首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Use of the nonphosphorylating beta,gamma-bidentate chromium(III) complex of ATP to induce a stable Ca(2+)-occluded form of the sarcoplasmic reticulum Ca(2+)-ATPase was combined with molecular sieve high performance liquid chromatography of detergent-solubilized protein to examine the ability of the Ca(2+)-ATPase mutants Gly-233-->Glu, Gly-233-->Val, Glu-309-->Gln, Gly-310-->Pro, Pro-312-->Ala, Ile-315-->Arg, Leu-319-->Arg, Asp-703-->Ala, Gly-770-->Ala, Glu-771-->Gln, Asp-800-->Asn, and Gly-801-->Val to occlude Ca2+. This provided a new approach to identification of amino acid residues involved in Ca2+ binding and in the closure of the gates to the Ca2+ binding pocket of the Ca(2+)-ATPase. The "phosphorylation-negative" mutant Asp-703-->Ala and mutants of ADP-sensitive phosphoenzyme intermediate type were fully capable of occluding Ca2+, as was the mutant Gly-770-->Ala. Mutants in which carboxylic acid-containing residues in the putative transmembrane segments had been substituted ("Ca(2+)-site mutants") and mutant Gly-801-->Val were unable to occlude either of the two calcium ions. In addition, the mutant Gly-310-->Pro, previously classified as ADP-insensitive phosphoenzyme intermediate type (Andersen, J.P., Vilsen, B., and MacLennan, D.H. (1992). J. Biol. Chem. 267, 2767-2774), was unable to occlude Ca2+, even though Ca(2+)-activated phosphorylation from MgATP took place in this mutant.  相似文献   

2.
The dynamic interactions of the main pathways for active Ca(2+) transport have been analysed in living cells by altering the expression of their components. The plasma membrane (PMCA) and the endoplasmic reticulum (ER) (SERCA) Ca(2+) pumps were transiently overexpressed in CHO cells, and the Ca(2+) homeostasis in the subcellular compartments was investigated using specifically targeted chimaeras of the Ca(2+)- sensitive photoprotein aequorin. In resting cells, overexpression of the PMCA and SERCA pumps caused a reduction and an increase in ER [Ca(2+)] levels, respectively, while no significant differences were detected in cytosolic and mitochondrial [Ca(2+)]. Upon stimulation with an inositol 1,4, 5-trisphosphate (IP(3))-generating agonist, the amplitude of the mitochondrial and cytosolic Ca(2+) rises correlated with the ER [Ca(2+)] only up to a threshold value, above which the feedback inhibition of the IP(3) channel by Ca(2+) appeared to be limiting.  相似文献   

3.
Vascular endothelial cells (EC) and smooth muscle cells (SMC) require a decrease in cytoplasmic Ca2+ concentration after activation. This can be achieved by Ca2+ sequestration by the sarco-/endoplasmic reticulum Ca2+ pumps (SERCA) and Ca2+ extrusion by plasma membrane Ca2+ pumps (PMCA) and Na+-Ca2+-exchangers (NCX). Since the two cell types differ in their structure and function, we compared the activities of PMCA, NCX and SERCA in pig coronary artery EC and SMC, the types of isoforms expressed using RT-PCR, and their protein abundance using Western blots. The activity of NCX is higher in EC than in SMC but those of PMCA and SERCA is lower. Consistently, the protein abundance for NCX protein is higher in EC than in SMC and those of PMCA and SERCA is lower. Based on RT-PCR experiments, the types of RNA present are as follows: EC for PMCA1 while SMC for PMCA4 and PMCA1; EC for SERCA2 and SERCA3 and SMC for SERCA2. Both EC and SMC express NCX1 (mainly NCX1.3). PMCA, SERCA and NCX differ in their affinities for Ca2+ and regulation. Based on these observations and the literature, we conclude that the tightly regulated Ca2+ removal systems in SMC are consistent with the cyclical control of contractility of the filaments and those in EC are consistent with Ca2+ regulation of the endothelial nitric oxide synthase near the cell surface. The differences between EC and SMC should be considered in therapeutic interventions of cardiovascular diseases.  相似文献   

