首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Land‐use changes are expected to affect plant–disperser conditional mutualisms through changes in animal behavior. We analyzed the oak–rodent conditional mutualism in Mediterranean fragmented forests at two climatically different locations. We quantified fragmentation effects on seed dispersal effectiveness and assessed if such effects were due to changes in habitat structure and intraspecific competition for acorns in fragmented areas. Fragmentation decreased cover from predators within mouse territories as well as intraspecific competition for acorns. This resulted in lower dispersal effectiveness in small forest fragments. Globally, habitat structure was the main driver in mouse foraging decisions. In small fragments, low shelter availability precluded mouse movements, leading to short mobilization distances and low caching rates. However, as the proportion of cover from predators increased, mice were able to modulate their foraging decisions depending on intraspecific competition for acorns, resulting in higher dispersal quality. In addition to fragmentation effects, delayed breeding in the southern locality caused lower number of rodents during the dispersal season, which reduced acorn mobilization rates. Our study shows that seed dispersal patterns in managed systems can be analyzed as the result of management effects on key environmental factors in dispersers’ foraging decisions.  相似文献   

2.
Scatter-hoarding animals are crucial in seed dispersal of nut-bearing plants. We used the holm oak Quercus ilex—wood mouse Apodemus sylvaticus mutualism as a model system to evaluate the relative importance of seed size and fat content on scatter-hoarders’ foraging decisions influencing oak dispersal and potential recruitment. We performed a field experiment in which we offered holm oak acorns with contrasting seed size (2 vs 5 g) and fat content (3 vs 11%). Moreover, to test if the strength of these seed trait effects was context-dependent, experimental acorns were placed in small fragments, where natural regeneration is scarce or absent, and forest habitats. In small fragments, rodents had to face increased intraspecific competition for acorns and reduced anti-predator cover during transportation. As a result, they became more selective to ensure rapid acquisition of most valuable food items but, in turn, transported seeds closer to avoid unaffordable predation risks. During harvesting and caching, larger acorns were prioritized and preferentially cached. Fat content only had a minor effect in harvesting preferences. In contrast, in forest sites, where rodent abundance was four times lower and understory cover was well-developed, rodents were not selective but provided enhanced dispersal services to oaks (caching rates were 75% higher). From the plants’ perspective, our results imply that the benefits of producing costly seeds are context-dependent. Seed traits modified harvesting and caching rates only when rodents were forced to forage more efficiently in response to increased intraspecific competition. However, when landscape traits limited cache protection strategies, a more selective foraging behavior by scatter-hoarders did not result in enhanced dispersal services. Overall, our result shows that successful dispersal of acorns depends on how specific traits modulate their value and how landscape properties affect rodents’ ability to safeguard them for later consumption.  相似文献   

3.
Acorn dispersal estimated by radio-tracking   总被引:2,自引:0,他引:2  
Pons J  Pausas JG 《Oecologia》2007,153(4):903-911
Bird-dispersed seeds are difficult to track, especially in the case of long-distance dispersal events. To estimate the oak dispersal distance and the seed shadow generated by the European jay (Garrulus glandarius), we inserted radio-transmitters in 239 acorns, placed them in bird-feeders and then located them by radio-tracking. Using this methodology we located the exact caching site of 94 Quercus ilex and 54 Q. suber acorns and determined the caching habitat characteristics (vegetation type, distance, spatial distribution). The results show that: (1) there is no differences in the dispersal distance distribution between the different acorn species or sizes, (2) dispersal distances range from approximately 3 m up to approximately 550 m (mean = 68.6 m; median = 49.2 m), (3) recently abandoned fields and forest tracks were the sites preferred by jays to cache acorns, whereas fields and shrublands were avoided and (4) seed shadows showed acorn aggregation zones (i.e. clusters of caches) close to the feeder as well as isolated caches at longer distances. The results also suggest that radio-transmitters are a cheap and reliable way to determine seed shadows and quantify both seed dispersal and post-dispersal seed predation for medium to large seeds.  相似文献   

