首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
About one-third of all proteins are associated with a metal. Metalloproteomics is defined as the structural and functional characterization of metalloproteins on a genome-wide scale. The methodologies utilized in metalloproteomics, including both forward (bottom-up) and reverse (top-down) technologies, to provide information on the identity, quantity, and function of metalloproteins are discussed. Important techniques frequently employed in metalloproteomics include classical proteomic tools such as mass spectrometry and 2D gels, immobilized-metal affinity chromatography, bioinformatic sequence analysis and homology modeling, X-ray absorption spectroscopy and other synchrotron radiation based tools. Combinative applications of these techniques provide a powerful approach to understand the function of metalloproteins.  相似文献   

2.
In metalloproteins, the protein environment modulates metal properties to achieve the required goal, which can be protein stabilization or function. The analysis of metal sites at the atomic level of detail provided by protein structures can thus be of benefit in functional and evolutionary studies of proteins. In this work, we propose a structural bioinformatics approach to the study of metalloproteins based on structural templates of metal sites that include the PDB coordinates of protein residues forming the first and the second coordination sphere of the metal. We have applied this approach to non-heme iron sites, which have been analyzed at various levels. Templates of sites located in different protein domains have been compared, showing that similar sites can be found in unrelated proteins as the result of convergent evolution. Templates of sites located in proteins of a large superfamily have been compared, showing possible mechanisms of divergent evolution of proteins to achieve different functions. Furthermore, template comparisons have been used to predict the function of uncharacterized proteins, showing that similarity searches focused on metal sites can be advantageously combined with typical whole-domain comparisons. Structural templates of metal sites, finally, may constitute the basis for a systematic classification of metalloproteins in databases.  相似文献   

3.
Metalloproteins play major roles in cell metabolism and signalling pathways. In many cases, they show moonlighting behaviour, acting in different processes, depending on the physiological state of the cell. To understand these multitasking proteins, we need to discover the partners with which they carry out such novel functions. Although many technological and methodological tools have recently been reported for the detection of protein interactions, specific approaches to studying the interactions involving metalloproteins are not yet well developed. The task is even more challenging for metalloproteins, because they often form short-lived complexes that are difficult to detect. In this review, we gather the different proteomic techniques and biointeractomic tools reported in the literature. All of them have shown their applicability to the study of transient and weak protein-protein interactions, and are therefore suitable for metalloprotein interactions.  相似文献   

4.
A hint to search for metalloproteins in gene banks   总被引:1,自引:0,他引:1  
MOTIVATION: With the advent of genome sequencing, a huge database of protein primary sequences has been accumulating. In parallel, a number of tools to investigate and expand upon this information, e.g. reconstructing and building relationships between protein families and superfamilies, have been developed. Metalloproteins are proteins capable of binding one or more metal ions, which are required for their biological function or for regulation of their activities or for structural purposes. Sometimes, metal binding can be observed in vitro but not be physiologically relevant. At present, there is a lack of specific tools to address the matter of the identification of metalloproteins in databases of gene sequences. RESULTS: In the present work, an approach exploiting metal-binding patterns (MBPs) of metalloproteins present in the Protein Data Bank to search gene banks for new metalloproteins is presented and applied to copper proteins. Nearly 100 different MBPs have been identified and then used for subsequent applications. The ensemble of sequences of the whole PDB is used to assess the potentiality and limits of the method and to identify levels of confidence for the predictions output by the search. It appears that copper-binding capabilities are identified with a confidence >90% when the percentage of identical amino acids aligned around the MBP by PHI-BLAST is at least 20% with respect to the entire protein domain length. If this percentage is between 10% and 20%, the level of confidence is approximately 50%. Application of the methodology to the entire genome sequences of Pyrococcus furiosus, Escherichia coli, Drosophila melanogaster and Homo sapiens suggests some differentiation between prokaryotes and eukaryotes. SUPPLEMENTARY INFORMATION: A table reporting statistics on the MBP identified; a list of all hits retrieved for the four organisms considered; a figure showing the number of hits for the four organisms as a function of I(d)(Global).  相似文献   

