首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T A Paget  M Fry    D Lloyd 《The Biochemical journal》1987,243(2):589-595
1. Mitochondria from the parasitic nematode worm Nippostrongylus brasiliensis produce H2O2 in the energized state; higher rates of H2O2 production were observed in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone. 2. Antimycin A inhibits respiration and H2O2 production by 70 and 65% respectively; the residual activities can be attributed to alternative electron-transport pathway(s). 3. o-Hydroxydiphenyl and 1,3,5-trihydroxybenzene, inhibitors of alternative electron transport, inhibit respiration by 37% and H2O2 production by 26%. 4. Another inhibitor of alternative electron transport, salicylhydroxamic acid, shows a complex mode of action; low concentrations (less than 0.5 mM) stimulate respiration and H2O2 production, whereas 2 mM-salicylhydroxamic acid inhibited respiration by 35% and stopped H2O2 production completely. 5. O2 thresholds were observed for the inhibition of respiration at O2 concentrations greater than 57.7 microM and inhibition of H2O2 production (greater than 20.5 microM-O2); apparent Km values for oxygen were 5.5 microM and 3.0 microM respectively. 6. In the presence of antimycin A the O2-inhibition thresholds and apparent Km values for O2 of respiration and H2O2 production matched closely, suggesting that the alternative oxidase is a likely site of H2O2 production. 7. These results are discussed in relation to O2 toxicity to N. brasiliensis.  相似文献   

2.
Steady-state oxygen kinetics of Trypanosoma mega reveal the presence of 3 oxidases. These include an oxidase which is sensitive to salicylhydroxamic acid (SHAM) but insensitive to sodium azide. This oxidase could be the L-alpha glycerophosphate oxidase present in bloodstream trypanosomes. In addition, and oxidase is present wthich is azide-sensitive but SHAM-insensitive. This oxidase is inhibited by CO and is probably cytochrome aa3. A 3rd oxidase is insensitive to both azide and SHAM but is inhibited by CO and is possibly cytochrome o. Reciprocal plots of T. mega reveal the presence of 2 oxidases that are inhibited by CO. These results are discussed in the light of previous evidence suggesting the presence of several oxidases and a branched electron transport system in T. mega.  相似文献   

3.
SYNOPSIS. Steady-state oxygen kinetics of Trypanosoma mega reveal the presence of 3 oxidases. These include an oxidase which is sensitive to salicylhydroxamic acid (SHAM) but insensitive to sodium azide. This oxidase could be the L-α glycerophosphate oxidase present in bloodstream trypanosomes. In addition, an oxidase is present which is azide-sensitive but SHAM-insensitive. This oxidase is inhibited by CO and is probably cytochrome aa3. A 3rd oxidase is insensitive to both azide and SHAM but is inhibited by CO and is possibly cytochrome o. Reciprocal plots of T. mega reveal the presence of 2 oxidases that are inhibited by CO. These results are discussed in the light of previous evidence suggesting the presence of several oxidases and a branched electron transport system in T. mega.  相似文献   

4.
Abstract Washed cell suspensions of Crithidia oncopelti oxidizing a variety of substrates gave complex plots for the inhibition of respiration by potassium cyanide or azide. The data indicated the presence of at least two and possibly three terminal oxidases on the basis of their differential sensitivity to these inhibitors. The oxidase most sensitive to cyanide, azide and CO accounted for approx. 65–70% of whole cell respiration and is probably cytochrome oxidase a/a3. A second oxidase exhibiting low affinity for CO required high concentrations of KCN or azide for inhibition. This haemoprotein had the spectral characteristics of cytochrome o and accounted for 15–20% of cell respiration. Incomplete inhibition of respiration by high concentrations of KCN or azide suggested the presence of a third oxidase which was CO-unreactive.  相似文献   

