aging. The results suggested that these miRNAs could become meaningful biomarkers for studying thymus aging and that the aging-related alternations in miRNA expression may be involved in the regulation of cell proliferation, apoptosis, development and carcinogenesis/tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号