首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The stability of models of age-dependent predation in continuous time with predators exhibiting a functional response are analyzed. A number of new features of biological importance emerge that are not present in simpler models. These include limits to the length of juvenile periods (both upper and lower) for stability, and the possibility that increases or decreases in any of the model parameters can be stabilizing or destabilizing. Hence, increased delays are not necessarily destabilizing. The variance in the length of the juvenile period is shown to be an important factor determining stability. Additionally, the relative stability of predation only on juveniles or only on adults is compared.  相似文献   

2.
The conservation of any species requires understanding and predicting the distribution of its habitat and resource use, including the effects of scale‐dependent variation in habitat and resource quality. Consequently, testing for resource selection at the appropriate scales is critical. We investigated how the resource selection process varies across scales, using koalas in a semi‐arid landscape of eastern Australia as a case study. We asked: at what scales does tree selection by koalas vary across regions? We tested the importance of the variation of our ecological predictors at the following scales: (i) the site‐scale (a stand of trees representing an individual koala's perception of local habitat); (ii) the landscape‐scale (10 × 10 km area representing a space within which a population of koalas exists); and (iii) a combination of these scales. We used a mixed‐modelling approach to quantify variation in selection of individual trees by koalas among sites and landscapes within a 1600 km2 study area. We found that tree species, and tree height, were the most important factors influencing tree selection, and that their effect did not vary across scales. In contrast, preferences for trees of different condition, which is the state of tree canopy health, did vary across landscapes, indicating spatial variation in the selection of trees with respect to tree condition at the landscape‐scale, but not at the site‐scale. We conclude that resource selection processes can depend on the quality of those resources at different scales and their heterogeneous nature across landscapes, highlighting the consequence of scale‐dependent ecological processes. Designing studies that capture the heterogeneity in habitat and resources used by species that have an extensive distribution is an important prerequisite for effective conservation planning and management.  相似文献   

3.
This paper develops a set of simplified dynamical models with which to explore the conditions under which division of labor leads to optimized system output, as measured by the rate of production of a given product. We consider two models: in the first model, we consider the flow of some resource into a compartment, and the conversion of this resource into some product. In the second model, we consider the growth of autoreplicating systems. In this case, we divide the replication and metabolic tasks among different agents. The general features that emerge from our models is that division of labor is favored when the resource to agent ratio is at intermediate values, and when the time cost associated with transporting intermediate products is small compared to characteristic process times. The results of our model are consistent with the behavior of the cellular slime mold Dictyostelium discodeum, which switches from a single-celled to a multi-celled state when resources become limited. We also argue that division of labor in the context of our replication model suggests an evolutionary basis for the emergence of the stem-cell-based tissue architecture in complex organisms. Finally, the results of this paper may be useful for understanding how, in an economic context, firm productivity is maximized at intermediate firm sizes.  相似文献   

4.
The contribution of large-herbivore epizoochory to the transfer of seeds within and between areas is thought to be significant. But often seeds of ubiquitous species are dispersed, which may enhance ruderalization processes. In order to study the dispersal of target species by sheep, we employed a community-based grazing approach followed by intra- and inter-area sheep transfers (maximum transfer distance 3 km). In case of inter-area transfers, well-developed target communities of an open inland sand ecosystem are used as “source”, linked to less-developed sand habitats (“sink”) via sheep. Also other factors determining which species become dispersed under field conditions were tested: seed surface structure, seed mass, plant seed-releasing height and animal behaviour. Finally the influence of animal movement on seed detachment and the actual arrival of seeds within a “sink” were studied.

Sheep transfers resulted in the dispersal of 56 seed species, dominated by Red List (seven species) and other target species. Quantitatively, most transported seeds belonged to target species, whereas graminoid competitors were highly under-represented. Morphological traits enhance the attachment probability regardless of seed mass. But for seeds without these epizoochory-facilitating traits, mass seems to affect attachment negatively. Plant height affected the number of species present in sheep coats but not the seed quantities. Probably certain species in the vegetation produced large numbers of seeds, e.g. low-growing Medicago minima with seed surface structures and high-growing species Verbascum phlomoides without seed surface structures. Also, although transfer half-times were three times lower than grazing half-times, naturally attached Stipa capillata and Agrimonia procera seeds showed no significant detachment rates during transfer, whereas considerable losses were found during grazing. Other 3-km sheep transfers did not result in significant losses of either epizoochorously transported seed or species quantities. Our study shows that community-based grazing can lead to the dispersal of especially target species. Besides that, different habitat fragments can be connected to each other via sheep without significant seed losses along the way.  相似文献   


5.
6.
The ability of environmental variation to affect species coexistence is much studied, yet environmental variation is not always important. I present an approximate calculation for the long-run growth rate of a species in the presence of spatially and temporally correlated environmental variation. I then perform a factorial numerical experiment, varying the mean seed dispersal distances, competition radii, and overwinter seed survival probabilities for two competing species for an array of variational regimes, noting the effects on their long-run growth rates. I find, first, that purely spatial variation has a greater capacity for influence than variation with a temporal component. Second, spatiotemporal variation can promote coexistence as strongly as purely temporal variation or more so, given the right species traits. Third, if the environmental variation has a spatial component, traits which enable species to become spatially segregated promote coexistence most strongly. That is, it is the possibility of spatial segregation which gives spatial variation its large potential to promote coexistence.
Robin E. SnyderEmail:
  相似文献   