4.
Thapsigargin-sensitive sarco/endoplasmic reticulum Ca(2+) pumps (SERCAs) are involved in maintaining and replenishing agonist-sensitive internal stores. Although it has been assumed that release channels act independently of SERCA pumps, there are data suggesting the opposite. Our aim was to study the relationship between SERCA pumps and the release channels in smooth muscle cells. To this end, we have rapidly blocked SERCA pumps with thapsigargin, to avoid depletion of the internal Ca(2+) stores, and induced Ca(2+) release with either caffeine, to open ryanodine receptors, or acetylcholine, to open inositol 1,4,5-trisphosphate receptors. Blocking SERCA pumps produced smaller and slower agonist-induced [Ca(2+)](i) responses. We determined the Ca(2+) level of the internal stores both indirectly, measuring the frequency of spontaneous transient outward currents, and directly, using Mag-Fura-2, and demonstrated that the inhibition of SERCA pumps did not produce a reduction of the sarco/endoplasmic reticulum Ca(2+) levels to explain the decrease in the agonist-induced Ca(2+) responses. It appears that SERCA pumps are involved in sustaining agonist-induced Ca(2+) release by a mechanism that involves the modulation of Ca(2+) availability in the lumen of the internal stores.  相似文献   

5.
The four basic isoforms of the plasma membrane Ca2+ pump and the two C-terminally truncated spliced variants PMCA4CII(4a) and 3CII(3a) were transiently overexpressed in Chinese hamster ovary cells together with aequorin targeted to the cytosol, the endoplasmic reticulum, and the mitochondria. As PMCA3CII(3a) had not yet been cloned and studied, it was cloned for this study, partially purified, and characterized. At variance with the corresponding truncated variant of PMCA4, which had been studied previously, PMCA3CII(3a) had very high calmodulin affinity. All four basic pump variants influenced the homeostasis of Ca2+ in the native intracellular environment. The level of [Ca2+] in the endoplasmic reticulum and the height of the [Ca2+] transients generated in the cytosol and in the mitochondria by the emptying of the endoplasmic reticulum store by inositol 1,4,5-trisphosphate were all reduced by the overexpression of the pumps. The effects were much greater with the neuron-specific PMCA2 and PMCA3 than with the ubiquitously expressed isoforms 1 and 4. Unexpectedly, the truncated PMCA3 and PMCA4 were as effective as the full-length variants in influencing the homeostasis of Ca2+ in the cytosol and the organelles. In particular, PMCA4CII(4a) was as effective as PMCA4CI(4b), even if its affinity for calmodulin is much lower. The results indicate that the availability of calmodulin may not be critical for the modulation of PMCA pumps in vivo.  相似文献   

6.
7.
8.
Sixteen residues in stalk segment S5 of the Ca(2+)-ATPase of sarcoplasmic reticulum were studied by site-directed mutagenesis. The rate of the Ca(2+) binding transition, determined at 0 degrees C, was enhanced relative to wild type in mutants Ile(743) --> Ala, Val(747) --> Ala, Glu(748) --> Ala, Glu(749) --> Ala, Met(757) --> Gly, and Gln(759) --> Ala and reduced in mutants Asp(737) --> Ala, Asp(738) --> Ala, Ala(752) --> Leu, and Tyr(754) --> Ala. In mutant Arg(762) --> Ile, the rate of the Ca(2+) binding transition was wild type like at 0 degrees C, whereas it was 3.5-fold reduced relative to wild type at 25 degrees C. The rate of dephosphorylation of the ADP-insensitive phosphoenzyme was increased conspicuously in mutants Ile(743) --> Ala and Tyr(754) --> Ala (close to 20-fold in the absence of K(+)) and increased to a lesser extent in Asn(739) --> Ala, Glu(749) --> Ala, Gly(750) --> Ala, Ala(752) --> Gly, Met(757) --> Gly, and Arg(762) --> Ile, whereas it was reduced in mutants Asp(737) --> Ala, Val(744) --> Gly, Val(744) --> Ala, Val(747) --> Ala, and Ala(752) --> Leu. In mutants Ile(743) --> Ala, Tyr(754) --> Ala, and Arg(762) --> Ile, the apparent affinities for vanadate were enhanced 23-, 30-, and 18-fold, respectively, relative to wild type. The rate of Ca(2+) dissociation was 11-fold increased in Gly(750) --> Ala and 2-fold reduced in Val(747) --> Ala. Mutants with alterations to Arg(751) either were not expressed at a significant level or were completely nonfunctional. The findings show that S5 plays a crucial role in mediating communication between the Ca(2+) binding pocket and the catalytic domain and that Arg(751) is important for both structural and functional integrity of the enzyme.  相似文献   