5.
De novo protein design provides an attractive approach for the construction of models to probe the features required for the function of complex metalloproteins. These minimal models contain the essential elements believed necessary for activity of the protein. In this article, we summarize the design, structure determination, and functional properties of a family of artificial diiron proteins.  相似文献   

6.
X-ray absorption fine structure is a powerful tool for probing the structures of metals in proteins in both crystalline and noncrystalline environments. Until recently, a fundamental problem in biological XAFS has been that ad hoc assumptions must be made concerning the vibrational properties of the amino acid residues that are coordinated to the metal to fit the data. Here, an automatic procedure for accurate structural determination of active sites of metalloproteins is presented. It is based on direct multiple-scattering simulation of experimental X-ray absorption fine structure spectra combining electron multiple scattering calculations with density functional theory calculations of vibrational modes of amino acid residues and the genetic algorithm differential evolution to determine a global minimum in the space of fitting parameters. Structure determination of the metalloprotein active site is obtained through a self-consistent iterative procedure with only minimal initial information.  相似文献   

7.
Considerable progress has been made in the understanding of how to exploit hydrophobic and charge-charge interactions in forming binding sites for peptides and small molecules in folded polypeptide catalysts. This knowledge has enabled the introduction of feedback and control functions into catalytic cycles and the construction of folded polypeptide catalysts that follow saturation kinetics. Major advances have also been made in the design of metalloproteins and metallopeptides, especially with regards to understanding redox potential control.  相似文献   

8.
Metalloproteomics requires analytical techniques able to assess and quantify the inorganic species in metalloproteins. The most widely used methods are hyphenated techniques, based on the coupling of a high resolution chromatographic method with a high sensitivity method for metal analysis in solution. An alternative approach is the use of methods for solid sample analysis, combining metalloprotein separation by gel electrophoresis and direct analysis of the gels. Direct methods are based on beam analysis, such as lasers, ion beams or synchrotron radiation beams. The aim of this review article is to present the main features of synchrotron radiation based methods and their applications for metalloprotein analysis directly on electrophoresis gels. Synchrotron radiation X-ray fluorescence has been successfully employed for sensitive metal identification, and X-ray absorption spectroscopy for metal local structure speciation in proteins. Synchrotron based methods will be compared to ion beam and mass spectrometry for direct analysis of metalloproteins in electrophoresis gels.  相似文献   

9.
Highly stable natural scaffolds which tolerate multiple amino acid substitutions represent the ideal starting point for the application of rational redesign strategies to develop new catalysts of potential biomedical and biotechnological interest. The knottins family of disulphide-constrained peptides display the desired characteristics, being highly stable and characterized by hypervariability of the inter-cysteine loops. The potential of knottins as scaffolds for the design of novel copper-based biocatalysts has been tested by engineering a metal binding site on two different variants of an ω-conotoxin, a neurotoxic peptide belonging to the knottins family. The binding site has been designed by computational modelling and the redesigned peptides have been synthesized and characterized by optical, fluorescence, electron spin resonance and nuclear magnetic resonance spectroscopy. The novel peptides, named Cupricyclin-1 and -2, bind one Cu(2+) ion per molecule with nanomolar affinity. Cupricyclins display redox activity and catalyze the dismutation of superoxide anions with an activity comparable to that of non-peptidic superoxide dismutase mimics. We thus propose knottins as a novel scaffold for the design of catalytically-active mini metalloproteins.  相似文献   

10.
Direct electrochemistry of microperoxidase (the heme-undecapeptide from cytochrome c) has been followed at a bare and a gold plated RVC thin-layer electrode, using the spectropotentiostatic method or voltabsorptometry. Both techniques yield 'clean' and undistorted signals; their analysis easily provides quantitative information for the electrochemical parameters of microperoxidase and shows that spectroelectrochemistry is a powerful method to study the redox behavior of metalloproteins or their active site fragments.  相似文献   