4.
In this paper, I analyse the interaction between the holm-oak Quercus ilex , and one of its main dispersers, the European jay Garrulus glandarius , in an heterogeneous Mediterranean landscape. I quantify the spatial dispersal pattern of the seed shadow at two spatial scales, landscape (among patches) and microhabitat (within patches), by directly tracking the movement of seeds. Two main traits of the jay-mediated dispersal of holm-oak acorns across the landscape, the spatial pattern of dissemination and the distance from the source tree, are significantly and directly influenced by jay activity. Jays moved acorns nonrandomly, avoiding one main patch type of the study area to cache acorns, the shrubland-grasslands, and moving most of the acorns to pine stands, whether afforestation or open pinewoods. Within each patch type, jays had also a strong preference for caching acorns in some microhabitats, since>95% of the acorns dispersed by jays were cached beneath pines. The distance of holm-oak acorn dispersal was long in the study site, over 250 m, with some dispersals occurring up to 1 km from the source oaks. The shape of the dispersal kernel function fitted to the dispersal pattern produced by jays differed from those quantified for many other plant species. Jay-mediated dispersal had two components, one local and another produced by long-distance dispersal. Due to the heterogeneity of these Mediterranean environments, this difference in scale overlaps with a difference in habitat composition, short distances events resulting in dispersals within the same oak stands and long distance events resulting in dispersal outside of oak stands, usually to other vegetation units. Jay activity and movement pattern can have thus dramatic effects on both the local regeneration as well as the potential for regional spread of the holm-oak populations.  相似文献   

5.
Perceived predation risk and competition for acorns are expected to affect scatter-hoarding decisions by Algerian mice (Mus spretus). We manipulated both factors by means of predator fecal scents and ungulate exclosures. We hypothesized that high-risk perception and ungulate presence would promote acorn dispersal. In the former case, it would stimulate acorn mobilization to safe microhabitats rather than in situ consumption. In the latter, increased competition for acorns would promote their storage for later consumption. We also expected that mice would adapt their foraging behavior to previous experience modulating the strength of these effects.In the presence of ungulates, mice focused their foraging activities on food acquisition at the expenses of vigilant behaviors. However, a more efficient foraging did not entail enhanced dispersal services. Lack of anti-predatory cover in tree surroundings may have deterred mice from transporting seeds outside canopies. Increased risk interacted with previous experience. In control trees (no predator odor), mice confidence increased throughout the night resulting in decreased vigilance and enhanced acorn mobilization rates. In contrast, in risky conditions (trees with predator odor) mice maintained a base-line vigilant behavior. Contrary to our expectations, increased risk did not result in higher acorn mobilization, but the opposite. Again, the scarcity of safe microhabitats for mobilization may have been the underlying cause of this behavior.Our results show that successful acorn dispersal depends, at least partly, on plant-animal relationships that are beyond the oak-rodent mutualism. Thus, any conservation policy aimed at restoring natural regeneration of oaks should take into account the interaction network in which oak-rodent encounters are embedded. In addition, they suggest that mice incorporate direct and indirect cues of risks (habitat structure) through recent experience. A better understanding of this process will improve our ability to incorporate such temporal and spatial variability in models of acorn dispersal.  相似文献   