5.
We have identified an anion-sensitive Mg2+-ATPase in adenohypophyseal secretory granule membranes. This enzyme is unaffected by sodium, ouabain, and calcium. By electron microscopic morphology, sedimentation properties, nucleotide substrate utilization, and marker enzyme studies, this activity is clearly shown to be intrinsic to the granule membranes. The kinetics for ATP saturation were complex, as curvilinear Lineweaver-Burk plots were obtained with 2 mM magnesium. However, an approach to linearity was obtained (Km for ATP, approximately 0.27 mM) with low concentrations of free magnesium. Many anions and anion-transport blockers significantly influenced enzyme activity. Stimulatory anions in decreasing order of potency were bisulfite greater than sulfite greater than isethionate greater than bicarbonate; Ka values were 2.5 mM for sulfite and 10.8 mM for bicarbonate. Acetate, borate, chloride, citrate, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, 2-(N-morpholino)ethanesulfonic acid, nitrite, oxalate, 1,3-piperazinediethanesulfonic acid, and sulfate were without major effect. Inhibitory anions in decreasing potency order were azide greater than thiocyanate greater than fluoride greater than nitrate. Anionic stimulation of the granule membrane Mg2+-ATPase linearized the Lineweaver-Burk plots by shifting the enzyme to its higher Km state. In addition, sulfite competitively reversed the produce inhibition exerted by ADP. Anion transport-blockers inhibited the enzyme; of those tested, the most potent was 4-acetamido-4-isothiocyano-stilbene-2,2'-disulfonic acid, with a Ki of 0.17 mM; pyridoxal phosphate, sulfisoxazole, and ethacrynic acid also inhibited enzyme activity. The protein-binding dye p-sulfobenzene-azo-o-sulfobenzene-azo-beta-naphthol-3,6-disulfonic acid, structurally similar to transport blockers, was a potent inhibitor, with a Ki of 2.8 mM. These data on pituitary secretory granule ATPase raise the possibility that the granule membranes may function in anion or proton transport, perhaps in relation to exocytosis and hormone secretion.  相似文献   

6.
1. Mitochondria isolated from cultures of Acanthamoeba castellanii exhibit respiratory control and oxidize alpha-oxoglutarate, succinate and NADH with ADP:O ratios of about 2.4, 1.4 and 1.25 respectively. 2. Mitochondria from cultures of which the respiration was stimulated up to 50% by 1mm-cyanide (type-A mitochondria) and from cyanide-sensitive cultures (type-B mitochondria) had similar respiratory-control ratios and ADP:O ratios. 3. State-3 rates of respiration were generally more cyanide-sensitive than State-4 rates, and the respiration of type-A mitochondria was more cyanide-resistant than that of type-B mitochondria. 4. Salicylhydroxamic acid alone had little effect on respiratory activities of either type of mitochondria, but when added together with cyanide, irrespective of the order of addition, inhibition was almost complete. 5. Oxidation of externally added NADH by type-A mitochondria was mainly via an oxidase with a low affinity for oxygen (K(m)[unk]15mum), which was largely cyanide-sensitive and partially antimycin A-sensitive; this electron-transport pathway was inhibited by ADP. 6. Cyanide-insensitive but salicylhydroxamic acid-sensitive respiration was stimulated by AMP and ADP, and by ATP after incubation in the presence of MgCl(2). 7. Addition of rotenone to mitochondria oxidizing alpha-oxoglutarate lowered the ADP:O ratios by about one-third and rendered inhibition by cyanide more complete. 8. The results suggest that mitochondria of A. castellanii possess branched pathways of electron transport which terminate in three separate oxidases; the proportions of electron fluxes via these pathways vary at different stages of growth.  相似文献   

7.
A study of the electron transport chain of the human intestinal pathogen Campylobacter jejuni revealed a rich complement of b- and c-type cytochromes. Two c-type cytochromes were partially purified: one, possibly an oxidase, bound carbon monoxide whereas the other, of high potential was unreactive with carbon monoxide. Respiratory activities determined with membrane vesicles were 50- to 100-fold higher with formate and hydrogen than with succinate, lactate, malate, or NADH as substrates. Evidence for three terminal respiratory components was obtained from respiratory kinetic studies employing cyanide, and the following Ki values for cyanide were determined from Dixon plots: ascorbate + reduced N,N,N', N'-tetramethyl-p-phenylenediamine, K1 + 3.5 muM; malate, K1 = 55 muM; and hydrogen, K1 = 4.5 muM. Two oxidases (K1 = 90 muM, 4.5 mM) participated in the oxidation of succinate, lactate, and formate. Except with formate, 37 muM HQNO inhibited respiration by approximately 50%. Carbon monoxide had little inhibitory effect on respiration except under low oxygen tension (less than 10% air saturation). The stoichiometry of respiratory-driven proton translocation (H+/O) determined with whole cells was approximately 2 for all substrates examined except hydrogen (H+/) = 3.7) and formate (H+/O = 2.5). The higher stoichiometries observed with hydrogen and formate are consistent with their respective dehydrogenase being located on the periplasmic face of the cytoplasmic membrane. The results of this study suggest that the oxidation of hydrogen and formate probably serves as the major sources of energy for growth.  相似文献   

