首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously described an enzyme-linked immunosorbent assay for the quantification of C-1 inactivator-kallikrein complexes in plasma (Lewin, M. F., Kaplan, A. P., and Harpel, P. C. (1983) J. Biol. Chem. 258, 6415-6421). We have now developed an immunoimmobilization-enzyme assay for alpha 2-macroglobulin-kallikrein complexes. In this assay these complexes are removed from plasma by immunoabsorption with the IgG fraction of rabbit anti-alpha 2-macroglobulin antiserum coupled to an agarose gel. The immobilized alpha 2-macroglobulin-kallikrein complex hydrolyzes the fluorogenic substrate D-Ser-Pro-Phe-Arg-7-amino-4-trifluoromethyl coumarin, and this activity is proportional to the concentration of complexes in the plasma. Using these assays we have studied the distribution of plasma kallikrein between its inhibitors under several different experimental conditions. When kallikrein is added to plasma, about 57% binds to C-1 inactivator and 43% to alpha 2-macroglobulin. When prekallikrein is activated endogenously in plasma by the addition of kaolin or Hageman factor fragment, approximately 84% of kallikrein is now bound to C-1 inactivator and 16% to alpha 2-macroglobulin. Temperature dramatically affects the distribution of kallikrein. The binding of kallikrein to alpha 2-macroglobulin in plasma is inversely related to temperature, whereas the binding to C-1 inactivator is directly related: 85% of the kallikrein is bound to alpha 2-macroglobulin at 4 degrees C, whereas at 37 degrees C, only 33% is bound. The total amount of kallikrein bound to the two inhibitors is similar at each temperature. These studies thus provide new insight concerning kallikrein formation and regulation in plasma.  相似文献   

2.
ANG II type 2 receptors (AT(2)R) elicit cardioprotective effects in part by stimulating the release of kinins; however, the mechanism(s) responsible have not been fully explored. We demonstrated previously that overexpression of AT(2)R increased expression of prolylcarboxypeptidase (PRCP; a plasma prekallikrein activator) and release of bradykinin by mouse coronary artery endothelial cells (ECs). In the present study we hypothesized that the AT(2)R-stimulated increase in PRCP is mediated by the tyrosine phosphatase SHP-1, which in turn activates the PRCP-dependent prekallikrein-kallikrein pathway and releases bradykinin. We found that activation of AT(2)R using the specific agonist CGP42112A increased SHP-1 activity in ECs, which was blocked by the AT(2)R antagonist PD123319. Activation of AT(2)R also enhanced conversion of plasma prekallikrein to kallikrein, and this effect was blunted by a small interfering RNA (siRNA) to SHP-1 and abolished by the tyrosine phosphatase inhibitor sodium orthovanadate. Treating cells with a siRNA to PRCP also blunted AT(2)R-stimulated prekallikrein activation and bradykinin release. Furthermore, blocking plasma kallikrein with soybean trypsin inhibitor (SBTI) abolished AT(2)R-stimulated bradykinin release. These findings support our hypothesis that stimulation of AT(2)R activates a PRCP-dependent plasma prekallikrein pathway, releasing bradykinin. Activation of SHP-1 may also play an important role in AT(2)R-induced PRCP activation.  相似文献   

