首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To preserve insect‐mediated ecosystem services under ongoing climate change, it is necessary to first understand the impact that warming will have on the insects that provide or mediate these services. Furthermore, because responses of a species may be modified by interactions with competitors, it is informative to examine warming effects on organisms and service provision under competition. Dung beetles provide numerous services to agriculture by burying the manure of other animals. To understand the potential impacts of climate warming on ecosystem service provision, we exposed two dung beetle species (Sisyphus rubrus and Euoniticellus fulvus (Coleoptera: Scarabaeidae)), occurring together in the same experimental pats, to warming and measured reproduction (dung ball production and burial, brood production, and egg laying), pat departure behaviour and survival of both species. These two species are likely competitors in pastures in northern New South Wales. To simulate climate warming, we used custom‐built chambers to add offsets (+0, +2 or +4°C) to field recorded, diurnally fluctuating baseline temperatures. There was no direct effect of increased temperature on any measured trait in either species. We did find however that the relative survival of the two species depended on temperature; S. rubrus had a higher probability (resulting in greater odds) of surviving than E. fulvus in the +0 and +4°C offset chambers, but not in the +2°C offset chambers. Likewise, the relative likelihood of the different species leaving a dung pat was temperature dependent; in the +2°C offset chambers, E. fulvus were more likely to leave than S. rubrus, but not in the +0 and +4°C offsets chambers. Our results highlight that it may be important for future studies to consider warming effects on relative survival and emigration because such effects could potentially lead to changes in dung beetle species composition.  相似文献   

2.
Helena Rosenlew  Tomas Roslin 《Oikos》2008,117(11):1659-1666
To understand how current patterns of habitat loss and fragmentation will ultimately affect ecosystem functioning, we need to match experimental manipulations of community structure with real changes occurring in the landscapes of today. In this study, we examine the consequences of habitat fragmentation on a key function: the decomposition of dung by invertebrates. In a microcosm experiment, we use previous observations of dung beetle assemblage structure in fragmented and intact landscapes to create realistic differences in assemblages of small, dung‐dwelling species in the genus Aphodius. We ask whether such differences will affect ecosystem functioning, and how their effects compare to those of removing full functional groups: dung‐dwelling Aphodius, tunnelling Geotrupes stercorarius, and/or earthworms. As measured by changes in dung fresh weight, we observe an overriding impact of removing G. stercorarius, with the amount of dung remaining at any one time doubling if the species is excluded. Compared to this major effect, there seem to be less effects of removing Aphodius, ambiguous effects of excluding earthworms, and no detectable effects of relatively minor changes in Aphodius assemblages as induced by current levels of fragmentation. Overall, our results support the general notion that different species contribute highly unevenly to overall ecosystem functioning. Most importantly though, our findings suggest that the functional consequences of habitat loss will depend on taxon‐specific responses to landscape modification. Only by addressing these responses may we predict the actual consequences of habitat loss.  相似文献   

3.
Nitrogen (N) availability is projected to increase in a warming climate. But whether the more available N is immobilized by microbes (thus stimulates soil carbon (C) decomposition), or is absorbed by plants (thus intensifies C uptake) remains unknown in the alpine meadow ecosystem. Infrared heaters were used to simulate climate warming with a paired experimental design. Soil ammonification, nitrification, and net mineralization were obtained by in situ incubation in a permafrost region of the Qinghai‐Tibet Plateau (QTP). Available N significantly increased due to the stimulation of net nitrification and mineralization in 0–30 cm soil layer. Microbes immobilized N in the end of growing season in both warming and control plots. The magnitude of immobilized N was lower in the warming plots. The root N concentration significantly reduced, but root N pool intensified due to the significant increase in root biomass in the warming treatment. Our results suggest that a warming‐induced increase in biomass is the major N sink and will continue to stimulate plant growth until plant N saturation, which could sustain the positive warming effect on ecosystem productivity.  相似文献   