8.
Ca2+/protein modulator-dependent and -independent guanosine 3':5'-monophosphate (cGMP) phosphodiesterases were separated from hog heart. The protein modulator-free Ca2+/protein modulator-dependent enzyme was partially purified by repeated DEAE-cellulose column chromatography and heat treatment. The final preparation of this enzyme showed no significant basal activity under the standard assay conditions. Lineweaver-Burk plots of the Ca2+/protein modulator-dependent enzyme activity indicated the presence of only a single kinetic form of the enzyme with Km=2.0 X 10(-6) M for for cGMP, whereas the plots for the independent enzyme were anomalous, showing both high and low K m values for cGMP. The Ca2+/protein modulator-dependent enzyme proved relatively stable at 48 degrees C for 1 h, but the independent form lost its activity under the same conditions. Furthermore, 50% inhibition of the dependent enzyme activity, but only 10% inhibition of the independent enzyme activity, was observed with 0.1 mM adenosine 3':5'-monophosphate (cAMP) when 1 muM cGMP was employed as a substrate.  相似文献   

9.
Trypanosome alternative oxidase (TAO) is the cytochrome-independent terminal oxidase of the mitochondrial electron transport chain. TAO is a diiron protein that transfers electrons from ubiquinol to oxygen, reducing the oxygen to water. The mammalian bloodstream forms of Trypanosoma brucei depend solely on TAO for respiration. The inhibition of TAO by salicylhydroxamic acid (SHAM) or ascofuranone is trypanocidal. TAO is present at a reduced level in the procyclic form of T. brucei, where it is engaged in respiration and is also needed for developmental processes. Alternative oxidases similar to TAO have been found in a wide variety of organisms but not in mammals, thus rendering TAO an important chemotherapeutic target for African trypanosomiasis.  相似文献   

10.
The plastoquinone pool during dark adaptation is reduced by endogenous reductants and oxidized at the expense of molecular oxygen. We report here on the redox state of plastoquinone in darkness, using as an indicator the chlorophyll fluorescence kinetics of whole cells of a Chlamydomonas reinhardtii mutant strain lacking the cytochrome b(6)f complex. When algae were equilibrated with a mixture of air and argon at 1.45% air, plastoquinol oxidation was inhibited whereas mitochondrial respiration was not. Consequently, mitochondrial oxidases cannot be responsible for the oxygen consumption linked to plastoquinol oxidation. Plastoquinol oxidation in darkness turned out to be sensitive to n-propyl gallate (PG) and insensitive to salicylhydroxamic acid (SHAM), whereas mitochondrial respiration was sensitive to SHAM and PG. Thus, both PG treatment and partial anaerobiosis allow to draw a distinction between an inhibition of plastoquinol oxidation and an inhibition of mitochondrial respiration, indicating the presence of a plastoquinol:oxygen oxidoreductase. The possible identification of this oxidase with an oxidase involved in carotenoid biosynthesis is discussed in view of various experimental data.  相似文献   