6.
张博  石子俊  陈晓宁  廉振民  常罡 《生态学报》2014,34(14):3937-3943
森林鼠类的种子贮藏行为对植物的扩散和自然更新有着非常重要的影响。然而,鼠类是否具有鉴别虫蛀种子的能力还存在一定的争议。此外,鼠类的鉴别能力是否受到食物丰富度变化的影响也未见相关报道。采用标签标记法,2011年秋季(9—11月,食物丰富季节)和2012年春季(4—6月,食物匮乏季节)分别在秦岭南坡的佛坪国家级自然保护区内,调查了森林鼠类对完好和虫蛀锐齿槲栎(Quercus aliena)种子的选择差异。结果显示:1)在秋季,尽管2种类型种子的存留动态没有显著差异,但是在后期虫蛀种子的存留时间相对更长;而在春季2种类型种子的存留动态则极为显著,几乎所有的完好种子(99%)在释放后的第3天就被鼠类全部扩散,虫蛀种子的存留时间则相对较长。2)在秋季,鼠类更喜好扩散后取食完好种子;而在春季,鼠类则喜好在原地取食绝大部分的种子,并且优先取食完好种子。3)在秋季,鼠类贮藏了更多的完好种子;而在春季,尽管完好种子在释放后第1天便达到贮藏高峰,然而由于后期的大量被捕食,2种类型种子在贮藏动态上没有显示出显著差异。研究结果表明秦岭地区森林鼠类可以准确区分完好与虫蛀种子,但是食物丰富度会影响鼠类对种子的选择策略。在食物丰富的秋季,鼠类更多地选择贮藏完好种子;而在食物相对匮乏的春季,鼠类更倾向于同时取食2种类型种子。森林鼠类通过对2种类型种子的鉴别和选择,影响不同种子的命运,从而可能对种子的扩散和自然更新产生重要影响。  相似文献   

7.
Rodents change acorn dispersal behaviour in response to ungulate presence   总被引:3,自引:0,他引:3  
Alberto Muñoz  Raúl Bonal 《Oikos》2007,116(10):1631-1638
Small rodents are prominent seed predators, but they also favour plant recruitment as seed dispersers. The direct interactions of ungulates on plants are more one‐sided and negative, as they mainly reduce plant recruitment through predation on seeds and seedlings. The effects of small rodents and ungulates on plant recruitment have been considered and studied as independent episodes within plant regeneration cycles. However, ungulate–rodent interactions and their potential effects on plant regeneration have not been considered so far. A number of studies have recently documented ungulate effects on the abundance, diversity and spatial distribution of small rodents. Here, we hypothesize that ungulates may also affect rodent seed dispersal behaviour. We monitored acorn dispersal by small rodents (Mus spretus and Apodemus sylvaticus) in oak woodlands with and without exclosures for large ungulates, mainly red deer, Cervus elaphus, and wild boar, Sus scrofa. The study was carried out in a typical Mediterranean Holm oak, Quercus ilex, forest throughout the acorn fall season in 2003 and 2004. We found that, in both years, the proportion of acorns cached and not recovered in the short‐term was, on average, lower in the presence (1.4%) than in the absence (19.9%) of ungulates. Acorn dispersal distances were not affected by ungulate presence in either year. However, ungulates had an effect on the spatial distribution of dispersed seeds; rodents apparently avoided shrubs as caching sites in both years. This result was interpreted as a behavioural response to reduce the risk of cache pilferage by conspecifics, which are closely associated with shrubs in presence, but not in absence, of ungulates. Potential effects of different densities of rodents or predators were discarded, as none of them differed between the areas with and without ungulates. The present study found significant interactions between heterospecific seed and seedling consumers that had been considered as independent episodes within tree regeneration cycles. As a result of such interactions, ungulates may have negative indirect effects on oak recruitment by reducing (1) acorn caching frequency, and (2) the proportion of acorns cached under shrubs, key nurse‐plants for the establishment of Holm oak seedlings in Mediterranean areas.  相似文献   

8.
Seed dispersal and predation play important roles in plant life history by contributing to recruitment patterns in the landscape. Mast-seeding – extensive synchronized inter-annual variability in seed production – is known to influence the activity of acorn consumers at source trees, but little is known about its effect on post-dispersal predation. We conducted a planting experiment over three years to investigate the relationship between habitat-level post-dispersal predation and landscape-wide acorn production of three sympatric oak species (Quercus spp.). We measured post-dispersal predation in three oak-dominated habitats – savanna (under Q. lobata), forest edge (under Q. agrifolia), and woodland (under Q. douglasii) – as well as in chaparral and open fields. Overall, landscape-level predation was similarly high among study years, averaging 61.4%. Neither species nor mass of planted acorns affected predation. Habitat had a significant effect on post-dispersal predation risk with acorns disappearing most rapidly in chaparral and least rapidly in woodlands. However, a significant interaction between year and habitat (Z = −4.5, P < 0.001) showed that the hierarchy of predation risk among habitats was inconsistent among years. Using annual acorn census data from local populations of each oak species, we found that predation risk in oak-dominated habitats was significantly and positively related to acorn production of the overstory species (Z = −9.53, P = 0.009). Our findings add to growing evidence that seed dispersal, predation, and regeneration are context-dependent on annual variation in community-level seed production, and we discuss the potential consequences of these dynamics on oak recruitment and animal behavior.  相似文献   

9.