7.
Spatial scale is fundamental in understanding species–landscape relationships because species’ responses to landscape characteristics typically vary across scales. Nonetheless, such scales are often unidentified or unreliably predicted by theory. Many landscapes worldwide are urbanizing, yet the spatial scaling of species’ responses to urbanization is poorly understood. We investigated the spatial scaling of urbanization effects on a community of 15 mammal species using ~60 000 wildlife detections collected from a constellation of 207 camera traps across an extensive urban park system. We embedded a bivariate Gaussian kernel in hierarchical multi-species models to determine two scales of effect (a scale of maximal effect and a broader scale of cumulative landscape effect) for two biological responses (occupancy and site visit frequency) across two seasons (winter and summer) for each species. We then assessed whether scales of effect varied according to theoretical predictions associated with biological responses and species traits (body size and mobility). Scales of effect ranged from < 50 m to > 9000 m and varied among species, but not as predicted by theory. Species’ occupancy generally showed a weak response to urbanization and the scale of this effect was both highly uncertain and consistent across species. We did not detect any relationship between scales of effect and species’ body size or mobility, nor was there any evident pattern of scaling across biological response or seasons. These results imply that 1) urbanization effects on mammals manifest across a very broad spectrum of spatial scales, and 2) current theories that a priori predict the scale at which urbanization affects mammals may be of limited use within a given system. Overall, this study suggests that developing general theory regarding the scaling of species–landscape relationships requires additional empirical work conducted across multiple species, systems and timescales.  相似文献   

8.
Mating systems are well known to influence the dispersing sex,but the magnitude of the sex-biased dispersal has not actuallybeen measured, whereas many theoretical predictions have beenmade. In this study, we tested a new prediction about the coevolutionbetween natal dispersal and sociality from a recent evolutionarilystable strategy (ESS) approach. From a comparative approach,we showed that, in agreement with the model, the male-biaseddispersal increases with increasing level of sociality in polygynousground-dwelling sciurids. In addition, the increase in male-biaseddispersal with increasing sociality results from an increasein male dispersal rates, whereas female dispersal rates remainconstant, contrary to what is expected from the ESS model. Althoughthe mating system through the level of polygyny could act asa confounding factor, our results strengthen previous work thatstates that inbreeding avoidance plays a major role in the evolutionof dispersal for the most social mammalian species.  相似文献   

9.
In the present study, we analysed the habitat association of tree species in an old‐growth temperate forest across all life stages to test theories on the coexistence of tree species in forest communities. An inventory for trees was implemented at a 6‐ha plot in Ogawa Forest Reserve for adults, juveniles, saplings and seedlings. Volumetric soil water content (SMC) and light levels were measured in 10‐m grids. Relationships between the actual number of stems and environmental variables were determined for 35 major tree species, and the spatial correlations within and among species were analysed. The light level had no statistically significant effect on distribution of saplings and seedlings of any species. In contrast, most species had specific optimal values along the SMC gradient. The optimal values were almost identical in earlier life stages, but were more variable in later life stages among species. However, no effective niche partitioning among the species was apparent even at the adult stage. Furthermore, results of spatial analyses suggest that dispersal limitation was not sufficient to mitigate competition between species. This might result from well‐scattered seed distribution via wind and bird dispersal, as well as conspecific density‐dependent mortality of seeds and seedlings. Thus, both niche partitioning and dispersal limitation appeared less important for facilitating coexistence of species within this forest than expected in tropical forests. The tree species assembly in this temperate forest might be controlled through a neutral process at the spatial scale tested in this study.  相似文献   

10.
Specification of primordial germ cells (PGCs) in the proximal epiblast enables about 45 founder PGCs clustered at the base of the allantoic bud to enter the embryo by active cell movement. Specification of the PGC lineage depends on paracrine signals derived from the somatic cell neighbors in the extraembryonic ectoderm. Secretory bone morphogenetic proteins (BMP) 4, BMP8b, and BMP2 and components of the Smad signaling pathway participate in the specification of PGCs. Cells in the extraembryonic ectoderm induce expression of the gene fragilis in the epiblast in the presence of BMP4, targeting competence of PGCs. The fragilis gene encodes a family of transmembrane proteins presumably involved in homotypic cell adhesion. As PGCs migrate throughout the hindgut, they express nanos3 protein. In the absence of nanos3 gene expression, no germ cells are detected in ovary and testis. During migration and upon arrival at the genital ridges, the population of PGCs is regulated by a balanced proliferation/programmed cell death or apoptosis. Paracrine and autocrine mechanisms, involving transforming growth factor-beta1 and fibroblast growth factors exert stimulatory or inhibitory effects on PGCs proliferation, modulated in part by the membrane-bound form of stem cell factor. Apoptosis requires the participation of the pro-apoptotic family member Bax, whose activity is balanced by the anti-apoptotic family member Bcl21/Bcl-x. In addition, a loss of cell-cell contacts in vitro results in the apoptotic elimination of PGCs. It needs to be determined whether apoptosis is triggered by a failure of PGC to establish and maintain appropriate cell-cell contacts with somatic cells or whether undefined survival factors released by adjacent somatic cells cannot reach physiological levels to satisfy needs of the expanding population of PGCs.  相似文献   