11.
12.
Metalloproteomics includes approaches that address the expression of metalloproteins and their changes in biological time and space. Metalloproteomes are investigated by a combination of approaches. Experimental approaches include structural genomics, which provides insights into the architecture of metal-binding sites in metalloproteins and establishes ligand signatures from the types and spacings of the metal ligands in the protein sequence. Theoretical approaches employ these ligand signatures as templates for homology searches in sequence databases. In this way, the number of metalloproteins in the iron, copper, and zinc metalloproteomes in various phyla of life has been estimated. Yet, manganese metalloproteomes remain poorly defined. Metals have catalytic and structural functions in proteins. However, additional functions have evolved. Proteins that control metal homeostasis and proteins that are metal-regulated bind metal ions transiently and are generally not accounted for in estimates from bioinformatics. Thus, metalloproteomes are dynamic and likely to be larger than present estimates suggest. This account discusses the assignment of transition metals in metalloproteins and the ensuing issues facing analytical chemists and structural and computational biologists. Biological and chemical selectivities render metal selection by metalloproteins either more stringent or less stringent depending on the metal homeostatic system of the organism, the subcellular location of the protein, and environmental factors. Failure to recognize the principles of metal utilization has led to assigning the wrong metal in metalloproteins and has missed some of the regulatory functions of transition metal ions.  相似文献   

13.
Monitoring environmental pollution using biomarkers requires detailed knowledge about the markers, and many only allow a partial assessment of pollution. New proteomic methods (environmental proteomics) can identify proteins that, after validation, might be useful as alternative biomarkers, although this approach also has its limitations, derived mainly from their application to non-model organisms. Initial studies using environmental proteomics were carried out in animals exposed to model pollutants, and led to the concept of protein expression signatures. Experiments have been carried out in model organisms (yeast, Arabidopsis, rat cells, or mice) exposed to model contaminants. Over the last few years, proteomics has been applied to organisms from ecosystems with different pollution levels, forming the basis of an environmental branch in proteomics. Another focus is connected with the presence of metals bound to biomolecules, which adds an additional dimension to metal-biomolecule and metalloprotein characterization - the field of metallomics. The metallomic approach considers the metallome: a whole individual metal or metalloid species within a cell or tissue. A metallomic analytical approach (MAA) is proposed as a new tool to study and identify metalloproteins.  相似文献   

14.
The development of an analytical method to quantify the major Cu, Fe and Zn-containing metalloproteins in mammalian plasma has been recently reported. This method is based on the separation of plasma proteins by size exclusion chromatography (SEC) followed by the on-line detection of the metalloproteins by an inductively coupled plasma atomic emission spectrometer (ICP-AES). To assess whether the mobile phase buffer can affect the SEC-ICP-AES-derived metalloproteome pattern, thawed rabbit plasma was analyzed using phosphate buffered saline (PBS)-buffer (0.15 M, pH 7.4), Tris-buffer (0.1 and 0.05 M, pH 7.4), Hepes-buffer (0.1 M, pH 7.4) or Mops-buffer (0.1 M, pH 7.4). In contrast to the Cu-specific chromatograms, the Fe and Zn-specific chromatograms that were obtained with Tris, Hepes and Mops-buffer were considerably different from those attained with PBS-buffer. The Tris, Hepes and Mops-buffer mediated redistribution of ~25% plasma Zn(2+) from <100 kDa to >100-600 kDa plasma proteins and to a smaller extent to a <10 kDa (Tris)(2)Zn(2+)-complex can be rationalized in terms of the abstraction of Zn(2+) from the weak binding site on albumin. In contrast, only Hepes and Mops-buffer redistributed ~20% of plasma Fe(3+) from the <100 kDa to the >600 kDa elution range. Based on these results and considering that the utilization of PBS-buffer has previously resulted in the detection of a number of Cu, Fe and Zn-containing metalloentities in rabbit plasma that was most consistent with literature data, this mobile phase buffer is recommended for metallomic studies regarding mammalian blood plasma.  相似文献   