3.
Incubation of purified human plasma prekallikrein with sulfatides or dextran sulfate resulted in spontaneous activation of prekallikrein as judged by the appearance of amidolytic activity toward the chromogenic substrate H-D-Pro-Phe-Arg-p-nitroanilide. The time course of generation of amidolytic activity was sigmoidal with an apparent lag phase that was followed by a relatively rapid activation until finally a plateau was reached. Soybean trypsin inhibitor completely blocked prekallikrein activation whereas corn, lima bean, and ovomucoid trypsin inhibitors did not. The Ki of the reversible inhibitor benzamidine for autoactivation (240 microM) was identical to the Ki of benzamidine for kallikrein. Thus, spontaneous prekallikrein activation and kallikrein showed the same specificity for a number of serine protease inhibitors. This indicates that prekallikrein is activated by its own enzymatically active form, kallikrein. Immunoblotting analysis of the time course of activation showed that, concomitant with the appearance of amidolytic activity, prekallikrein was cleaved. However, prekallikrein was not quantitatively converted into two-chain kallikrein since other polypeptide products were visible on the gels. This accounts for the observation that in amidolytic assays not all prekallikrein present in the reaction mixture was measured as active kallikrein. Kinetic analysis showed that prekallikrein activation can be described by a second-order reaction mechanism in which prekallikrein is activated by kallikrein. The apparent second-order rate constant was 2.7 X 10(4) M-1 s-1 (pH 7.2, 50 microM sulfatides, ionic strength I = 0.06, at 37 degrees C). Autocatalytic prekallikrein activation was strongly dependent on the ionic strength, since there was a considerable decrease in the second-order rate constant of the reaction at high salt concentrations. In support of the autoactivation mechanism it was found that increasing the amount of kallikrein initially present in the reaction mixture resulted in a significant reduction of the lag period and a rapid completion of the reaction while the second-order rate constant was not influenced. Our data support a prekallikrein autoactivation mechanism in which surface-bound kallikrein activates surface-bound prekallikrein.  相似文献   

4.
Previous studies from our laboratories (Sugo et al. (1980) Biochemistry 19, 3215-3220) have shown that bovine high-molecular-weight (HMW) kininogen remarkably accelerates the kaolin-mediated activation of Factor XII in the presence of prekallikrein, and that both fragment 1.2 and the light chain regions located in the COOH terminal half of the kininogen molecule are essential for the activation. In the present study, we demonstrate that the accelerating effect of HMW kininogen is mediated through its adsorption on the kaolin surface through the fragment 1.2 region and its complex formation with prekallikrein through the light chain region. The evidence is as follows: 1. HMW kininogen radio-labeled with 125I was adsorbed on kaolin and the adsorption was inhibited by the prior treatment of kaolin with fragment 1.2, fragment 1.2-light chain, kinin-free protein or HMW kininogen, but not with kinin- and fragment 1.2-free protein, light chain or low molecular-weight (LMW) kininogen. 2. The complex formation of HMW kininogen with prekallikrein in bovine plasma or in the purified system was examined by gel-filtration on a column of Sephacryl S-200 In bovine plasma, prekallikrein was eluted in the same fraction as HMW kininogen, showing an apparent molecular weight of 250,000, whereas purified prekallikrein was eluted in the fraction corresponding to an apparent molecular weight of 100,000. When purified prekallikrein was mixed with purified HMW kininogen in a mol ratio of 1 to 2, all prekallikrein was found to be associated with HMW kininogen. Furthermore, purified prekallikrein mixed with kininogen derivatives, such as kinin- and fragment 1.2-free protein, fragment 1.2-light chain or light chain, was eluted in the higher molecular weight fraction. HMW kininogen did not form a complex with prekallikrein. Using the same technique, it was shown that kinin- and fragment 1.2-free protein forms a complex not only with prekallikrein but also with kallikrein.  相似文献   

5.
Subsites in the S2-S4 region were identified in human plasma kallikrein. Kinetic constants (kcat., Km) were determined for a series of seven extended N-aminoacyl-L-arginine methyl esters based on the C-terminal sequence of bradykinin (-Pro-Phe-Arg) or (Gly)n-Arg. The rate-limiting step for the enzyme-catalysed reaction was found to be deacylation of the enzyme. It was possible to infer that hydrogen-bonded interactions occur between substrate and the S2-S4 region of kallikrein. Insertion of L-phenylalanine at residue P2 demonstrates that there is also a hydrophobic interaction with subsite S2, which stabilizes the enzyme-substrate complex. The strong interaction demonstrated between L-proline at residue P3 and subsite S3 is of greatest importance in the selectivity of human plasma kallikrein. The purification of kallikrein from Cohn fraction IV of human plasma is described making use of endogenous Factor XIIf to activate the prekallikrein. Kallikreins I (Mr 91 000) and II (Mr 85 000) were purified 170- and 110-fold respectively. Kallikrein I was used for the kinetic work.  相似文献   