9.
Activities of Ca(2+) -ATPase of sarcoplasmic reticulum (SERCA) and Na(+)/Ca(2+) exchanger (NCX) involved in cellular Ca(2+) turnover greatly change in hypertrophied and failing hearts. Unfortunately, contribution of these proteins as well as of the sarcolemmal Ca(2+)-ATPase (PMCA) to cellular Ca(2+) turnover has been investigated almost exclusively at room temperature. PMCA is of particular interest since it may affect activity of calcineurin and nNOS. Therefore the objective of this study was to reinvestigate contribution of SERCA, NCX and PMCA to cell relaxation and the effect of PMCA on cell contraction at 37 degrees C. Myocytes isolated from the ventricles of guinea pig and rat hearts and incubated with Indo-1 were field stimulated at the rate of 60/min. Contribution of SERCA, NCX and PMCA was calculated from the rate constants of the decaying components of electrically stimulated Ca(2+) transients or of the transients initiated by caffeine dissolved in normal Tyrode or in 0Na, 0Ca Tyrode. Increase in temperature from 24 to 37 degrees C increased the relative contribution of NCX from 6.1% to 7.5% in rat and from 21.3 to 51.9% in guinea pig at the expense of SERCA. The contribution of the PMCA to relaxation in both species increased upon rise in temperature from 24% to 37 degrees C from negligible values to 3.7%. In both species amplitude of Ca(2+) transients was at 24 degrees C nearly twice as high as at 37 degrees C. It was nearly doubled by carboxyeosine (CE), a PMCA blocker at 37 degrees C but was hardly affected at 24 degrees C. The effects of CE were concentration-dependent and conformed with the degree of inhibition of activity of PMCA. Conclusions: PMCA plays an important role in regulation of myocardial contraction despite its small contribution to relaxation. In guinea pig but not in rat relative contribution of SERCA and NCX to relaxation is highly temperature dependent.  相似文献   

10.
SERCA1a, the fast-twitch skeletal muscle isoform of sarco(endo)plasmic reticulum Ca(2+)-ATPase, was expressed in yeast using the promoter of the plasma membrane H(+)-ATPase. In the yeast Saccharomyces cerevisiae, the Golgi PMR1 Ca(2+)-ATPase and the vacuole PMC1 Ca(2+)-ATPase function together in Ca2+ sequestration and Ca2+ tolerance. SERCA1a expression restored growth of pmc1 mutants in media containing high Ca2+ concentrations, consistent with increased Ca2+ uptake in an internal compartment. SERCA1a expression also prevented synthetic lethality of pmr1 pmc1 double mutants on standard media. Electron microscopy and subcellular fractionation analysis showed that SERCA1a was localized in intracellular membranes derived from the endoplasmic reticulum. Finally, we found that SERCA1a ATPase activity expressed in yeast was regulated by calcineurin, a Ca2+/calmodulin-dependent phosphoprotein phosphatase. This result indicates that calcineurin contributes to calcium homeostasis by modulating the ATPase activity of Ca2+ pumps localized in intra-cellular compartments.  相似文献   

11.
Yokokawa M  Takeyasu K 《The FEBS journal》2011,278(17):3025-3031
Studies of ion pumps, such as ATP synthetase and Ca(2+)-ATPase, have a long history. The crystal structures of several kinds of ion pump have been resolved, and provide static pictures of mechanisms of ion transport. In this study, using fast-scanning atomic force microscopy, we have visualized conformational changes in the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) in real time at the single-molecule level. The analyses of individual SERCA molecules in the presence of both ATP and free Ca(2+) revealed up-down structural changes corresponding to the Albers-Post scheme. This fluctuation was strongly affected by the ATP and Ca(2+) concentrations, and was prevented by an inhibitor, thapsigargin. Interestingly, at a physiological ATP concentrations, the up-down motion disappeared completely. These results indicate that SERCA does not transit through the shortest structure, and has a catalytic pathway different from the ordinary Albers-Post scheme under physiological conditions.  相似文献   