11.
The rates of [U-14C]glutamine oxidation to 14CO2 were determined under a variety of experimental conditions using whole homogenates and dissociated cells from rat brain. The pattern of glutamine oxidation by homogenates differed from that by dissociated brain cells in several respects. The rates of glutamine oxidation by dissociated brain cells showed saturation kinetics with an apparent Km of 0.30 mM. Lineweaver-Burk plots of glutamine oxidation by homogenates revealed two linear segments with two apparent Km values (0.58 mM and 3.0 mM). In the presence of aminooxyacetate, however, the Lineweaver-Burk plots for homogenates were linear with a single Km of 0.47 mM. The oxidation of glutamine by homogenates was inhibited by both rotenone and antimycin A (80-85%), as were glutamate and glucose oxidation, suggesting that a significant amount of glutamine is oxidized via the tricarboxylic acid cycle. In the presence of aminooxyacetate, glutamine oxidation was inhibited less than 40%, whereas the oxidation of glutamate was inhibited 75%; in contrast, glucose oxidation was enhanced 50%. The rates of glutamine oxidation by homogenates were highest in the presence of high levels of potassium (50 mM) and low levels of sodium (2.5 mM). Varying ionic composition, however, had little or no effect on the rates of glutamine oxidation by dissociated brain cells. Measurements of glutamine oxidation by homogenates prepared from 2-, 10-, 15-, 25-, and 90-day-old rats revealed little or no age-dependent difference. In contrast, the oxidation by dissociated brain cells from 2-day-old animals was significantly less than that obtained for animals 10 days or older (7.76 vs. 15.6 nmol/h/mg).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Strain inl-89601 of Neurospora crassa respires exclusively by means of the mitochondrial cytochrome chain. The respiration of this strain is entirely inhibited by cyanide or antimycin A, the classical inhibitors of cytochrome chain respiration. When this strain was grown in the presence of chloramphenicol, however, two additional terminal oxidases were detected. One of these oxidases is inhibited by substituted hydroxamic acids and has been described previously. The second oxidase was not inhibited by cyanide or hydroxamic acid but was inhibited by azide in the presence of both cyanide and hydroxamic acid. This azide-sensitive respiration was due to a single respiratory pathway with a Ki for azide of 200 micrometer. A small amount of azide-sensitive respiration was detected in mitochondrial fractions obtained from chloramphenicol-treated cells, and it is likely that the azide-sensitive oxidase is localized in the mitochondrion. The determinants for the azide-sensitive and hydroxamate-sensitive oxidases segregate in a Mendelian manner in crosses and are either unlinked or not closely linked to each other.  相似文献   

13.
Chlamydomonas in the resting phase of growth has an equal capacity of about 15 micromole O2 uptake per hour per milligram of chlorophyll for both the cytochrome c, CN-sensitive respiration, and for the alternative, salicylhydroxamic acid-sensitive respiration. Alternative respiration capacity was measured as salicylhydroxamic acid inhibited O2 uptake in the presence of CN, and cytochrome c respiration capacity as CN inhibition of O2 uptake in the presence of salicylhydroxamic acid. Measured total respiration was considerably less than the combined capacities for respiration. During the log phase of growth on high (2-5%) CO2, the alternative respiration capacity decreased about 90% but returned as the culture entered the lag phase. When the alternative oxidase capacity was low, addition of salicylic acid or cyanide induced its reappearance. When cells were grown on low (air-level) CO2, which induced a CO2 concentrating mechanism, the alternative oxidase capacity did not decrease during the growth phase. Attempts to measure in vivo distribution of respiration between the two pathways with either CN or salicylhydroxamic acid alone were inconclusive.  相似文献   

14.
Escherichia coli B was cultured continuously in succinate-minimal medium under conditions of oxygen limitation in the phauxostat. With decreasing oxygenation and consequent decreasing growth rates, the complement of terminal cytochrome oxidases changed as follows: high growth rates, cytochrome o; intermediate growth rates, cytochromes o and d; lowest growth rates, cytochromes o, d, and a1. Respiratory kinetics exhibited by nongrowing cell suspensions obtained from continuous cultures indicated that terminal oxidase activity was exhibited by cytochrome o (Km for O2 = 0.2 micron; Vmax = 1.1 to 1.5 mumol of O2 per nmol of cytochrome o per min) and cytochrome d (Km for O2 = 0.024 micron; Vmax = 0.7 mumol of O2 per nmol of cytochrome d per min). During oxygen-limited growth, the molar growth yield referred to respiration, and corrected for maintenance respiration [Yo(max)], was 12.6 g (dry weight) per g-atom of oxygen, not significantly different from the succinate-limited value of 12.0 g (dry weight) per g-atom of oxygen. The rate of maintenance respiration of the oxygen-limited culture was only 3.4 mg-atoms of O per g (dry weight) per h, some threefold less than that of the succinate-limited culture. Respiration-driven proton extrusion did not vary with the growth rate or with the complement of terminal oxidases (H+/O = 3.7; standard deviation, 0.07). We conclude that the content of terminal oxidases is without effect on the efficiency of respiratory energy conservation.  相似文献   