Aim

Landscape attributes can determine plant–animal interactions via effects on the identity and abundance of the involved species. As most studies have been conducted in a context of habitat loss and fragmentation, we know very little about interaction assembly in new habitats from a landscape approach. This study aimed to test the effect of forest age and connectivity on acorn predation by a guild of predator insects differing in dispersal ability and resilience mechanisms: two weevils (Curculio elephas and C. glandium) and one moth (Cydia fagiglandana) in expanding Quercus ilex forests.

Location

Barcelona, Spain.

Methods

We assessed the proportion of infested acorns and identified the predator at the species level in five patches of connected old forests, connected new forests and isolated new forests. Effects of habitat age and connectivity at three scales (tree, patch and landscape) were analysed using generalized linear mixed‐effects models.

Results

Predation by weevils was positively associated with old connected forests, while moths, with better dispersal ability, were able to predate upon all patches equally. Moreover, C. elephas, the weevil with lower dispersal ability, exhibited colonization credits in the new isolated patches. In spite of these changes in the guild of seed predators, the proportion of infested acorns was non‐significantly different among forests.

Main conclusions

The guild of seed predators may vary depending on forest age and connectivity. However, because those with higher dispersal ability may replace less mobile species, this resulted in zero‐sum effects of landscape attributes on acorn predation (i.e., similar predation rates in well‐connected old forests vs. isolated new forests).
  相似文献   

10.
Scatter-hoarding rodents such as tree squirrels selectively cache seeds for subsequent use in widely-spaced caches placed below the ground surface. This behavior has important implications for seed dispersal, seedling establishment, and tree regeneration. Hoarders manage these caches by recovering and eating some seeds, and moving and re-caching others. This process of re-caching, however, is poorly understood. Here, we use radio-telemetry to evaluate re-caching behavior for the management of acorn caches by rodents in eastern deciduous forests. We also test the hypothesis that as seeds are re-cached, the distance from the source increases. Radio transmitters were implanted in Northern red oak (Quercus rubra) acorns and presented to rodents in a natural setting over 3 seasons. We used radio-telemetry to track and document evidence of recovery and re-caching. We tracked a total of 102 acorns. Of the 39 radio-tagged acorns initially cached, 19 (49%) were cached on two or more occasions; one acorn was cached four times. The hypothesis that rodents move seeds to progressively greater distances from the source is not well-supported, suggesting that acorns are being moved within an individual's home range. Given the species of rodents in the study area, gray squirrels (Sciurus carolinensis) are the most likely to be responsible for the caching and re-caching events. Gray squirrels appear to engage in extensive re-caching during periods of long-term food storage, which has important implications for understanding how caching behavior influences acorn dispersal and oak regeneration.  相似文献   

11.
Timing is an essential component of the choices that animals make: The likelihood of successful resource capture (and predator avoidance) depends not just on what an animal chooses to do, but when it chooses to do it. Despite the importance of activity timing, our ability to understand the forces that constrain activity timing has been limited because this aspect of animal behavior is shaped by several factors (e.g., interspecific competitors, predators, physical conditions), and it is difficult to examine activity timing in a setting where only a single factor is operating. Using an island system that makes it possible to focus on the effect of predation risk in the absence of interspecific competition, we examine how the onset of activity of the deer mouse (Peromyscus maniculatus) varies between habitats with unique predation risks (i.e., minimal‐shrub cover versus abundant‐shrub cover sites). Using capture time to assess the timing of mouse activity, we found that mice in habitats with minimal shrub cover were captured 1.7 hr earlier than mice in habitats with abundant shrub cover. This difference in timing between habitats was likely a direct response to differences in predation risk between the two habitats: There were no differences in thermal conditions between the two habitats, and the difference in activity timing disappeared during a night when overcast skies reduced island‐wide predation risk. Our results demonstrate that predation risk, independent of interspecific competition, can generate significant changes in animal activity timing. Our work suggests that habitat structure that provides safety (i.e., refuge habitats) plays a direct role in the timing of prey activity and that habitat modification that alters refuge availability (e.g., shrub dominance) may alter the timing of animal activity.  相似文献   