12.
The SERCA2a isoform of the sarco/endoplasmic reticulum Ca(2+) pumps is specifically expressed in the heart, whereas SERCA2b is the ubiquitously expressed variant. It has been shown previously that replacement of SERCA2a by SERCA2b in mice (SERCA2(b/b) mice) results in only a moderate functional impairment, whereas SERCA activity is decreased by a 40% lower SERCA protein expression and by increased inhibition by phospholamban. To find out whether the documented kinetic differences in SERCA2b relative to SERCA2a (i.e., a twofold higher apparent Ca(2+) affinity, but twofold lower maximal turnover rate) can explain these compensatory changes, we simulated Ca(2+) dynamics in mouse ventricular myocytes. The model shows that the relative Ca(2+) transport capacity of SERCA2a and SERCA2b depends on the SERCA concentration. The simulations point to a dominant effect of SERCA2b's higher Ca(2+) affinity over its lower maximal turnover rate. The results suggest that increased systolic and decreased diastolic Ca(2+) levels in unstimulated conditions could contribute to the downregulation of SERCA in SERCA2(b/b) mice. In stress conditions, Ca(2+) handling is less efficient by SERCA2b than by SERCA2a, which might contribute to the observed hypertrophy in SERCA2(b/b) mice. Altogether, SERCA2a might be a better compromise between performance in basal conditions and performance during β-adrenergic stress.  相似文献   

13.
We have characterized a putative Ca(2+)-ATPase from the pathogenic bacterium Listeria monocytogenes with the locus tag lmo0841. The purified and detergent-solubilized protein, which we have named Listeria monocytogenes Ca(2+)-ATPase 1 (LMCA1), performs a Ca(2+)-dependent ATP hydrolysis and actively transports Ca(2+) after reconstitution in dioleoylphosphatidyl-choline vesicles. Despite a high sequence similarity to the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a) and plasma membrane Ca(2+)-ATPase (PMCA), LMCA1 exhibits important biochemical differences such as a low Ca(2+) affinity (K(0.5) ~80 μm) and a high pH optimum (pH ~9). Mutational studies indicate that the unusually high pH optimum can be partially ascribed to the presence of an arginine residue (Arg-795), corresponding in sequence alignments to the Glu-908 position at Ca(2+) binding site I of rabbit SERCA1a, but probably with an exposed position in LMCA1. The arginine is characteristic of a large group of putative bacterial Ca(2+)-ATPases. Moreover, we demonstrate that H(+) is countertransported with a transport stoichiometry of 1 Ca(2+) out and 1 H(+) in per ATP hydrolyzed. The ATPase may serve an important function by removing Ca(2+) from the microorganism in environmental conditions when e.g. stressed by high Ca(2+) and alkaline pH.  相似文献   

14.
The plasma membrane Ca(2+) ATPase (PMCA) is responsible for maintaining basal intracellular Ca(2+) concentration ([Ca(2+)](i)) and returning small increases in [Ca(2+)](i) back to resting levels. The carboxyl terminus of some PMCA splice variants bind Homer proteins; how binding affects PMCA function is unknown. Here, we examined the effects of altered expression of Homer proteins on PMCA-mediated Ca(2+) clearance from rat hippocampal neurons in culture. The kinetics of PMCA-mediated recovery from the [Ca(2+)](i) increase evoked by a brief train of action potentials was determined in the soma of single neurons using indo-1-based photometry. Exogenous expression of Homer 1a, Homer 1c or Homer 2a did not affect PMCA function. However, shRNA mediated knockdown of Homer 1 slowed PMCA mediated Ca(2+) clearance by 28% relative to cells expressing non-silencing shRNA. The slowed recovery rate in cells expressing Homer 1 shRNA was reversed by expression of a short Homer 2 truncation mutant. These results indicate that constitutively expressed Homer proteins tonically stimulate PMCA function in hippocampal neurons. We propose a model in which binding of short or long Homer proteins to the carboxyl terminus of the PMCA stimulates Ca(2+) clearance rate. PMCA-mediated Ca(2+) clearance may be stimulated following incorporation of the pump into Homer organized signaling domains and following induction of the Homer 1a immediate early gene.  相似文献   

