首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Migratory shorebirds show strong dichotomies in habitat choice during both the breeding and nonbreeding season. Whereas High Arctic breeding species are restricted to coastal marine and saline habitats during the nonbreeding season, more southerly breeding species tend to use freshwater habitats away from coasts. It has been proposed that this co-variation in habitat use is a consequence of a single axis of adaptation to pathogens and parasites, which are hypothesized to be relatively scarce in High Arctic, marine, and saline habitats and relatively common at lower latitudes and in freshwater habitats. Here we examine this contrast by comparing the prevalence of avian malaria infections in shorebirds occupying different habitats. We used a PCR-based assay on 1319 individuals from 31 shorebird species sampled in the Arctic, in temperate Europe and in inland and marine habitats in West Africa. Infections mainly occurred in tropical wetlands, with the shorebirds in freshwater inland habitats having significantly higher prevalence of malaria than birds in marine coastal habitats. Infections were not found in birds migrating through Europe even though conspecifics did show infections in tropical Africa. Adults should resist infection better than juveniles, but showed higher malaria prevalence, suggesting that infection probability increases with cumulative exposure. We argue that exposure to vectors is the main factor explaining the habitat-related differences in malaria prevalence.  相似文献   

2.
Large‐scale climate fluctuations, such as the North Atlantic Oscillation (NAO), have a marked effect on the timing of spring migration of birds. It has however been suggested that long‐distance migrants wintering in Africa could respond less to NAO than short‐distance migrants wintering in Europe, making them more vulnerable to climatic changes. We studied whether migratory boreal and arctic bird species returning from different wintering areas show differences in responses to the NAO in the timing of their spring migration. We used data on 75 species from two bird observatories in northern Europe (60°N). By extending the examination to the whole distribution of spring migration and to a taxonomically diverse set of birds, we aimed at finding general patterns of the effects of climate fluctuation on the timing of avian migration. Most species arrived earlier after winters with high NAO index. The degree of NAO‐response diminished with the phase of migration: the early part of a species’ migratory population responded more strongly than the later part. Early phase waterfowl responded strongest to NAO, but in later phases their response faded to non‐significant. This pattern may be related to winter severity and/or ice conditions in the Baltic. In the two other groups, gulls and waders and passerines, all phases of migration responded to NAO and fading with phase was non‐significant. The difference between waterfowl and other groups may be related to differences between the phenological development of their respective macrohabitats. Wintering area affected the strength of NAO response in a complicated way. On average medium distance migrants responded most strongly, followed by short‐distance migrants and partial migrants. Our results concerning the response of long‐distance migrants were difficult to interpret: there is an overall weak yet statistically significant effect, but patterns with phase of migration need further study. Our results highlight the importance of examining the whole distribution of migration and warrant the use of data sets from several sampling sites when studying climatic effects on the timing of avian life‐history events.  相似文献   

3.
Parasites can have strong effects on host life-history and behaviour, and result in changes in host population dynamics and community structure. We applied a PCR-based technique and examined prevalence of malaria and related haemosporidian parasites in two arctic breeding shorebird species: the Semipalmated Sandpiper (Calidris pusilla) and the Pectoral Sandpiper (C. melanotos). During the non-breeding season, Semipalmated Sandpipers inhabit coastal marine habitats, whereas Pectoral Sandpipers are found in inland areas. In accordance with the hypothesis that the risk of parasite infection is higher in a species wintering in freshwater areas, we found Plasmodium sp. infection during the breeding season only in Pectoral Sandpipers, whereas Semipalmated Sandpipers were parasite free. However, even in Pectoral Sandpipers sampled in the arctic, prevalence of malaria parasites was very low (<3% of individuals, n = 114). Overall, three different Plasmodium sp. lineages were found, one of which has never been described before.  相似文献   