15.
Schmidli H  Neuenschwander B 《Biometrics》2012,68(1):212-4; discussion 224-5
We congratulate Trippa, Rosner, and Müller (2011, Biometrics, in press) on an intriguing and timely article. The randomized discontinuation design (RDD) has only recently been used in cancer clinical trials, and methodological understanding on how to best design such studies is limited. The authors’ approach to optimize RDD designs based on prior information and utility considerations is an important step forward. A noteworthy element is their use of a semimechanistic model to describe tumor growth. Mathematical models have provided considerable insight on the complex process of tumor evolution (Preziosi, 2003, Cancer Modelling and Simulation). Utilizing this knowledge should lead to better design, analysis, and decisions.  相似文献   

16.
Analytical methods which are capable of determining the plasma or serum metalloproteome have inherent diagnostic value for human diseases associated with increased or decreased concentrations of specific plasma metalloproteins. We have therefore systematically developed a method to rapidly determine the major Cu-, Fe-, and Zn-containing metalloproteins in rabbit plasma (0.5 mL) based on size-exclusion chromatography (SEC; stationary phase Superdex 200, mobile phase phosphate-buffered saline pH 7.4) and the simultaneous online detection of Cu, Fe, and Zn in the column effluent by an inductively coupled plasma atomic emission spectrometer (ICP-AES). Whereas most previous studies reported on the analysis of serum, our investigations clearly demonstrated that the analysis of plasma within 30 min of collection results in the detection of one more Cu peak (blood coagulation factor V) than has been previously reported (transcuprein, ceruloplasmin, albumin-bound Cu, and small molecular weight Cu). The average amount of Cu associated with these five proteins corresponded to 21, 18, 21, 30 and 10% of total plasma Cu, respectively. In contrast, only two Fe metalloproteins (ferritin and transferrin, corresponding to an average of 9 and 91% of total plasma Fe) and approximately five Zn metalloproteins (α2-macroglobulin and albumin-bound Zn, which corresponded to an average of plasma Zn) were detected. Metalloproteins were assigned on the basis of the coelution of the corresponding metal and protein identified by immunoassays or activity-based enzyme assays. The SEC-ICP-AES approach developed allowed the determination of approximately 12 Cu, Fe, and Zn metalloproteins in rabbit plasma within approximately 24 min and can be applied to analyze human plasma, which is potentially useful for diagnosing Cu-, Fe-, and Zn-related diseases. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Parts of the work described in this paper were presented at HPLC 2007 in Ghent, Belgium. An erratum to this article can be found at  相似文献   

17.
Cells contain a large number of metalloproteins that commonly harbor at least one metal ion cofactor. In metalloproteins, metal ions are usually coordinated by oxygen, sulfur, or nitrogen centers belonging to amino acid residues in the protein. The presence of the metal ion in metalloproteins allows them to take part in diverse biological processes, such as genome stability, metabolic catalysis, and cell cycle progression. Clinically, alteration of the function of metalloproteins in mammals is genetically associated with diseases characterized by DNA damage and repair defects. The present review focuses on the current perspectives of metal ion homeostasis in different organisms and summarizes the most recent understanding on magnesium, copper, iron, and manganese-containing proteins and their functional involvement in the maintenance of genome stability.  相似文献   

18.
19.
Metals are essential for protein function as cofactors to catalyze chemical reactions. Disruption of metal homeostasis is implicated in a number of diseases including Alzheimer''s and Parkinson''s disease, but the exact role these metals play is yet to be fully elucidated. Identification of metalloproteins encounters many challenges and difficulties. Here we report an approach that allows metalloproteins in complex samples to be quantified. This is achieved using size exclusion chromatography coupled with inductively coupled plasma - mass spectrometry (SEC-ICP-MS). Using six known metalloproteins, the size exclusion column can be calibrated and the respective trace elements (iron, copper, zinc, cobalt, iodine) can be used for quantification. SEC-ICP-MS traces of human brain and plasma are presented. The use of these metalloprotein standards provides the means to quantitatively compare metalloprotein abundances between biological samples. This technique is poised to help shed light on the role of metalloproteins in neurodegenerative disease as well as other diseases where imbalances in trace elements are implicated.  相似文献   

20.
The role of protein structure in the control of electron transfer in metalloproteins is briefly discussed, with reference to existing theoretical models and available three dimensional information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号