4.
Extreme weather events can have negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (2–10 °C for 2–14 days), but returning to cold winter climate exposes the ecosystem to lower temperatures by the loss of insulating snow. Soil animals, which play an integral part in soil processes, may be very susceptible to such events depending on the intensity of soil warming and low temperatures following these events. We simulated week‐long extreme winter warming events – using infrared heating lamps, alone or with soil warming cables – for two consecutive years in a sub‐Arctic dwarf shrub heathland. Minimum temperatures were lower and freeze‐thaw cycles were 2–11 times more frequent in treatment plots compared with control plots. Following the second event, Acari populations decreased by 39%; primarily driven by declines of Prostigmata (69%) and the Mesostigmatic nymphs (74%). A community‐weighted vertical stratification shift occurred from smaller soil dwelling (eu‐edaphic) Collembola species dominance to larger litter dwelling (hemi‐edaphic) species dominance in the canopy‐with‐soil warming plots compared with controls. The most susceptible groups to these winter warming events were the smallest individuals (Prostigmata and eu‐edaphic Collembola). This was not apparent from abundance data at the Collembola taxon level, indicating that life forms and species traits play a major role in community assembly following extreme events. The observed shift in soil community can cascade down to the micro‐flora affecting plant productivity and mineralization rates. Short‐term extreme weather events have the potential to shift community composition through trait composition with potentially large consequences for ecosystem development.  相似文献   

5.
Succession theory predicts altered sensitivity of ecosystem functions to disturbance (i.e., climate change) due to the temporal shift in plant community composition. However, empirical evidence in global change experiments is lacking to support this prediction. Here, we present findings from an 8‐year long‐term global change experiment with warming and altered precipitation manipulation (double and halved amount). First, we observed a temporal shift in species composition over 8 years, resulting in a transition from an annual C3‐dominant plant community to a perennial C4‐dominant plant community. This successional transition was independent of any experimental treatments. During the successional transition, the response of aboveground net primary productivity (ANPP) to precipitation addition magnified from neutral to +45.3%, while the response to halved precipitation attenuated substantially from ?17.6% to neutral. However, warming did not affect ANPP in either state. The findings further reveal that the time‐dependent climate sensitivity may be regulated by successional change in species composition, highlighting the importance of vegetation dynamics in regulating the response of ecosystem productivity to precipitation change.  相似文献   

6.
Plant functional traits underlie vegetation responses to environmental changes such as global warming, and consequently influence ecosystem processes. While most of the existing studies focus on the effect of warming only on species diversity and productivity, we further investigated (i) how the structure of community plant functional traits in temperate grasslands respond to experimental warming, and (ii) whether species and functional diversity contribute to a greater stability of grasslands, in terms of vegetation composition and productivity. Intact vegetation turves were extracted from temperate subalpine grassland (highland) in the Eastern Pyrenees and transplanted into a warm continental, experimental site in Lleida, in Western Catalonia (lowland). The impacts of simulated warming on plant production and diversity, functional trait structure, and vegetation compositional stability were assessed. We observed an increase in biomass and a reduction in species and functional diversity under short-term warming. The functional structure of the grassland communities changed significantly, in terms of functional diversity and community-weighted means (CWM) for several traits. Acquisitive and fast-growing species with higher SLA, early flowering, erect growth habit, and rhizomatous strategy became dominant in the lowland. Productivity was significantly positively related to species, and to a lower extent, functional diversity, but productivity and stability after warming were more dependent on trait composition (CWM) than on diversity. The turves with more acquisitive species before warming changed less in composition after warming. Results suggest that (i) the short-term warming can lead to the dominance of acquisitive fast growing species over conservative species, thus reducing species richness, and (ii) the functional traits structure in grassland communities had a greater influence on the productivity and stability of the community under short-term warming, compared to diversity effects. In summary, short-term climate warming can greatly alter vegetation functional structure and its relation to productivity.  相似文献   