4.
Studies of pathogen transmission typically overlook that wildlife hosts can include both migrant and resident populations when attempting to model circulation. Through the application of stable isotopes in flight feathers, we estimated the migration strategy of mallards (Anas platyrhynchos) occurring on California wintering grounds. Our study demonstrates that mallards‐ a principal host of avian influenza virus (AIV) in nature, contribute differently to virus gene flow depending on migration strategy. No difference in AIV prevalence was detected between resident (9.6%), intermediate‐distance (9.6%) and long‐distance migrants (7.4%). Viral diversity among the three groups was also comparable, possibly owing to viral pool mixing when birds converge at wetlands during winter. However, migrants and residents contributed differently to the virus gene pool at wintering wetlands. Migrants introduced virus from northern breeding grounds (Alaska and the NW Pacific Rim) into the wintering population, facilitating gene flow at continental scales, but circulation of imported virus appeared to be limited. In contrast, resident mallards acted as AIV reservoirs facilitating year‐round circulation of limited subtypes (i.e. H5N2) at lower latitudes. This study supports a model of virus exchange in temperate regions driven by the convergence of wild birds with separate geographic origins and exposure histories.  相似文献   

5.
Infectious disease risk is thought to increase in the tropics, but little is known about latitudinal gradients of parasite diversity. We used a comparative data set encompassing 330 parasite species reported from 119 primate hosts to examine latitudinal gradients in the diversity of micro and macroparasites per primate host species. Analyses conducted with and without controlling for host phylogeny showed that parasite species richness increased closer to the equator for protozoan parasites, but not for viruses or helminths. Relative to other major parasite groups, protozoa reported from wild primates were transmitted disproportionately by arthropod vectors. Within the protozoa, our results revealed that vector‐borne parasites showed a highly significant latitudinal gradient in species richness. This higher diversity of vector‐borne protozoa near the tropics could be influenced by a greater abundance or diversity of biting arthropods in the tropics, or by climatic effects on vector behaviour and parasite development. Many vector‐borne diseases, such as leishmaniasis, trypanosomiasis, and malaria pose risks to both humans and wildlife, and nearly one‐third of the protozoan parasites from free‐living primates in our data set have been reported to infect humans. Because the geographical distribution and prevalence of many vector‐borne parasites are expected to increase because of global warming, these results are important for predicting future parasite‐mediated threats to biodiversity and human health.  相似文献   

6.
Trans‐equatorial long‐distance migrations of high‐latitude breeding animals have been attributed to narrow ecological niche widths. We suggest an alternative hypothesis postulating that trans‐equatorial migrations result from a possible increase in the rate at which body stores to fuel migration are deposited with absolute latitude; that is, longer, migrations away from the breeding grounds surpassing the equator may actually enhance fueling rates on the nonbreeding grounds and therewith the chance of a successful, speedy and timely migration back to the breeding grounds. To this end, we first sought to confirm the existence of a latitudinal trend in fuel deposition rate in a global data set of free‐living migratory shorebirds and investigated the potential factors causing this trend. We next tested two predictions on how this trend is expected to impact the migratory itineraries on northward migration under the time‐minimization hypothesis, using 56 tracks of high‐latitude breeding shorebirds migrating along the East Asian‐Australasian Flyway. We found a strong positive effect of latitude on fuel deposition rate, which most likely relates to latitudinal variations in primary productivity and available daily foraging time. We next confirmed the resulting predictions that (1) when flying from a stopover site toward the equator, migrants use long jumps that will take them to an equivalent or higher latitude at the opposite hemisphere; and (2) that from here onward, migrants will use small steps, basically fueling only enough to make it to the next suitable staging site. These findings may explain why migrants migrate “the extra mile” across the equator during the nonbreeding season in search of better fueling conditions, ultimately providing secure and fast return migrations to the breeding grounds in the opposite hemisphere.  相似文献   

7.
A broad range of migration strategies exist in avian species, and different strategies can occur in different populations of the same species. For the breeding Osprey Pandion haliaetus populations of the Mediterranean, sporadic observations of ringed birds collected in the past suggested variations in migratory and wintering behaviour. We used GPS tracking data from 41 individuals from Corsica, the Balearic Islands and continental Italy to perform the first detailed analysis of the migratory and wintering strategies of these Osprey populations. Ospreys showed heterogeneous migratory behaviour, with 73% of the individuals migrating and the remaining 27% staying all year round at breeding sites. For migratory individuals, an extremely short duration of migration (5.2 ± 2.6 days) was recorded. Mediterranean Ospreys were able to perform long non‐stop flights over the open sea, sometimes overnight. They also performed pre‐ and post‐migratory trips to secondary sites, before or after crossing the sea during both autumn and spring migration. Ospreys spent the winter at temperate latitudes and showed high plasticity in habitat selection, using marine bays, coastal lagoons/marshland and inland freshwater sites along the coasts of different countries of the Mediterranean basin. Movements and home‐range areas were restricted during the wintering season. The short duration of trips and high levels of variability in migratory routes and wintering grounds revealed high behavioural plasticity among individuals, probably promoted by the relatively low seasonal variability in ecological conditions throughout the year in the Mediterranean region, and weak competition for non‐breeding sites. We stress the importance of considering the diversity in migration strategies and the particular ecology of these vulnerable populations, especially in relation to proactive management measures for the species at the scale of the Mediterranean region.  相似文献   