6.
Human factor XII was activated by adsorption onto kaolin in the presence of high molecular weight kininogen. The washed kaolin-containing precipitates activate prekallikrein to kallikrein. When antithrombin III was added to the reaction mixture, the conversion of prekallikrein to kallikrein was inhibited, the degree of inhibition depending on the concentration of antithrombin and the time of incubation. Heparin had a slight enhancing effect with low concentrations of antithrombin and short incubation times. However, the inhibition of the generated kallikrein by antithrombin III was markedly enhanced by heparin. Antithrombin III inhibited also the effect of activated factor XII on the partial thromboplastin time, using factor XII-deficient plasma. Of other plasma proteinase inhibitors used (α1-antitrypsin, α2-macroglobulin, Cl-inactivator) only Cl-inactivator inhibited activated factor XII.  相似文献   

7.
When human plasma is applied to a dermatan sulfate column, amidase activity is detected in the bound fraction and complement factor H is cleaved [A. Saito, H. Munakata, Factor H is a dermatan sulfate-binding protein: identification of a dermatan sulfate—mediated protease that cleaves factor H, J. Biochem. 137 (2005) 225-233]. Here, the amidase-active fraction was purified by sequential gel filtration and hydroxyapatite chromatography, and the amidase-active protein was identified to be plasma kallikrein by mass spectrometry. The activation of plasma kallikrein was further investigated by Western blotting using plasma deficient in prekallikrein or coagulation factor Xll. The dermatan sulfate column-bound fraction of the prekallikrein- and factor Xll-deficient plasmas did not show any amidase activity and factor H remained intact. Addition of kallikrein, but not activated factor Xll, to factor H purified from plasma resulted in cleavage of factor H. Thus, dermatan sulfate induces contact activation and activates kallikrein-mediated cleavage of FH.  相似文献   

8.
We have shown recently that kinins are generated during experimentally induced allergic rhinitis in man, and have demonstrated that substrates for kinin-forming enzymes are provided during the allergic response by a transudation of kininogens from plasma into nasal secretions. In light of this increased vascular permeability during the allergic reaction, we have extended our studies on the mechanisms of kinin formation to examine the potential involvement of plasma kallikrein. Allergic individuals (n = 7) and nonallergic controls (n = 7) were challenged intranasally with an allergen, and nasal lavages, obtained before and after challenge, were assayed for immunoreactive human plasma kallikrein/prekallikrein (iHPK). Post-challenge iHPK values were significantly elevated (p less than 0.01) in the allergic group (353 +/- 394 ng/ml; x +/- SD) as compared to the nonallergics (19 +/- 22 ng/ml), and correlated with increases in kinins, histamine, and N-alpha-tosyl-L-arginine methyl esterase (TAME-esterase) activity and with the onset of clinical symptoms. Gel filtration studies revealed that plasma prekallikrein is activated during the allergic response and contributes to kinin formation prior to interaction with plasma protease inhibitors. We also show that the majority of the TAME-esterase activity detected in nasal secretions during the allergic response is due to activities consistent with a plasma kallikrein/alpha 2-macroglobulin complex and with mast cell tryptase.  相似文献   

9.
Two molecular forms of prekallikrein can be isolated from pooled normal human plasma. Their approximate molecular weights by sodium dodecyl sulfate-gel electrophoresis are 88,000 and 85,000. The two bands observed are shown to represent prekallikrein by functional, immunochemical, and structural criteria. Both forms are cleaved by activated Hageman factor, they appear to share antigenic determinants, they are not interconvertible upon incubation with activated Hageman factor or kallikrein, and the ratio of kinin-generating, and plasminogen-activating activities of the preparations are independent of the relative proportion of each band. Activated Factor XII converts prekallikrein to kallikrein by limited proteolysis and two disulfide-linked chains designated kallikrein heavy chain (Mr = 52,000) and kallikrein light chains (Mr = 36,000 or 33,000) are formed. The active site is associated with the light chains as assessed by incorporation of [3H]diisopropyl fluorophosphate. No dissociable fragments were observed in the absence of reducing agents. However, kallikrein could digest prekallikrein to diminish its molecular weight by 10,000. In addition, two factors capable of activating plasminogen to plasmin have been isolated; one is identified as kallikrein. The second principle fractionates with Factor XI and is demonstrable in normal and prekallikrein-deficient plasma.  相似文献   