15.
The kinetic properties of the enzyme L-glutamate:4,5-dioxovaleric acid aminotransferase (Glu:DOVA transaminase) from Euglena gracilis have been studied. 5-Aminolevulinic acid formation was linear with time for at least 45 min at 37 degrees C and L-glutamate was the most effective amino-group donor. Lineweaver-Burk double-reciprocal plots suggested a ping-pong reaction mechanism, with Km values for L-glutamate and DOVA of 1.92 mM and 0.48 mM respectively. Competitive parabolic substrate inhibition by DOVA at concentrations greater than 3.5-4.5 mM was observed. Glyoxylate (4-10 mM) was found to be a competitive inhibitor with respect to DOVA, whereas at low concentrations (0-4 mM) noncompetitive plots were obtained. An analysis of the possible enzyme forms involved, was carried out. In more crude preparations most of the enzyme is found to be in the form of an enzyme-glutamate complex.  相似文献   

16.
EDTA at a concentration of 1 muM produced a threshold effect in the activation of purified rabbit liver fructose-1, 6-diphosphatase [EC 3.1.3.11] in the presence of 5 mM Mg2+ at pH 7.2. Without EDTA, biphasic activation curves were produced by Mg2+. A double-reciprocal plot of the data gave the Km values corresponding to the two linear regions. They were 0.19 and 0.83 mM at pH 7.5, and 0.055 and 0.83 mM at pH 9.1. In the presence of 5muM EDTA a sigmoidal curve was obtained for Mg2+ activation in the range of noninhibitory Mg2+ concentrations at pH 7.2. The apparent Km value for Mg2+ was 0.15 mM, and the Hill coefficient was 2.0. At pH 9.1 cooperativity among the Mg2+ sites disappeared, and the apparent Km value for Mg2+ was 0.055 mM. These Km values at pH 7.2 or 9.1 corresponded to the smaller of the biphasic Km values obtained without EDTA. In the absence of EDTA, no inhibition by Mg2+ was observed in the Mg2+ concentration range below 10 mM. In the presence of EDTA, the enzyme was inhibited markedly by Mg2+ at concentrations above 0.5 mM at pH 7.2, and was more sensitive to inhibition at pH 9.1. The effects of pH on the Km value for Mg2+ activation and on the Mg2+ inhibition contributed to an apparent shift of the pH optimum for activity induced by EDTA. Cooperative interaction among fructose-1, 6-diphosphate sites was observed for the enzyme in the presence of EDTA. The Hill coefficient was approximatley 1.8, and the apparent Km value for the substrate was 0.74 muM. EDTA appears to make liver fructose-1, 6-diphosphatase very sensitive to various effectors. It is suggested that Mg2+ serves as a regulator for the enzyme activity.  相似文献   

17.
Isolated fibrovascular bundles from source leaf petioles of sugar beet (Beta vulgaris L.) and hog-weed (Heracleum sosnovskyi L.) were used to study the influence of long-term drought on the oxygen uptake rate and activities of mitochondrial oxidases, i.e., cytochrome oxidase and salicylhydroxamic acid-sensitive alternative oxidase (AO). Under normal soil moisture content (70% of full water-retaining capacity, WRC), the oxygen uptake by sugar beet conducting bundles was characterized by a high rate (> 700 μl O2/(g fr wt h)) and by distinct cytochrome oxidase-dependent manner of terminal oxidation (up to 80% inhibition of respiration in the presence of 0.5 mM KCN). After long-term water deficit (40% of WRC), the bundle respiration proceeded at nearly the same rate but featured an elevated resistance to cyanide. At early drought stage (10 days), a decrease in the activity of cytochrome-mediated oxidation pathway was largely counterbalanced by activation of mitochondrial AO, whereas long-term dehydration of plants was accompanied by activation of additional oxidative systems insensitive to both KCN and SHAM. Similar but even more pronounced changes in activities of terminal oxidases were discovered in conducting bundles of wild-grown hogweed plants exposed to long-term natural drought. It is supposed that the suppression of cytochrome-mediated oxidation coupled with ATP synthesis in the cells of sugar beet source leaves impedes the translocation of assimilates and their accumulation in the taproot, which represents an important factor of drastic decrease in the yield of this agricultural crop under conditions of water deficit.  相似文献   