8.
Jiang KY  Wu M  Shao XX 《动物学研究》2011,32(6):631-640
Waterbird surveys were conducted regularly in the Qiantangjiang River estuary and Hangzhou Bay from July 2007 to November 2011. A total of 128 species (nine orders and 18 families) were recorded, including 119 migrants which accounted for 93% of the total species; eleven species were listed as National Protected Species. Inter-specific correlation analysis for 13 shorebird populations and nine duck populations recorded over time found that 21 pairs of shorebirds and 23 pairs of ducks were correlated. By looking at seasonal dynamics and migration patterns we were able to divide the migration process into six stages: (1) late July to late September was the migration peak of shorebirds, which were dominated by Limosa limosa, Calidris ruficollis and Charadrius mongolus. (2) Early October to mid-December was the migration peak of wintering migrants of shorebirds and ducks, which were the first two large groups in our study areas. (3) Late December to mid-February was the wintering period of migration waterbirds. (4) Late February to late March was the peak migration of ducks and the winter migrants of shorebirds dominated by Calidris alpina. (5) Early April to mid-May was the migration peak of passage migrants such as, Calidris ruficollis, Calidris acuminate and Limosa limosa but the population size of shorebird winter migrants dominated by Calidris alpine was still larger than the former. (6) Late May to mid-July was the breeding season of all egrets, summer migrants of gulls and several species of shorebirds. Our surveys show that interaction among species is possibly an important determinant of community composition of shorebirds and wintering ducks during the migration season. It may be the geographical position and community composition of migrant shorebirds across Hangzhou Bay that mean during the northward migration there are far more shorebirds than during the southward migration.  相似文献   

9.
Dispersal increases local transmission of avian malarial parasites   总被引:2,自引:0,他引:2  
The relationships between dispersal and local transmission rate of parasites are essential to understanding host–parasite coevolution and the emergence and spread of novel disease threats. Here we show that year‐round transmission, as opposed to summer transmission, has repeatedly evolved in malarial parasites (genera Plasmodium and Haemoproteus) of a migratory bird. Year‐round transmission allows parasites to spread in sympatric host's wintering areas, and hence to colonize distantly located host's breeding areas connected by host‐migration movements. Widespread parasites had higher local prevalence, revealing increased transmission, than geographically restricted parasites. Our results show a positive relationship between dispersal and local transmission of malarial parasites that is apparently mediated by frequent evolutionary changes in parasite transmission dynamics, which has important implications for the ecology and evolution of infectious diseases.  相似文献   

10.
Scaly‐sided Mergansers Mergus squamatus breed on freshwater rivers in far eastern Russia, Korea and China, wintering in similar habitats in China and Korea, but nothing was known of their moulting habitat. To investigate the moult strategies of this species, we combined wing feather stable isotope ratios (males and females) with geolocator data (nesting females) to establish major habitat types (freshwater, brackish or saltwater) used by both sexes during wing moult. Although most Scaly‐sided Mergansers of both sexes probably moult on freshwater, some males and non‐breeding and failed breeding females appeared to undertake moult migration to brackish and marine waters. Given the previous lack of any surveys of coastal or estuarine waters for this species during the moult period, these findings suggest important survey needs for the effective conservation of the species during the flightless moult period.  相似文献   

11.
We investigated the effects of body mass and latitude on primary moult duration from published data of migrating shorebirds that moult exclusively on the wintering grounds. Non‐phylogenetic and phylogenetic models demonstrated that body mass and latitude correlate with moult duration in a non‐additive way: the models predict different latitudinal relationships for smaller and larger shorebirds, and in the northern hemisphere, primary moult duration increased allometrically with body mass (exponent = 0.17), whereas in the southern hemisphere, primary moult duration was not correlated with body mass. If birds optimize feather quality and if slower moult yields sturdier feathers, the fast primary moult of northerly wintering shorebirds indicates additional selection pressures at work.  相似文献   