10.
The amino acid sequence of human plasma prekallikrein was determined by a combination of automated Edman degradation and cDNA sequencing techniques. Human plasma prekallikrein was fragmented with cyanogen bromide, and 13 homogeneous peptides were isolated and sequenced. Cyanogen bromide peptides containing carbohydrate were further digested with trypsin, and the peptides containing carbohydrate were isolated and sequenced. Five asparagine-linked carbohydrate attachment sites were identified. The sequence determined by Edman degradation was aligned with the amino acid sequence predicted from cDNAs isolated from a lambda gt11 expression library. This library contained cDNA inserts prepared from human liver poly(A) RNA. Analysis of the cDNA indicated that human plasma prekallikrein is synthesized as a precursor with a signal peptide of 19 amino acids. The mature form of the protein that circulates in blood is a single-chain polypeptide of 619 amino acids. Plasma prekallikrein is converted to plasma kallikrein by factor XIIa by the cleavage of an internal Arg-Ile bond. Plasma kallikrein is composed of a heavy chain (371 amino acids) and a light chain (248 amino acids), and these 2 chains are held together by a disulfide bond. The heavy chain of plasma kallikrein originates from the amino-terminal end of the zymogen and is composed of 4 tandem repeats that are 90 or 91 amino acid residues in length. These repeat sequences are also homologous to those in human factor XI. The light chain of plasma kallikrein contains the catalytic portion of the enzyme and is homologous to the trypsin family of serine proteases.  相似文献   

11.
Activation of the Hageman factor-prekallikrein system in the whole human blood plasma is studied as affected by organic silica (aerosils) with anionic and cationic properties. Positive- and negative-charged aerosils are shown to possess the same ability to activate prekallikrein. Activity of prekallikrein was manifested in hydrolysis of the chromogenic substrate--Benz-Pro-Phen-Arg-paranitroanilide . HCl, kininogen and protamine sulphate formed by kallikrein. The data permit supposing that optimal activation of the Hageman factor requires the polar (but not ionic) groups with hydrophilic properties on activating surfaces. Plasminogen under contact activation, in contrast to prekallikrein is activated only in the diluted plasma (pH 4.8), and not completely. Possible mechanisms of the contact activation and interaction of the Hageman factor, prekallikrein and high-molecular kininogen in this process are discussed.  相似文献   

12.
The kallikrein inhibitor contents of human and animal plasma were determined with glandular kallikreins [EC 3.4.21.8]. One ml of plasma could inactivate 20-700 kallikrein units (KU). Rat plasma was the most potent and inactivated 230-700 KU. However, no enzyme capable of inactivating kallikrein could be found in this plasma. Two fractions which inhibited hog pancreatic kallikrein, a fraction corresponding to alpha2-macroglobulin and a fraction which was eluted prior to albumin, were separated from rat plasma by Sephadex G-200 gel filtration. The former inhibitor could inhibit hog pancreatic kallikrein action on Nalpha-benzoyl-L-arginine ethyl ester (BAEE) as well as in the dog vasodilator assay. The other inhibitor was partially purified from rat plasma. One mg of the preparation inhibited 67 KU and the hydrolysis of 5.8 micronmoles/min of BAEE by hog pancreatic kallikrein [EC 3.4.21.8]. The inhibitor also inhibited other glandular and plasma kallikreins, trypsin [EC 3.4.21.4], alpha-chymotrypsin [EC 3.4.21.1], etc. The optimal pH of the inhibitor was 7.5-8. The inhibitor was unstable below pH 5, and was destroyed by heating at temperature above 60 degrees. The isoelectric point of the inhibitor was determined by Ampholine focusing to be 4.4, and its molecular weight was estimated to be 73,000 by Sephadex G-100 and G-150 filtrations. Several experimental results suggested that this inhibitor differed from alpha1-antitrypsin.  相似文献   