18.
Ethylmorphine N-demethylase activity of the sheep liver and lung microsomes was reconstituted in the presence of solubilized microsomal cytochrome P-450, NADPH-cytochrome c reductase and synthetic lipid, phosphatidylcholine dilauroyl. The Km of the lung microsomal ethylmorphine N-demethylase was calculated to be 4.84 mM ethylmorphine from its Lineweaver-Burk graph and lung enzyme was inhibited by its substrate, ethylmorphine, when its concn was 25 mM and above, reaching to 67% inhibition at 50 mM concn. The Lineweaver-Burk and Eadie-Hofstee plots of the liver enzyme were found to be curvilinear. From these graphs, two different Km values were calculated for the liver enzyme as 4.17 mM and 0.40 mM ethylmorphine. Ethylmorphine N-demethylase activities of both liver and lung microsomes were inhibited by NiCl2, CdCl2 and ZnSO4. Ethylalcohol inhibited N-demethylation of ethylmorphine in lung and liver microsomes. Acetone (5%) slightly enhanced the N-demethylase activity of the liver enzyme, whereas 5% acetone completely inhibited the lung enzyme. Phenylmethylsulfonyl fluoride at 0.10 mM and 0.25 mM concn had no effect on liver enzyme activity, while at these concns, it inhibited the activity of the lung enzyme by about 35%.  相似文献   

19.
The affinity of respiration for oxygen in the roots of six Senecio species studied was low compared with the affinity of cytochrome oxidase for oxygen. Half saturation values of approximately 22 μM oxygen were measured. Root respiration was to a large extent insensitive to cyanide in flood-tolerant as well as in flood-sensitive species. The evidence presented suggests that high activity of salicylhydroxamic acid (SHAM)-sensitive oxidase in Senecio roots was the basis for the low oxygen affinity and for the high cyanide-insensitivity of root respiration in the Senecio species. Methods are described to determine the in vivo activity of the SHAM-sensitive oxidase. It was estimated that it contributed 70% to the total root respiration. The presence of SHAM-sensitive oxidase activity could explain a higher efficiency of root growth respiration under a low oxygen tension if this alternate oxidase was inhibited at a low oxygen concentration in the root medium. However, the SHAM-sensitive oxidase was not specifically involved in either growth respiration or maintenance respiration. Its significance in regulation of the redox state of the cells is discussed.  相似文献   

20.
The branched respiratory chain of Pseudomonas aeruginosa contains at least two terminal oxidases which are active under normal physiological conditions. One of these, cytochrome co, is a cytochrome c oxidase which is completely inhibited by concentrations of the respiratory inhibitor potassium cyanide as low as 100 microM. The second oxidase, the cyanide-insensitive oxidase, is resistant to cyanide concentrations in excess of 1 mM as well as to sodium azide. In this work, we describe the isolation and characterization of a mutant of P. aeruginosa defective in cyanide-insensitive respiration. This insertion mutant was isolated with mini-D171 (a replication-defective derivative of the P. aeruginosa phage D3112) as a mutagen and by screening the resulting tetracycline-resistant transductants for the loss of ability to grow in the presence of 1 mM sodium azide. Polarographic studies on the NADH-mediated respiration rate of the mutant indicated an approximate 50% loss of activity, and titration of this activity against increasing cyanide concentrations gave a monophasic curve clearly showing the complete loss of cyanide-insensitive respiration. The mutated gene for a mutant affected in the cyanide-insensitive, oxidase-terminated respiratory pathway has been designated cio. We have complemented the azide-sensitive phenotype of this mutant with a wild-type copy of the gene by in vivo cloning with another mini-D element, mini-D386, carried on plasmid pADD386. The complemented cio mutant regained the ability to grow on medium containing 1 mM azide, titration of its NADH oxidase activity with cyanide gave a biphasic curve similar to that of the wild-type organism, and the respiration rate returned to normal levels. Spectral analysis of the cytochrome contents of the membranes of the wild type, the cio mutant, and the complemented mutant suggests that the cio mutant is not defective in any membrane-bound cytochromes and that the complementing gene does not encode a heme protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号