12.
Basal metabolic rate (BMR) is closely linked to different habitats and way of life. In birds, some studies have noted that BMR is higher in marine species compared to those inhabiting terrestrial habitats. However, the extent of such metabolic dichotomy and its underlying mechanisms are largely unknown. Migratory shorebirds (Charadriiformes) offer a particularly interesting opportunity for testing this marine-non-marine difference as they are typically divided into two broad categories in terms of their habitat occupancy outside the breeding season: 'coastal' and 'inland' shorebirds. Here, we measured BMR for 12 species of migratory shorebirds wintering in temperate inland habitats and collected additional BMR values from the literature for coastal and inland shorebirds along their migratory route to make inter- and intraspecific comparisons. We also measured the BMR of inland and coastal dunlins Calidris alpina wintering at a similar latitude to facilitate a more direct intraspecific comparison. Our interspecific analyses showed that BMR was significantly lower in inland shorebirds than in coastal shorebirds after the effects of potentially confounding climatic (latitude, temperature, solar radiation, wind conditions) and organismal (body mass, migratory status, phylogeny) factors were accounted for. This indicates that part of the variation in basal metabolism might be attributed to genotypic divergence. Intraspecific comparisons showed that the mass-specific BMR of dunlins wintering in inland freshwater habitats was 15% lower than in coastal saline habitats, suggesting that phenotypic plasticity also plays an important role in generating these metabolic differences. We propose that the absence of tidally-induced food restrictions, low salinity, and less windy microclimates associated with inland freshwater habitats may reduce the levels of energy expenditure, and hence BMR. Further research including common-garden experiments that eliminate phenotypic plasticity as a source of phenotypic variation is needed to determine to what extent these general patterns are attributable to genotypic adaptation.  相似文献   

13.
Knowing the natural dynamics of pathogens in migratory birds is important, for example, to understand the factors that influence the transport of pathogens to and their transmission in new geographical areas, whereas the transmission of other pathogens might be restricted to a specific area. We studied haemosporidian blood parasites of the genera Plasmodium, Haemoproteus and Leucocytozoon in a migratory bird, the garden warbler Sylvia borin. Birds were sampled in spring, summer and early autumn at breeding grounds in Sweden, on migration at Capri, Italy and on arrival and departure from wintering staging areas in West Africa: mapping recoveries of garden warblers ringed in Fennoscandia and Capri showed that these sites are most probably on the migratory flyway of garden warblers breeding at Kvismaren. Overall, haemosporidian prevalence was 39%, involving 24 different parasite lineages. Prevalence varied significantly over the migratory cycle, with relatively high prevalence of blood parasites in the population on breeding grounds and at the onset of autumn migration, followed by marked declines in prevalence during migration both on spring and autumn passage. Importantly, we found that when examining circannual variation in the different lineages, significantly different prevalence profiles emerged both between and within genera. Our results suggest that differences in prevalence profiles are the result of either different parasite transmission strategies or coevolution between the host and the various parasite lineages. When separating parasites into common vs. rare lineages, we found that two peaks in the prevalence of rare parasites occur; on arrival at Swedish breeding grounds, and after the wintering period in Africa. Our results stress the importance of appropriate taxonomic resolution when examining host‐parasite interactions, as variation in prevalence both between and within parasite genera can show markedly different patterns.  相似文献   