7.
Pyrethroid insecticides are widely used to control ectoparasites of livestock, particularly ticks and biting flies. Their use in African livestock systems is increasing, driven by the need to increase productivity and local food security. However, insecticide residues present in the dung after treatment are toxic to dung‐inhabiting insects. In a semiarid agricultural habitat in Botswana, dung beetle adult mortality, brood ball production, and larval survival were compared between untreated cattle dung and cattle dung spiked with deltamethrin, to give concentrations of 0.01, 0.1, 0.5, or 1 ppm. Cattle dung‐baited pitfall traps were used to measure repellent effects of deltamethrin in dung on Scarabaeidae. Dung decomposition rate was also examined. There was significantly increased mortality of adult dung beetles colonizing pats that contained deltamethrin compared to insecticide‐free pats. Brood ball production was significantly reduced at concentrations of 1 ppm; larval survival was significantly reduced in dung containing 0.1 ppm deltamethrin and above. There was no difference in the number of Scarabaeidae attracted to dung containing any of the deltamethrin concentrations. Dung decomposition was significantly reduced even at the lowest concentration (0.01 ppm) compared to insecticide‐free dung. The widespread use of deltamethrin in African agricultural ecosystems is a significant cause for concern; sustained use is likely to damage dung beetle populations and their provision of environmentally and economically important ecosystem services. Contaminated dung buried by paracoprid (tunneling) beetles may retain insecticidal effects, with impacts on developing larvae below ground. Lethal and sublethal effects on entire dung beetle (Scarabaeidae) communities could impair ecosystem function in agricultural landscapes.  相似文献   

8.
1. Insects are sensitive to climate change. Consequently, insect‐mediated ecosystem functions and services may be altered by changing climates. 2. Dung beetles provide multiple services by burying manure. Using climate‐controlled chambers, the effects of warming on dung burial and reproduction by the dung beetle Sisyphus rubrus Paschalidis, 1974 were investigated. Sisyphus rubrus break up dung by forming and rolling away balls of manure for burial and egg deposition. 3. To simulate warming in the chambers, 0, 2 or 4 °C offsets were added to field‐recorded, diurnally fluctuating temperatures. We measured dung ball production and burial, egg laying, survival and residence times of beetles. 4. Temperature did not affect the size or number of dung balls produced; however warming reduced dung ball burial by S. rubrus. Because buried balls were more likely to contain eggs, warming could reduce egg laying via a reduction in ball burial. Warming reduced the humidity inside the chambers, and a positive relationship was found between the number of dung balls produced and humidity in two temperature treatments. Temperature did not affect survival, or whether or not a beetle left a chamber. Beetles that did leave the chambers took longer to do so in the warmest treatment. 5. This study demonstrates that climate warming could reduce reproduction and dung burial by S. rubrus, and is an important first step to understanding warming effects on burial services. Future studies should assess warming effects in field situations, both on individual dung beetle species and on aggregate dung burial services.  相似文献   

9.
植物物候对气候变化的响应   总被引:44,自引:6,他引:44  
陆佩玲  于强  贺庆棠 《生态学报》2006,26(3):929-929
植物物候的变化可以直观地反映某些气候变化,尤其是气候变暖.植物生长节律的变化引起植物与环境关系的改变.生态系统的物质循环(如水和碳的循环)等过程将随物候而改变.不同种类植物物候对气候变化的响应的差异,会使植物间和动植物间的竞争与依赖关系也发生深刻的变化.目前欧洲、美洲、亚洲等许多地区均有关于春季植物物候提前,秋季物候推迟,使植物的生长季延长,从而提示气候变暖的趋势.植物物候的模拟模型构成生态系统生产力模型的重要部分.  相似文献   

10.
Combined effects of co-occurring global climate changes on ecosystem responses are generally poorly understood. Here, we present results from a 2-year field experiment in a Carex fen ecosystem on the southernmost tip of South America, where we examined the effects of solar ultraviolet B (UVB, 280–315 nm) and warming on above- and belowground plant production, C : N ratios, decomposition rates and earthworm population sizes. Solar UVB radiation was manipulated using transparent plastic filter films to create a near-ambient (90% of ambient UVB) or a reduced solar UVB treatment (15% of ambient UVB). The warming treatment was imposed passively by wrapping the same filter material around the plots resulting in a mean air and soil temperature increase of about 1.2 °C. Aboveground plant production was not affected by warming, and marginally reduced at near-ambient UVB only in the second season. Aboveground plant biomass also tended to have a lower C : N ratio under near-ambient UVB and was differently affected at the two temperatures (marginal UVB × temperature interaction). Leaf decomposition of one dominant sedge species ( Carex curta ) tended to be faster at near-ambient UVB than at reduced UVB. Leaf decomposition of a codominant species ( Carex decidua ) was significantly faster at near-ambient UVB; root decomposition of this species tended to be lower at increased temperature and interacted with UVB. We found, for the first time in a field experiment that epigeic earthworm density and biomass was 36% decreased by warming but remained unaffected by UVB radiation. Our results show that present-day solar UVB radiation and modest warming can adversely affect ecosystem functioning and engineers of this fen. However, results on plant biomass production also showed that treatment manipulations of co-occurring global change factors can be overridden by the local climatic situation in a given study year.  相似文献   