13.
An enzyme-linked immunosorbent assay (ELISA) has been developed for the quantification of C1 inactivator-kallikrein (C1In-K) complexes. The formation of complexes assayed by this method parallelled the inhibition of plasma kallikrein esterase activity by C1 inactivator in purified systems. C1In-K complexes were detected when a final concentration of 5.7 nM plasma kallikrein was added to plasma, equivalent to the activation of 1% of the plasma prekallikrein. Exogenous Hageman factor fragment added to plasma induced the rapid formation of C1In-K complexes, whereas there was an appreciable delay when the plasma contact system was activated by the addition of kaolin. In both systems, the rate of formation and final amount of complex generated were directly related to the concentration of Hageman factor fragment or of kaolin added, indicating that this proteolytic pathway is tightly regulated. C1In-K complexes were not generated by kaolin in plasma congenitally deficient in Hageman factor or prekallikrein or by kallikrein in hereditary angioedema plasma deficient in C1 inactivator, thus confirming the specificity of the assay. Sucrose gradient ultracentrifugation studies showed plasma C1In-K complexes to have a molecular weight consistent with a 1:1 molar complex. In contrast, the complex displayed an anomalously high molecular weight on gel filtration chromatography. These data demonstrate that a sensitive and specific probe has been developed for documenting plasma kallikrein activation.  相似文献   

14.
Prekallikrein was purified 1,200-fold in 20% yield from human plasma by DEAE-cellulose, arginyl-triazinyl-aminododecyl-agarose, Cm-Sephadex C-50, and Sephadex G-150 chromatography. Isoelectric focusing of the purified proenzyme gave seven peaks, four major ones at pH 8.6, 8.8, 9.1, and 9.3; and three others at pH 7.9, 8.3, and 9.5. The same IEF profile was obtained from plasma of four individuals of three races and both sexes and from three plasma pools, and was not altered by using diisopropyl fluorophosphate, benzamidine, or EDTA during fractionation. Each major IEF form contained Mr = 88,000 (prekallikrein I) and Mr = 85,000 (prekallikrein II) species, in increasing ratios of I:II from about 20:1 in prekallikrein 8.6 (prekallikrein with pI 8.6) to 1:1 in prekallikrein 9.3. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the four zymogens after activation by Hageman factor fragment and reduction gave an Mr = 53,000 H-chain and two L-chains, LI (Mr = 40,000) and LII (Mr = 37,000). Scanning the gels gave LI:LII ratios of 19:1, 5:1, 2:1, and 1:1 for prekallikreins 8.6, 8.8, 9.1, and 9.3, respectively, corresponding to the prekallikrein I:II ratios. The H-chain in turn was split into Mr = 33,000 and 20,000 chains, presumably by autolysis, because the cleavage was prevented by soybean trypsin inhibitor. Each major kallikrein had a pI 0.1-0.2 lower than its zymogen, but the same LI:LII ratio. The four kallikreins were indistinguishable kinetically with human plasma high-molecular weight kininogen and 15 synthetic substrates, and in correcting the activated partial thromboplastin time of prekallikrein-deficient (Fletcher) plasma.  相似文献   

15.
The effect of tryptase from human mast cells on human prekallikrein   总被引:1,自引:0,他引:1  
Tryptase, the dominant protease in human mast cells, was examined for its effect on human prekallikrein. Tryptase in the presence and absence of heparin failed to activate prekallikrein as shown in a spectrophotometric assay for kallikrein employing benzoy 1-pro-phe-arg-p-nitroanilide. Treated prekallikrein was converted to active kallikrein by bovine trypsin. Prekallikrein cleavage products were analyzed by electrophoresis in polyacrylamide gels under denaturing conditions (+/- reduction). Tryptase caused no apparent cleavage under conditions where trypsin caused complete cleavage. Thus, tryptase, which has previously been shown to lack kallikrein and kininase activities, neither activates nor destroys prekallikrein.  相似文献   