11.
12.
The primary goal of invasive species management is to eliminate or reduce populations of invasive species. Although management efforts are often motivated by broader goals such as to reduce the negative impacts of invasive species on ecosystems and society, there has been little assessment of the consistency between population-based (e.g., removing invaders) and broader goals (e.g., recovery of ecological systems) for invasive species management. To address this, we conducted a comprehensive review of studies (N = 151) that removed invasive species and assessed ecological recovery over time. We found positive or mixed outcomes in most cases, but 31% of the time ecological recovery did not occur or there were negative ecological outcomes, such as increases in non-target invasive species. Ecological recovery was more likely in areas with relatively little anthropogenic disturbance and few other invaders, and for the recovery of animal populations and communities compared to plant communities and ecosystem processes. Elements of management protocols, such as whether invaders were eradicated (completely removed) versus aggressively suppressed (≥90% removed), did not affect the likelihood of ecological recovery. Our findings highlight the importance of considering broader goals and unintended outcomes when designing and implementing invasive species management programs.  相似文献   

13.
14.
It was shown by the combination of thermogravimetric analysis and Karl Fisher titrations that temperatures in excess of 200 degrees C are required to remove tightly bound water from proteins. The heating of enzymes to this temperature caused no cleavage of the polypeptide chains and very little, if any, chemical degradation of particular amino acid residues as judged by electrophoretic and amino acid analysis respectively. It was hypothesised that those enzymes that require very little water for their catalytic activity, should remain active at such elevated temperatures provided that they can be stabilised against thermodenaturation. This conclusion has been verified by the observation that immobilised Candida antarctica lipase catalysed transesterification of octadecanol with palmityl stearate at 130 degrees C for a considerable period of time.  相似文献   

15.
A long‐standing question in biology and economics is whether individual organisms evolve to behave as if they were striving to maximize some goal function. We here formalize this “as if” question in a patch‐structured population in which individuals obtain material payoffs from (perhaps very complex multimove) social interactions. These material payoffs determine personal fitness and, ultimately, invasion fitness. We ask whether individuals in uninvadable population states will appear to be maximizing conventional goal functions (with population‐structure coefficients exogenous to the individual's behavior), when what is really being maximized is invasion fitness at the genetic level. We reach two broad conclusions. First, no simple and general individual‐centered goal function emerges from the analysis. This stems from the fact that invasion fitness is a gene‐centered multigenerational measure of evolutionary success. Second, when selection is weak, all multigenerational effects of selection can be summarized in a neutral type‐distribution quantifying identity‐by‐descent between individuals within patches. Individuals then behave as if they were striving to maximize a weighted sum of material payoffs (own and others). At an uninvadable state it is as if individuals would freely choose their actions and play a Nash equilibrium of a game with a goal function that combines self‐interest (own material payoff), group interest (group material payoff if everyone does the same), and local rivalry (material payoff differences).  相似文献   

16.
17.
18.
19.
20.
Cancer is a highly aggressive and devastating disease, and impediments to a cure arise not just from cancer itself. Targeted therapies are difficult to achieve since the majority of cancers are more intricate than ever imagined. Mainstream methodologies including chemotherapy and radiotherapy as routine clinical regimens frequently fail, eventually leading to pathologies that are refractory and incurable. One major cause is the gradual to rapid repopulation of surviving cancer cells during intervals of multiple-dose administration. Novel stress-responsive molecular pathways are increasingly unmasked and show promise as emerging targets for advanced strategies that aim at both de novo and acquired resistance. We highlight recent data reporting that treatments particularly those genotoxic can induce highly conserved damage responses in non-cancerous constituents of the tumor microenvironment (TMEN). Master regulators, including but not limited to NF-kB and C/EBP-β, are implicated and their signal cascades culminate in a robust, chronic and genome-wide secretory program, forming an activated TMEN that releases a myriad of soluble factors. The damage-elicited but essentially off target and cell non-autonomous secretory phenotype of host stroma causes adverse consequences, among which is acquired resistance of cancer cells. Harnessing signals arising from the TMEN, a pathophysiological niche frequently damaged by medical interventions, has the potential to promote overall efficacy and improve clinical outcomes provided that appropriate actions are ingeniously integrated into contemporary therapies. Thereby, anticancer regimens should be well tuned to establish an innovative clinical avenue, and such advancement will allow future oncological treatments to be more specific, accurate, thorough and personalized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号