11.
Intraspecific variation in genotypically determined traits can influence ecosystem processes. Therefore, the impact of climate change on ecosystems may depend, in part, on the distribution of plant genotypes. Here we experimentally assess effects of climate warming and excess nitrogen supply on litter decomposition using 12 genotypes of a cosmopolitan foundation species collected across a 2100 km latitudinal gradient and grown in a common garden. Genotypically determined litter‐chemistry traits varied substantially within and among geographic regions, which strongly affected decomposition and the magnitude of warming effects, as warming accelerated litter mass loss of high‐nutrient, but not low‐nutrient, genotypes. Although increased nitrogen supply alone had no effect on decomposition, it strongly accelerated litter mass loss of all genotypes when combined with warming. Rates of microbial respiration associated with the leaf litter showed nearly identical responses as litter mass loss. These results highlight the importance of interactive effects of environmental factors and suggest that loss or gain of genetic variation associated with key phenotypic traits can buffer, or exacerbate, the impact of global change on ecosystem process rates in the future.  相似文献   

12.
Ecosystems worldwide are increasingly impacted by multiple drivers of environmental change, including climate warming and loss of biodiversity. We show, using a long‐term factorial experiment, that plant diversity loss alters the effects of warming on productivity. Aboveground primary productivity was increased by both high plant diversity and warming, and, in concert, warming (≈1.5 °C average above and belowground warming over the growing season) and diversity caused a greater than additive increase in aboveground productivity. The aboveground warming effects increased over time, particularly at higher levels of diversity, perhaps because of warming‐induced increases in legume and C4 bunch grass abundances, and facilitative feedbacks of these species on productivity. Moreover, higher plant diversity was associated with the amelioration of warming‐induced environmental conditions. This led to cooler temperatures, decreased vapor pressure deficit, and increased surface soil moisture in higher diversity communities. Root biomass (0–30 cm) was likewise consistently greater at higher plant diversity and was greater with warming in monocultures and at intermediate diversity, but at high diversity warming had no detectable effect. This may be because warming increased the abundance of legumes, which have lower root : shoot ratios than the other types of plants. In addition, legumes increase soil nitrogen (N) supply, which could make N less limiting to other species and potentially decrease their investment in roots. The negative warming × diversity interaction on root mass led to an overall negative interactive effect of these two global change factors on the sum of above and belowground biomass, and thus likely on total plant carbon stores. In total, plant diversity increased the effect of warming on aboveground net productivity and moderated the effect on root mass. These divergent effects suggest that warming and changes in plant diversity are likely to have both interactive and divergent impacts on various aspects of ecosystem functioning.  相似文献   

13.
Global mean temperature is predicted to increase by 2–7 °C and precipitation to change across the globe by the end of this century. To quantify climate effects on ecosystem processes, a number of climate change experiments have been established around the world in various ecosystems. Despite these efforts, general responses of terrestrial ecosystems to changes in temperature and precipitation, and especially to their combined effects, remain unclear. We used meta‐analysis to synthesize ecosystem‐level responses to warming, altered precipitation, and their combination. We focused on plant growth and ecosystem carbon (C) balance, including biomass, net primary production (NPP), respiration, net ecosystem exchange (NEE), and ecosystem photosynthesis, synthesizing results from 85 studies. We found that experimental warming and increased precipitation generally stimulated plant growth and ecosystem C fluxes, whereas decreased precipitation had the opposite effects. For example, warming significantly stimulated total NPP, increased ecosystem photosynthesis, and ecosystem respiration. Experimentally reduced precipitation suppressed aboveground NPP (ANPP) and NEE, whereas supplemental precipitation enhanced ANPP and NEE. Plant productivity and ecosystem C fluxes generally showed higher sensitivities to increased precipitation than to decreased precipitation. Interactive effects of warming and altered precipitation tended to be smaller than expected from additive, single‐factor effects, though low statistical power limits the strength of these conclusions. New experiments with combined temperature and precipitation manipulations are needed to conclusively determine the importance of temperature–precipitation interactions on the C balance of terrestrial ecosystems under future climate conditions.  相似文献   