12.
Summary Quercus oleoides Cham. and Schlecht is an unusual tree in several respects: it is an oak found in neotropical lowland forests, its distribution is not continuous but ratherdivided into many patches of various sizes, and it is a dominant in all the forests in which it occurs, attaining densities far higher than most species of tropical trees. This density pattern is related to the vulnerability of Q. oleoides acorns to predation by mammals. Observations of agoutis, deer, peccaries, squirrels, pocket mice and other seed consumers in Santa Rosa National Park, Costa Rica, showed that these mammals act only as predators, not dispersers, of Q. oleoides acorns. Experiments which involved placing acorns in deciduous forest where Q. oleoides does not occur, demonstrated that, due to high predation rates, the number of acorns produced by an isolated tree is far too low for adults to replace themselves.In oak forest, on the other hand, where the combined acorn crops of many oaks satiate the seed predators, acorn survivorship until germination is high enough to maintain the population. Furthermore, acorn survivorship in oak forest areas is inversely proportional to the apparent mammal density in those areas. Thus the pattern of forest dominance and patchy distribution is related to positively density-dependent acorn survivorship: where Q. oleoides is the forest dominant, it will survive, but if its density falls to the level typical of tropical trees, it will go locally extinct.  相似文献   

13.
So far, it is poorly understood how differential responses of avian seed dispersers and fruit predators to changes in habitat structure and fruit abundance along land-use gradients may translate into consequences for the seed dispersal of associated plants. We selected a gradient of habitat modification (forest, semi-natural, and rural habitat) characterized by decreasing tree cover and a high variation in local fruit availability. Along this gradient we quantified fruit removal by avian seed dispersers and fruit predators from 18 Sorbus aucuparia trees. We analyzed the relative importance of tree cover and fruit abundance in explaining species richness, abundance and fruit removal rates of both guilds from S. aucuparia trees. Species richness and abundance of seed dispersers decreased with decreasing tree cover, whereas fruit removal by seed dispersers decreased with decreasing fruit abundance independent of tree cover. Both variables had no effect on species richness, abundance and fruit removal by fruit predators. Consequently, seed dispersers dominated relative fruit removal in fruit-rich sites but the dispersal/predation ratio shifted in favor of predation in fruit-poor habitat patches. Our study demonstrates that variation in local habitat structure and fruit abundance can cause guild-specific responses. Such responses may result in a shift in fruit removal regimes and might affect the dispersal ability of dependent fruiting plants. Future studies should aim at possible consequences for plant recruitment and guild-specific responses of frugivores to disturbance gradients on the level of entire plant–frugivore associations.  相似文献   

14.
Numerous recent studies have revealed a variety of behavioral adaptations of rodents for maximizing returns from cached seeds. Herein we report on a novel behavior by the Siberian chipmunk (Tamias sibiricus) in northeastern China, by which they consistently remove the pericarp (shell) of Quercus mongolica acorns before dispersing and caching these nuts. We investigated the effects of pericarp removal on acorn germination, tannin concentrations, cache pilferage, and insect damage, to determine if and how pericarp removal facilitates cache management by Siberian chipmunks and whether or not such behavior influences seed fates. Chipmunks cached acorns only after the pericarps were removed. Chipmunks preferred pericarp‐removed acorns over intact acorns when removing them from seed stations for both consumption and caching. Pericarp removal did not affect germination or tannin concentration of cached Q. mongolica acorns, suggesting that the behavior is not an adaptation for long‐term storage and tannin decomposition. Acetone treatments of the pericarp and artificial pericarp removal failed to alter pilferage rates by Siberian chipmunks and wood mice (Apodemus peninsulae). Since damage of acorns by weevils often leads to cache losses, we also tested the effects of weevil infestation on cache decision following pericarp removal. Siberian chipmunks removed pericarps and then scatter hoarded significantly more sound than weevil‐infested acorns, strongly suggesting that pericarp removal is used to discriminate between the infested and non‐infested acorns. Thus, we argue that the primary function of this behavior is to ensure successful storage of sound acorns, at least for short‐term storage. Future studies should consider the potential impact of pericarp removal on weevil populations and long‐term patterns of seed survival and establishment from the Siberian chipmunk’s caches.  相似文献   