14.
1. Migratory behaviour can result in reduced prevalence of pathogens in host populations. Two hypotheses have been proposed to explain this relationship: (i) ‘migratory escape’, where migrants benefit from escaping pathogen accumulation in contaminated environments; and (ii) ‘migratory culling’, where the selective removal of infected individuals occurs during migration. 2. In the host–parasite system between the monarch butterfly (Danaus plexippus Linn.) and its obligate protozoan parasite Ophryocystis elektroscirrha (OE), there is evidence to support both hypotheses, particularly during the monarchs' autumn migration. However, these processes can operate simultaneously and could vary throughout the monarchs' annual migratory cycle. Assessing the relative strength for each hypothesis has not previously been done. 3. To evaluate both hypotheses, parasite infection prevalence was examined in monarchs sampled in eastern North America during April–September, and stable isotopes (δ2H, δ13C) were used to estimate natal origin and infer migration distance. There was stronger support for the migratory escape hypothesis, wherein infection prevalence increased over the breeding season and was higher at southern latitudes, where the breeding season tends to be longer compared with northern latitudes. Little support was found for the migratory culling hypothesis, as infection prevalence was similar whether monarchs travelled shorter or longer distances. 4. These results suggest that migration allows individuals to escape parasites not only during the autumn, as shown in previous work, but during the monarchs' spring and summer movements when they recolonise the breeding range. These results imply a potential fitness advantage to monarchs that migrate further north to exploit parasite‐free habitats.  相似文献   

15.
Malaria caused by Plasmodium parasites is one of the worst scourges of mankind and threatens wild animal populations. Therefore, identifying mechanisms that mediate the spread of the disease is crucial for both human health and conservation. Human‐induced climate change has been hypothesized to alter the geographic distribution of malaria pathogens. As the earth warms, arthropod vectors may display a general range expansion or may enjoy longer breeding season, both of which can enhance parasite transmission. Moreover, Plasmodium species may directly benefit for elevating temperatures, which provide stimulating conditions for parasite reproduction. To test for the link between climate change and malaria prevalence on a global scale for the first time, I used long‐term records on avian malaria, which is a key model for studying the dynamics of naturally occurring malarial infections. Following the variation in parasite prevalence in more than 3000 bird species over seven decades, I show that the infection rate by Plasmodium is strongly associated with temperature anomalies and has been augmented with accelerating tendency during the last 20 years. The impact of climate change on malaria prevalence varies across continents, with the strongest effects found for Europe and Africa. Migration habit did not predict susceptibility to the escalating parasite pressure by Plasmodium. Consequently, wild birds are at an increasing risk of malaria infection due to recent climate change, which can endanger both naïve bird populations and domesticated animals. The prevailing avian example may provide useful lessons for understanding the effect of climate change on malaria in humans.  相似文献   

16.
Migration is an energetically expensive and hazardous stage of the annual cycle of non‐resident avian species, and requires certain morphological adaptations. Wing shape is one of the morphological traits that is expected to be evolutionarily shaped by migration. Aerodynamic theory predicts that long‐distance migrants should have more pointed wings with distal primaries relatively longer than proximal primaries, an arrangement that minimizes induced drag and wing inertia, but this prediction has mostly been tested in passerine species. We applied the comparative method of phylogenetically independent contrasts to assess convergent evolution between wing shape and migration within shorebirds. We confirmed the assumption that long‐distance migrants have less rounded wings than species migrating shorter distances. Furthermore, wing roundedness negatively correlates with fat load and mean distance of migratory flights, the basic components of migration strategies. After controlling for interspecific differences in body size, we found no support for a link between wing length and migration, indicating that wing shape is a more important predictor of shorebird migratory behaviour than wing length. The results suggest that total migration distance and migratory strategy may simultaneously act on the evolution of wing shape in shorebirds, and possibly in other avian species.  相似文献   

17.
Malaria parasites can have strong effects on the population dynamics and evolution of migratory bird species. In many species, parasite transmission occurs on the wintering grounds, but studies to determine the consequences of infection have taken place during the breeding season, when malaria parasites circulate at chronic levels. We examined the predictors of malarial infections for great reed warblers during the northern winter in Africa, where active parasite transmission is thought to occur and naïve individuals experience acute infections. Counter to expectations, we found that winter infection intensities were lower than those encountered on the breeding grounds. One potential explanation is that reduced immune function during breeding allows parasites to persist at higher chronic intensities. We found no relationships between the incidence or intensity of infection on condition (as measured by scaled mass index, plasma metabolites, and feather corticosterone), spring migration departure dates, or home range sizes. We also tested a prediction of the Hamilton–Zuk hypothesis and found that male ornament (song) quality was unrelated to parasitic infection status. Overall, our results provide the first evidence that long‐distance migrants captured on their wintering grounds are in the chronic stage of infection, and suggest that winter studies may fare no better than breeding studies at determining the costs of acute malarial infection for great reed warblers.  相似文献   