14.
The global climate is changing rapidly and Arctic regions are showing responses to recent warming. Responses of tundra ecosystems to climate change have been examined primarily through short‐term experimental manipulations, with few studies of long‐term ambient change. We investigated changes in above‐ and belowground biomass of wet sedge tundra to the warming climate of the Canadian High Arctic over the past 25 years. Aboveground standing crop was harvested from five sedge meadow sites and belowground biomass was sampled from one of the sites in the early 1980s and in 2005 using the same methods. Aboveground biomass was on average 158% greater in 2005 than in the early 1980s. The belowground biomass was also much greater in 2005: root biomass increased by 67% and rhizome biomass by 139% since the early 1980s. Dominant species from each functional group (graminoids, shrubs and forbs) showed significant increases in aboveground biomass. Responsive species included the dominant sedge species Carex aquatilis stans, C. membranacea, and Eriophorum angustifolium, as well as the dwarf shrub Salix arctica and the forb Polygonum viviparum. However, diversity measures were not different between the sample years. The greater biomass correlated strongly with increased annual and summer temperatures over the same time period, and was significantly greater than the annual variation in biomass measured in 1980–1983. Increased decomposition and mineralization rates, stimulated by warmer soils, were likely a major cause of the elevated productivity, as no differences in the mass of litter were found between sample periods. Our results are corroborated by published short‐term experimental studies, conducted in other wet sedge tundra communities which link warming and fertilization with elevated decomposition, mineralization and tundra productivity. We believe that this is the first study to show responses in High Arctic wet sedge tundra to recent climate change.  相似文献   

15.
Ecosystem responses to climate change can exert positive or negative feedbacks on climate, mediated in part by slow‐moving factors such as shifts in vegetation community composition. Long‐term experimental manipulations can be used to examine such ecosystem responses, but they also present another opportunity: inferring the extent to which contemporary climate change is responsible for slow changes in ecosystems under ambient conditions. Here, using 23 years of data, we document a shift from nonwoody to woody vegetation and a loss of soil carbon in ambient plots and show that these changes track previously shown similar but faster changes under experimental warming. This allows us to infer that climate change is the cause of the observed shifts in ambient vegetation and soil carbon and that the vegetation responses mediate the observed changes in soil carbon. Our findings demonstrate the realism of an experimental manipulation, allow attribution of a climate cause to observed ambient ecosystem changes, and demonstrate how a combination of long‐term study of ambient and experimental responses to warming can identify mechanistic drivers needed for realistic predictions of the conditions under which ecosystems are likely to become carbon sources or sinks over varying timescales.  相似文献   

16.
全球气候变暖对凋落物分解的影响   总被引:6,自引:0,他引:6  
宋飘  张乃莉  马克平  郭继勋 《生态学报》2014,34(6):1327-1339
凋落物分解作为生态系统核心过程,参与生态系统碳的周转与循环,影响生态系统碳的收支平衡,调控生态系统对全球气候变暖的反馈结果。全球气候变暖通过环境因素、凋落物数量和质量以及分解者3个方面,直接或间接地作用于凋落物分解过程,并进一步影响土壤养分周转和碳库动态。气候变暖可通过升高温度和改变实际蒸散量等环境因素直接作用于凋落物分解。气候变暖可引起植物物种短期内碳、氮和木质素等化学性质的改变以及群落中物种组成的长期变化从而改变凋落物质量。在凋落物分解过程中,土壤分解者亚系统作为主要生命组分(土壤动物和微生物)彼此相互作用、相互协调共同参与调节凋落物的分解过程。凋落物分解可以通过改变土壤微生物量、微生物活动和群落结构来加快微生物养分的固定或矿化,以形成新的养分利用模式来改变土壤有机质从而对气候变化做出响应。未来凋落物分解的研究方向应基于大尺度跨区域分解实验和长期实验,关注多个因子交互影响下,分解过程中碳、氮养分释放、地上/地下凋落物分解生物学过程与联系、分解者亚系统营养级联效应等方面。  相似文献   