16.
Binding of the 5-(iodoacetamido)fluorescein (IAF)-labeled high molecular weight (HMW) kininogen light chain to prekallikrein and D-Phe-Phe-Arg-CH2Cl-inactivated kallikrein was monitored by a 0.040 +/- 0.002 increase in fluorescence anisotropy. Indistinguishable average dissociation constants and stoichiometries of 14 +/- 3 nM and 1.1 +/- 0.1 mol of prekallikrein/mol of IAF-light chain and 17 +/- 3 nM and 0.9 +/- 0.1 mol of kallikrein/mol of IAF-light chain were determined for these interactions at pH 7.4, mu 0.14 and 22 degrees C. Prekallikrein which had been reduced and alkylated in 6 M guanidine HCl lost the ability to increase the fluorescence anisotropy of the IAF-kininogen light chain, suggesting that the native tertiary structure was required for tight binding. The kallikrein heavy and light chains were separated on the basis of the affinity of the heavy chain for HMW-kininogen-Sepharose, after mild reduction and alkylation of kallikrein under nondenaturing conditions. Under these conditions, alkylation with iodo [14C]acetamide demonstrated that only limited chemical modification had occurred. Binding of the IAF-kininogen light chain to the isolated alkylated kallikrein heavy chain, when compared to prekallikrein and kallikrein, was characterized by an indistinguishable increase in fluorescence anisotropy, average dissociation constant of 14 +/- 3 nM, and stoichiometry of 1.2 +/- 0.1 mol of kallikrein heavy chain/mol of IAF-light chain. In contrast, no binding of the D-Phe-Phe-Arg-CH2Cl-inactivated kallikrein light chain was detected at concentrations up to 500 nM. Furthermore, 300 nM kallikrein light chain did not affect IAF-kininogen light chain binding to prekallikrein, kallikrein, or the kallikrein heavy chain. The binding of monomeric single chain HMW-kininogen to prekallikrein, kallikrein, and the kallikrein heavy and light chains was studied using the IAF-kininogen light chain as a probe. Analysis of the competitive binding of HMW-kininogen gave average dissociation constants and stoichiometries of 12 +/- 2 nM and 1.2 +/- 0.1 mol of prekallikrein/mol of HMW-kininogen, 15 +/- 2 nM and 1.3 +/- 0.1 mol of kallikrein/mol of HMW-kininogen, 14 +/- 3 nM and 1.4 +/- 0.2 mol of kallikrein heavy chain/mol of HMW-kininogen, and no detectable effect of 300 nM kallikrein light chain on these interactions. We conclude that a specific, nonenzymatic interaction between sites located exclusively on the light chain of HMW-kininogen and the heavy chain of kallikrein or prekallikrein is responsible for the formation of 1:1 noncovalent complexes between these proteins.  相似文献   

17.
The kaolin-mediated reciprocal activation of bovine factor XII and prekallikrein was divided into the following two reactions: the activation of factor XII by plasma kallikrein (reaction 1) and the activation of prekallikrein by factor XIIa (reaction 2). The effects of high-Mr kininogen and kaolin surface on the kinetics of these activation reactions were studied. High-Mr kininogen markedly enhanced the rate of reactions 1 and 2 in the presence of kaolin, and the enhancements were highly dependent on the concentrations of the protein cofactor and amount of kaolin surface. For the activation of factor XII by plasma kallikrein (reaction 1), high-Mr kininogen was required when a low concentration of factor XII and kaolin was used. The molar ratio of the protein cofactor to factor XII for optimal activation was found to be approximately 1:1. The apparent Km value and the kcat/Km value for plasma kallikrein on factor XII were calculated to be 4 nM and 5.2 X 10(7) s-1 X M-1, respectively. The activation of prekallikrein by factor XIIa, (reaction 2) proceeded even in the absence of high-Mr kininogen and kaolin. The addition of the protein cofactor and surface to the reaction mixture remarkably accelerated the reaction, and the apparent Km value for factor XIIa on prekallikrein was reduced from 1 microM to 40 nM. Moreover, the kcat/Km value was altered from 7.3 X 10(4) to 1.1 X 10(6) s-1 X M-1). These results suggest that high-Mr kininogen accelerates the surface-mediated activation of factor XII and prekallikrein by enhancing the susceptibility of factor XII to plasma kallikrein, on the one hand, and the affinity of factor XIIa for prekallikrein, on the other hand. Kaolin may play an important role in the concentration and organization of these components on the negatively charged surface.  相似文献   