18.
Monarch butterflies (Danaus plexippus) are parasitized by the protozoan Ophryocystis elektroscirrha throughout their geographical range. Monarchs inhabiting seasonally fluctuating environments migrate annually, and parasite prevalence is lower among migratory relative to non‐migratory populations. One explanation for this pattern is that long‐distance migration weeds out infected animals, thus reducing parasite prevalence and transmission between generations. In this study we experimentally infected monarchs from a migratory population and recorded their long‐distance flight performance using a tethered flight mill. Results showed that parasitized butterflies exhibited shorter flight distances, slower flight speeds, and lost proportionately more body mass per km flown. Differences between parasitized and unparasitized monarchs were generally not explained by individual variation in wing size, shape, or wing loading, suggesting that poorer flight performance among parasitized hosts was not directly caused by morphological constraints. Effects of parasite infection on powered flight support a role for long‐distance migration in dramatically reducing parasite prevalence in this and other host–pathogen systems.  相似文献   

19.
For long‐distance migrants, such as many of the shorebirds, understanding the demographic implications of behavioural strategies adopted by individuals is key to understanding how environmental change will affect populations. Stable isotopes have been used in the terrestrial environment to infer migratory strategies of birds but rarely in marine or estuarine systems. Here, we show that the stable isotope ratios of carbon and nitrogen in flight feathers can be used to identify at least three discrete wintering areas of the Red Knot Calidris canutus on the eastern seaboard of the Americas, ranging from southeastern USA to Patagonia and Tierra del Fuego. In spring, birds migrate northwards via Delaware Bay, in the northeastern USA, the last stopping point before arrival in Arctic breeding areas, where they fatten up on eggs of spawning Horseshoe Crabs Limulus polyphemus. The isotope ratios of feather samples taken from birds caught in the Bay during May 2003 were compared with feathers obtained from known wintering areas in Florida (USA), Bahia Lomas (Chile) and Rio Grande (Argentina). In May 2003, 30% of birds passing through the Bay had Florida‐type ‘signatures’, 58% were Bahia Lomas‐type, 6% were Rio Grande‐type and 7% were unclassified. Some of the southern wintering birds had started moulting flight feathers in northern areas, suspended this, and then finished their moult in the wintering areas, whereas others flew straight to the wintering areas before commencing moult. This study shows that stable isotopes can be used to infer migratory strategies of coastal‐feeding shorebirds and provides the basis for identifying the moult strategy and wintering areas of birds passing through Delaware Bay. Coupled with banding and marking birds as individuals, stable isotopes provide a powerful tool for estimating population‐specific demographic parameters and, in this case, further our understanding of the migration systems of the declining Nearctic populations of Red Knot.  相似文献   

20.
We examined seasonal prevalence in avian haemosporidians (Plasmodium and Haemoproteus) in migrant and resident birds in western Himalaya, India. We investigated how infection with haemosporidians in avian hosts is associated with temporal changes in temperature and mosquito abundance along with host abundance and life‐history traits (body mass). Using molecular methods for parasite detection and sequencing partial cytochrome b gene, 12 Plasmodium and 27 Haemoproteus lineages were isolated. Our 1‐year study from December 2008 to December 2009 in tropical Himalayan foothills revealed a lack of seasonal variation in Plasmodium spp. prevalence in birds despite a strong correlation between mosquito abundance and temperature. The probability of infection with Plasmodium decreased with increase in temperature. Total parasite prevalence and specifically Plasmodium prevalence showed an increase with average avian body mass. In addition, total prevalence exhibited a U‐shaped relationship with avian host abundance. There was no difference in prevalence of Plasmodium spp. or Haemoproteus spp. across altitudes; parasite prevalence in high‐altitude locations was mainly driven by the seasonal migrants. One Haemoproteus lineage showed cross‐species infections between migrant and resident birds. This is the first molecular study in the tropical Himalayan bird community that emphasizes the importance of studying seasonal variation in parasite prevalence. Our study provides a basis for further evolutionary study on the epidemiology of avian malaria and spread of disease across Himalayan bird communities, which may not have been exposed to vectors and parasites throughout the year, with consequential implications to the risk of infection to naïve resident birds in high altitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号