15.
The isoform-specific interaction of plasma membrane Ca(2+)-ATPase (PMCA) pumps with partner proteins has been explored using a yeast two-hybrid technique. The 90 N-terminal residues of two pump isoforms (PMCA2 and PMCA4), which have a low degree of sequence homology, have been used as baits. Screening of 5 x 10(6) clones of a human brain cDNA library yielded approximately 100 LEU2- and galactoside-positive clones for both pumps. A clone obtained with the PMCA4 bait specified the epsilon-isoform of the 14-3-3 protein, whereas no 14-3-3epsilon clone was obtained with the PMCA2 bait. The 14-3-3epsilon protein immunoprecipitated with PMCA4 (not with PMCA2) when expressed in HeLa cells. Overexpression of 14-3-3epsilon in HeLa cells together with targeted aequorins showed that the ability of the cells to export Ca(2+) was impaired; stimulation with histamine, an inositol 1,4,5-trisphosphate-producing agonist, generated higher cytosolic [Ca(2+)] transients, higher post-transient plateaus of the cytosolic [Ca(2+)], and higher Ca(2+) levels in the endoplasmic reticulum lumen and in the subplasmalemmal domain. Thus, the interaction with 14-3-3epsilon inhibited PMCA4. Silencing of the 14-3-3epsilon gene by RNA interference significantly reduced the expression of 14-3-3epsilon, substantially decreasing the height of the histamine-induced cytosolic [Ca(2+)] transient and of the post-transient cytosolic [Ca(2+)] plateau.  相似文献   

16.
The C-terminal segment of the loop between transmembrane helices 2 and 3 (A(L) region) of the plasma membrane Ca(2+) pump (PMCA) is not conserved in other P-ATPases. Part of this region, just upstream from the third transmembrane domain, has been associated with activation of the PMCA by acidic lipids. cDNAs coding for mutants of the Ca(2+) pump isoform h4xb with deletions in the A(L) region were constructed, and the proteins were successfully expressed in either COS or Chinese hamster ovary cells. Mutants with deletions in the segment 296-349 had full Ca(2+) transport activity, but deletions involving the segment of amino acids 350-356 were inactive suggesting that these residues are required for a functional PMCA. In the absence of calmodulin the V(max) of mutant d296-349 was similar to that of the recombinant wild type pump, but its K(0.5) for Ca(2+) was about 5-fold lower. The addition of calmodulin increased the V(max) and the apparent Ca(2+) affinity of both the wild type and d296-349 enzymes indicating that the activating effects of calmodulin were not affected by the deletion. At low concentrations of Ca(2+) and in the presence of saturating amounts of calmodulin, the addition of phosphatidic acid increased about 2-fold the activity of the recombinant wild type pump. In contrast, under these conditions phosphatidic acid did not significantly change the activity of mutant d296-349. Taken together these results suggest that (a) deletion of residues 296-349 recreates a form of PMCA similar to that resulting from the binding of acidic lipids at the A(L) region; (b) the A(L) region acts as an acidic lipid-binding inhibitory domain capable of adjusting the Ca(2+) affinity of the PMCA to the lipid composition of the membrane; and (c) the function of the A(L) region is independent of the autoinhibition by the C-terminal calmodulin-binding region.  相似文献   

17.
Phospholamban (PLB) is a 52-amino acid inhibitor of the Ca(2+)-ATPase in cardiac sarcoplasmic reticulum (SERCA2a), which acts by decreasing the apparent affinity of the enzyme for Ca(2+). To localize binding sites of SERCA2a for PLB, we performed Cys-scanning mutagenesis of PLB, co-expressed the PLB mutants with SERCA2a in insect cell microsomes, and tested for cross-linking of the mutated PLB molecules to SERCA2a using 1,6-bismaleimidohexane, a 10-A-long, homobifunctional thiol cross-linking agent. Of several mutants tested, only PLB with a Cys replacement at position 30 (N30C-PLB) cross-linked to SERCA2a. Cross-linking occurred specifically and with high efficiency. The process was abolished by micromolar Ca(2+) or by an anti-PLB monoclonal antibody and was inhibited 50% by phosphorylation of PLB by cAMP-dependent protein kinase. The SERCA2a inhibitors thapsigargin and cyclopiazonic acid also completely prevented cross-linking. The two essential requirements for cross-linking of N30C-PLB to SERCA2a were a Ca(2+)-free enzyme and, unexpectedly, a micromolar concentration of ATP or ADP, demonstrating that N30C-PLB cross-links preferentially to the nucleotide-bound, E2 state of SERCA2a. Sequencing of a purified proteolytic fragment in combination with SERCA2a mutagenesis identified Cys(318) of SERCA2a as the sole amino acid cross-linked to N30C-PLB. The proximity of residue 30 of PLB to Cys(318) of SERCA2a suggests that PLB may interfere with Ca(2+) activation of SERCA2a by a protein interaction occurring near transmembrane helix M4.  相似文献   