15.
王巍  马克平 《生态学报》2001,21(2):204-210
动物对辽东栎(Quercus liaotungensis Koidz.)坚果的捕食被认为是影响辽东栎坚果命运的主要因素,因此直接影响幼苗的建立和自然更新。在东灵山一个落叶阔叶林中调查了辽东栎坚果被脊椎动物转运和就地消耗状况。在排除部分小型啮齿目动物前后,辽东栎坚果的丢失动态曲线不同。到实验结束时,基本上所有放置的辽东栎坚果都消失了。排除动物前的曲线上有一个拐点,而排除动物后的丢失曲线上有多个拐点。两曲线相似的地方是:最初一两天辽东栎坚果的丢失非常迅速。排除小型啮齿目动物对辽东栎坚果的丢失有影响,然而坚果尺寸和微生境条件对坚果的丢失没有影响。任意2个因子的交互作用以及3个因子的交互作用对辽东栎坚果的丢失也都没有影响。排除啮齿目动物和坚果尺寸对辽东栎坚果的就地消耗有影响,微生境以及其它因子的交互作用对坚果的就地消耗没有影响。在9月份3d捕鼠的时间里,共捕到啮齿目动物3种:大林姬鼠(Apodemus speciosus)、社鼠(Niviveniter confucianus )和花鼠(Tantias sibiricus)。研究结果表明,尽管啮齿目动物的排除能够降低辽东栎坚果的丢失速度,但它们(或者和其它的脊椎动物一起)有足够的能力将辽东栎坚果捕食或搬运到其它地方分散埋藏或将它们搬运到它们的洞穴中用作漫长冬季的主要食物来源。  相似文献   

16.
灌丛高度对啮齿动物贮藏和扩散辽东栎坚果的影响   总被引:11,自引:0,他引:11  
路纪琪  张知彬 《动物学报》2005,51(2):195-204
本文选择高、矮两类灌丛生境, 于2002 年至2003 年在其中释放标记的辽东栎坚果, 并连续记录释放坚果的命运, 以了解生境差异对啮齿动物搬运、取食和贮藏辽东栎坚果的影响以及啮齿动物对微生境的选择等。研究结果表明, 大林姬鼠等啮齿动物对辽东栎坚果的短期取食非常强烈, 而分散贮藏的量则相对较少; 啮齿动物对辽东栎坚果的搬运距离在矮灌丛生境中显著大于高灌丛生境; 啮齿动物倾向于选择灌丛边缘和灌丛下方取食或贮藏辽东栎坚果, 这类微生境也有利于埋藏坚果的萌发。  相似文献   

17.
Rodent acorn selection in a Mediterranean oak landscape   总被引:5,自引:0,他引:5  
Quercus suber, Quercus ilex and Quercus coccifera (Cork, Holm and Kermes oaks, respectively) are common evergreen oak species that coexist in the landscapes of the western part of the Mediterranean basin. Rodents are the main acorn predators and thus one of the main factors for understanding recruitment patterns in oaks. In this paper we analyse to what extent mice prefer acorns from one oak species over another in three oak species studied using acorn removal experiments and video tape recordings. Twenty labelled acorns from each of the three Quercus species (60 acorns) were placed in 40 cm×40 cm quadrats on each plot. Because selection might vary as a result of the vegetation context, we performed the trials in the five main vegetation types within the study area (four replicates in each vegetation type) in order to control for habitat influences on rodent acorn preferences (a total of 20 plots). The removal of 1,200 acorns occurred within 68 days. Mice removed 98.7% of the acorns. Q. ilex acorns were preferred over Q. suber and Q. coccifera in all vegetation types except in pine forest, where no acorn preferences were detected. Acorn removal rates differed with vegetation type, correlating positively with shrub cover. The distance at which acorns were displaced by rodents (mean =4.6 m±5.1 SD) did not differ between acorn species, but varied among vegetation types. Bigger acorns of Q. coccifera were selected only after Q. ilex and Q. suber acorns were depleted, while no size selection was detected for the latter two species. Thus, we conclude that rodents show preference for some oak acorns and that landscape context contributes significantly to rodent activities and decisions.  相似文献   