17.
Abiotic environmental change, local species extinctions and colonization of new species often co‐occur. Whether species colonization is driven by changes in abiotic conditions or reduced biotic resistance will affect community functional composition and ecosystem management. We use a grassland experiment to disentangle effects of climate warming and community diversity on plant species colonization. Community diversity had dramatic impacts on the biomass, richness and traits of plant colonists. Three times as many species colonized the monocultures than the high diversity 17 species communities (~30 vs. 10 species), and colonists collectively produced 10 times as much biomass in the monocultures than the high diversity communities (~30 vs. 3 g/m2). Colonists with resource‐acquisitive strategies (high specific leaf area, light seeds, short heights) accrued more biomass in low diversity communities, whereas species with conservative strategies accrued most biomass in high diversity communities. Communities with higher biomass of resident C4 grasses were more resistant to colonization by legume, nonlegume forb and C3 grass colonists, but not by C4 grass colonists. Compared with effects of diversity, 6 years of 3°C‐above‐ambient temperatures had little impact on plant colonization. Warmed subplots had ~3 fewer colonist species than ambient subplots and selected for heavier seeded colonists. They also showed diversity‐dependent changes in biomass of C3 grass colonists, which decreased under low diversity and increased under high diversity. Our findings suggest that species colonization is more strongly affected by biotic resistance from residents than 3°C of climate warming. If these results were extended to invasive species management, preserving community diversity should help limit plant invasion, even under climate warming.  相似文献   

18.
Shifts in nitrogen (N) mineralization and nitrification rates due to global changes can influence nutrient availability, which can affect terrestrial productivity and climate change feedbacks. While many single‐factor studies have examined the effects of environmental changes on N mineralization and nitrification, few have examined these effects in a multifactor context or recorded how these effects vary seasonally. In an old‐field ecosystem in Massachusetts, USA, we investigated the combined effects of four levels of warming (up to 4 °C) and three levels of precipitation (drought, ambient, and wet) on net N mineralization, net nitrification, and potential nitrification. We also examined the treatment effects on the temperature sensitivity of net N mineralization and net nitrification and on the ratio of C mineralization to net N mineralization. During winter, freeze–thaw events, snow depth, and soil freezing depth explained little of the variation in net nitrification and N mineralization rates among treatments. During two years of treatments, warming and altered precipitation rarely influenced the rates of N cycling, and there was no evidence of a seasonal pattern in the responses. In contrast, warming and drought dramatically decreased the apparent Q10 of net N mineralization and net nitrification, and the warming‐induced decrease in apparent Q10 was more pronounced in ambient and wet treatments than the drought treatment. The ratio of C mineralization to net N mineralization varied over time and was sensitive to the interactive effects of warming and altered precipitation. Although many studies have found that warming tends to accelerate N cycling, our results suggest that warming can have little to no effect on N cycling in some ecosystems. Thus, ecosystem models that assume that warming will consistently increase N mineralization rates and inputs of plant‐available N may overestimate the increase in terrestrial productivity and the magnitude of an important negative feedback to climate change.  相似文献   

19.
Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date.  相似文献   

20.
We investigated the independent and combined effects of experimental warming and grazing on plant species diversity on the north‐eastern Tibetan Plateau, a region highly vulnerable to ongoing climate and land use changes. Experimental warming caused a 26–36% decrease in species richness, a response that was generally dampened by experimental grazing. Higher species losses occurred at the drier sites where N was less available. Moreover, we observed an indirect effect of climate change on species richness as mediated by plant–plant interactions. Heat stress and warming‐induced litter accumulation are potential explanations for the species’ responses to experimental warming. This is the first reported experimental evidence that climate warming could cause dramatic declines in plant species diversity in high elevation ecosystems over short time frames and supports model predictions of species losses with anthropogenic climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号