18.
There are four genes encoding isoforms of the plasma membrane Ca(2+) pump (PMCA). PMCA variability is increased by the presence of two splicing sites. Functional differences between the variants of PMCA have been described, but little is known about the adaptive advantages of this great diversity of pumps. In this paper we studied how the different isoforms respond to a sudden increase in Ca(2+) concentration. We found that different PMCAs are activated by Ca(2+) at different rates, PMCA 3f and 2a being the fastest, and 4b the slowest. The rate of activation by Ca(2+) depends both on the rate of calmodulin binding and the magnitude of the activation by calmodulin. We found that 2a is located in heart and the stereocilia of inner ear hair cells, 3f in skeletal muscle and 4b was identified in Jurkat cells. Both cardiac and skeletal muscle, and stereocilia recover very rapidly after a cytoplasmic Ca(2+)peak, while in Jurkat cells the recovery takes up to a minute. In stereocilia, 2a is the only method for export of Ca(2+), making the analysis of them unusually straightforward. This indicates that these rates of PMCA activation by Ca(2+) are correlated with the speed of Ca(2+) concentration decay after a Ca2 spike in the cells in which these variants of PMCA are expressed. The results suggest that the type of PMCA expressed will correspond with the speed of Ca(2+) signals in the cell.  相似文献   

19.
The sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) plays a critical role in Ca(2+) homeostasis via sequestration of this ion in the sarco/endoplasmic reticulum. The activity of this pump is inhibited by oxidants and impaired in aging tissues and cardiovascular disease. We have shown previously that the myeloperoxidase (MPO)-derived oxidants HOCl and HOSCN target thiols and mediate cellular dysfunction. As SERCA contains Cys residues critical to ATPase activity, we hypothesized that HOCl and HOSCN might inhibit SERCA activity, via thiol oxidation, and increase cytosolic Ca(2+) levels in human coronary artery endothelial cells (HCAEC). Exposure of sarcoplasmic reticulum vesicles to preformed or enzymatically generated HOCl and HOSCN resulted in a concentration-dependent decrease in ATPase activity; this was also inhibited by the SERCA inhibitor thapsigargin. Decomposed HOSCN and incomplete MPO enzyme systems did not decrease activity. Loss of ATPase activity occurred concurrent with oxidation of SERCA Cys residues and protein modification. Exposure of HCAEC, with or without external Ca(2+), to HOSCN or HOCl resulted in a time- and concentration-dependent increase in intracellular Ca(2+) under conditions that did not result in immediate loss of cell viability. Thapsigargin, but not inhibitors of plasma membrane or mitochondrial Ca(2+) pumps/channels, completely attenuated the increase in intracellular Ca(2+) consistent with a critical role for SERCA in maintaining endothelial cell Ca(2+) homeostasis. Angiotensin II pretreatment potentiated the effect of HOSCN at low concentrations. MPO-mediated modulation of intracellular Ca(2+) levels may exacerbate endothelial dysfunction, a key early event in atherosclerosis, and be more marked in smokers because of their higher SCN(-) levels.  相似文献   

20.
Mobilization of endoplasmic reticulum Ca2+ is pivotal to the ability of a cell to send or respond to stimuli. Ca(2+)-Mg(2+)-ATPases, termed SERCA pumps, sequester Ca2+ into the sarco/endoplasmic reticulum. There are several SERCA protein isoforms encoded by three genes. This paper summarizes the structure, function, tissue and subcellular distribution, and regulation of various SERCA isoforms. Then it attempts to link divergence in the signal transduction processes of cells to the types and levels of SERCA proteins they express and to how the cells regulate their SERCA pump activity. The paper examines possible linkages between SERCA pumps and receptor-activated Ca2+ entry, SERCA isoform localization and Ca(2+)-waves, and the role of SERCA pumps in nuclear Ca2+ in cell proliferation and apoptosis. Then it uses available information on cardiac function and chronic stimulation of the fast-twitch muscle to answer a series of basic questions on the regulation of SERCA activity and expression and their linkage to signal transduction. Finally, it discusses the possibility that neurons exhibit complex Ca(2+)-waves whose interactions have the potential to explain the operational basis of neural networks. A series of unanswered questions emerge based on this synthesis, including the unsettling issue of whether all the isoforms are needed to achieve the divergence in signal transduction or if there is a degree of redundancy in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号