18.
In this study we assessed the effectiveness of rodents as dispersers of Quercus ilex in a patchy landscape in southeastern Spain. We experimentally followed the fates of 3,200 marked and weighed acorns from dispersal through the time of seedling emergence over three years. Rodents handled about 99% of acorns, and dispersed 67% and cached 7.4% of the dispersed acorns. Most caches were recovered and consumed, and only 1.3% of the original experimental acorns were found alive in caches the following spring. Dispersal distances were short (mean = 356.2 cm, median = 157 cm) and strongly right-skewed. Heavier acorns were dispersed further and were more likely to be cached and survive than lighter acorns. All caches were in litter or soil, and each contained a single acorn. Rodents moved acorns nonrandomly, mostly to oaks and pines. Most surviving acorns were either in oaks, a poor microhabitat for oak recruitment, or shrubs, a suitable microhabitat for oak recruitment. Our results suggest that rodents, by burying a relatively high proportion of acorns singly in shrubs and pines, act as moderately effective dispersers of Q. ilex. Nonetheless, this dispersal comes at a very heavy cost.  相似文献   

19.
不同植物种子依靠不同的方式实现扩散,啮齿动物对林木种子搬运后在取食点微生境和贮藏方式的选择存在偏好,研究其贮藏行为与微生境的关系是探究幼苗建成的关键。在秦岭中段火地塘林区,采用标签标记法,以锐齿槲栎、华山松和油松种子为材料,探究了小型啮齿动物对松栎混交林建群种种子扩散过程的影响。结果表明:1)油松种子原地取食率显著高于锐齿槲栎和华山松种子,且啮齿动物更倾向于搬运后取食(60%)和埋藏(4.33%)华山松种子,搬运后取食距离也为华山松最大(2.49 m);锐齿槲栎小种子被搬运后埋藏的距离最大(4.92 m)。2)除华山松种子外,其他类型种子被搬运后单个取食的比例均在85%以上;油松种子不存在埋藏点,而其他类型种子90%以上均以单个形式被埋藏。3)大部分种子被啮齿动物搬运后选择在裸地丢弃;锐齿槲栎大种子(87.5%)、小种子(78.57%)和华山松种子(53.33%)较大比例被啮齿动物埋藏在灌丛下方,埋藏在裸地的种子较少。4)大部分种子在灌丛下方被取食,仅华山松种子被啮齿动物搬运到洞穴取食;除油松种子被大量原地取食外,其他类型种子被搬运到取食点的种子比例基本呈现由微生境植被复杂到简单(灌丛—草丛—灌丛边缘—裸地)而逐渐减小的趋势。种子的营养价值及取食和搬运过程中啮齿动物付出的成本是影响种子命运的关键性因子,且啮齿动物对种子埋藏和取食地点的微生境存在较明显的选择性。  相似文献   

20.
岩松鼠和松鸦对辽东栎坚果的捕食和传播   总被引:21,自引:0,他引:21  
王巍  马克平 《Acta Botanica Sinica》1999,41(10):1142-1144
脊椎动物对栎属(Quercus)坚果的捕食和传播是栎属通过实生苗更新的关键因子,栎属中一些物种坚果的分布格局以及动物对坚果的捕食作用已有较多研究[1~6]。一般情况下,栎属的坚果成熟落地后立即开始发芽,落在地表的坚果里的种子胚根长出后,由于地表枯落物的阻碍作用...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号