18.
A plasma kallikrein inhibitor in guinea pig plasma (KIP) was purified to homogeneity. KIP is a single chain protein and the apparent molecular weight is estimated to be 59,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In amino acid composition, KIP is similar to human and mouse alpha 1-proteinase inhibitors and mouse contrapsin. KIP forms an equimolar complex with plasma kallikrein in a dose- and time-dependent fashion. The association rate constants for the inhibition of guinea pig plasma kallikrein by KIP, alpha 2-macroglobulin, C1-inactivator and antithrombin III were 2.5 +/- 0.3.10(4), 2.4 +/- 0.4.10(4), 6.6 +/- 0.5.10(4) and 9.1 +/- 0.6.10(2), respectively. Comparison of the association rate constants and the normal plasma concentrations of the four inhibitors demonstrates that KIP is ten-times as effective as alpha 2-MG and other two inhibitors are marginally effective in the inhibition of kallikrein. KIP inhibits trypsin and elastase rapidly, and thrombin and plasmin slowly, but is inactive for chymotrypsin and gland kallikrein. These results suggest that KIP is the major kallikrein inhibitor in guinea pig plasma and the proteinase inhibitory spectrum is unique to KIP in spite of the molecular similarity to alpha 1-proteinase inhibitor.  相似文献   

19.
Our previous studies in the preruminant calf have provided evidence for the heterogeneity of lipoprotein particles in the 1.040-1.090 g/ml density interval in both plasma and postprandial intestinal lymph (Bauchart, D. et al., 1989. J. Lipid Res. 30: 1499-1514; and Laplaud, P. M. et al., 1990. J. Lipid Res. 31: 1781-1792). We therefore attempted to resolve this heterogeneity by use of heparin-Sepharose affinity chromatography. Experiments were performed on three calves; portal vein plasma and intestinal lymph were obtained simultaneously 10 h after a meal, i.e., at peak lipid absorption. In both fluids, the chromatographic profile presented three fractions, I, II, and III. Fraction I was characterized by the presence of cholesteryl ester-rich particles (approximately 35-37% of lipoprotein mass), which migrated electrophoretically as typical high density lipoproteins and exhibited Stokes diameters in the 130-160 A range; apoA-I was the predominant protein. In addition to this polypeptide, fraction II contained small amounts of a supplementary protein (Mr approximately 51,000), exhibiting heparin-binding properties. In the light of results reported in the literature, we suggest that this latter protein could correspond to beta 2 glycoprotein I. The chemical composition of each fraction II closely resembled that of the corresponding fraction I, while their electrophoretic migrations appeared slightly slower and their Stokes diameters slightly larger (155-165 A). Apart from the presence of small amounts of apoA-I, two high Mr proteins (Mr approx. 560,000 and 300,000) were typical of the apolipoprotein moiety of fractions III. The lower Mr form was present as a trace component only in fraction III originating from plasma; its proportion increased in lymph fraction III so as to approximately match that of the higher Mr (i.e., 560,000) protein. In both plasma and lymph, fraction III was electrophoretically heterogeneous, exhibiting a doublet of bands with migration and Stokes diameters (250 A) typical of low density lipoprotein particles. However, no evidence for the presence of a particle resembling lipoprotein[a] in fraction III could be obtained. In lymph only, fraction III contained a supplementary population of lipoproteins with migration intermediary between those of conventional low and high density lipoproteins and with Stokes diameters in the 190-200 A range. Other specific features of lymph fraction III included a sevenfold increase in its triglyceride content (8.5 +/- 3.4% vs. 1.2 +/- 1.1% in the corresponding fraction from plasma), to the detriment of cholesteryl esters, and a higher proportion of protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Tissue kallikrein activity was monitored in seminal plasma from 3 groups of bovine ejaculates: those with normal total sperm motility (78.43%), with reduced sperm motility (49.29%), and with reduced sperm count (0.68 x 10(9) cells/ml). The tissue kallikrein activity was measured spectrophotometrically by using the specific chromogenic substrate S-2266. It was found that the semen samples with normal sperm motility manifested 1.083 microkat/L, on an average, or 29% higher than the activity recorded in ejaculates with reduced sperm motility (P < 0.05). After storage of a group of ejaculates of normal quality for 5 h at room temperature, sperm motility dropped by approximately 80%, expressed as a percentage of the initial motility, while the tissue kallikrein activity in the respective seminal samples decreased by 23%. No significant differences were found in kallikrein activity between ejaculates with normal and reduced sperm counts. It is concluded that a relationship exists between the level of tissue kallikrein activity in the seminal plasma of bovine ejaculates and sperm motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号