首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transferred DNA (T-DNA) of the tumor-inducing (Ti) plasmid is transferred from Agrobacterium tumefaciens to plant cells and is stably integrated into the plant nuclear genome. By the inverse polymerase chain reaction DNA fragments were amplified that contained the T-DNA/plant DNA junctions from the total DNA of a transgenic tobacco plant that had a single copy of the T-DNA in a repetitive region of its genome. A DNA fragment containing the target site was amplified from the total DNA of non-transformed tobacco by the polymerase chain reaction using high-stringency conditions. Comparison of the nucleotide sequence of the target site with those of the T-DNA/plant DNA junctions revealed that various duplications of short stretches of nucleotide sequences around the target and in the incoming T-DNA had accompanied the integration of the T-DNA. A deletion of 16 bp at the target site was also found and the target site was similar, in terms of nucleotide sequence, to regions around the breakpoints of the T-DNA. This finding provides a clear example of the occurrence of complex rearrangements during the integration of T-DNA.  相似文献   

2.
After Agrobacterium-mediated plant transformation, multiple T-DNAs frequently integrate at the same position in the plant genome, resulting in the formation of inverted and direct repeats. Because these inverted repeats cannot be amplified and analyzed by PCR, Arabidopsis root cells were co-transformed with two different T-DNAs with distinct sequences adjacent to the T-DNA borders. Nine direct or inverted T-DNA border junctions were analyzed at the sequence level. Precise end-to-end fusions were found between two right border ends, whereas imprecise fusions and filler DNA were present in T-DNA linkages containing a left border end. The results suggest that end-to-end ligation of double-stranded T-DNAs occurs especially between right T-DNA ends and that illegitimate recombination on the basis of microhomology, deletions, repair activities and insertions of filler DNA is involved in the formation of left border T-DNA junctions. Therefore, a similar illegitimate recombination mechanism is proposed that is involved in the formation of complex T-DNA inserts as well as in the integration of the T-DNA in the plant genome.  相似文献   

3.
Rearrangements of T-DNAs during genetic transformation of plants can result in the insertion of transgenes in the form of repeats into the host genome and frequently lead to loss of transgene expression. To obtain insight into the mechanism of repeat formation we screened 45 transgenic lines of aspen and hybrid aspen transformed with six different gene constructs. The frequency of T-DNA repeat formation among randomly screened transgenic lines was found to be about 21%. In ten transgenic lines direct repeats were detected. An inverted repeat was found in one other transgenic line. Sequencing of the junctions between the T-DNA inserts revealed identical residual right-border repeat sequences at the repeat junctions in all ten transgenic lines that had direct repeats. Formation of "precise" junctions based on short regions of sequence similarity between recombining strands was observed in three transgenic lines transformed with the same plasmid. Additional DNA sequences termed filler DNAs were found to be inserted between the T-DNA repeats at eight junctions where there was no similarity between recombining ends. The length of the filler DNAs varied from 4 to almost 300 bp. Small filler DNAs--a few base pairs long--were in most cases copied from T-DNA near the break points. The large filler sequences of about 300 bp in two transgenic lines were found to be of host plant origin, suggesting that transgene repeat formation occurred as a result of the simultaneous invasion of a receptive site in the host genome by two independent T-DNA strands. On the basis of the results obtained, and in the light of previous reports on T-DNA/plant DNA junctions in aspen and other crop plants, a mechanistic model for transgene rearrangement and filler formation is suggested.  相似文献   

4.
To assist in the analysis of plant gene functions we have generated a new Arabidopsis insertion mutant collection of 90 000 lines that carry the T-DNA of Agrobacterium gene fusion vector pPCV6NFHyg. Segregation analysis indicates that the average frequency of insertion sites is 1.29 per line, predicting about 116 100 independent tagged loci in the collection. The average T-DNA copy number estimated by Southern DNA hybridization is 2.4, as over 50% of the insertion loci contain tandem T-DNA copies. The collection is pooled in two arrays providing 40 PCR templates, each containing DNA from either 4000 or 5000 individual plants. A rapid and sensitive PCR technique using high-quality template DNA accelerates the identification of T-DNA tagged genes without DNA hybridization. The PCR screening is performed by agarose gel electrophoresis followed by isolation and direct sequencing of DNA fragments of amplified T-DNA insert junctions. To estimate the mutation recovery rate, 39 700 lines have been screened for T-DNA tags in 154 genes yielding 87 confirmed mutations in 73 target genes. Screening the whole collection with both T-DNA border primers requires 170 PCR reactions that are expected to detect a mutation in a gene with at least twofold redundancy and an estimated probability of 77%. Using this technique, an M2 family segregating a characterized gene mutation can be identified within 4 weeks.  相似文献   

5.
Analysis of Agrobacterium-transferred DNA (T-DNA) revealed strong correlations between transgene structures and floral pigmentation patterns from chalcone synthase (chs) co-suppression among 47 Petunia transformants. Presented here are the full details of T-DNA structural organization in that population. Sixteen transformants (34%) carried one T-DNA copy while 31 (66%) carried 106 complete and partial T-DNA elements in 54 linkage groups. Thirty linkage groups contained multiple T-DNA copies; 15 of these contained only contiguously repeated copies, 8 contained only dispersed copies and 7 contained both. Right-border inverted repeats were three times more frequent than left-border inverted or direct repeats. Large fragments of binary-vector sequences were linked to the T-DNA in seven plants.  相似文献   

6.
Summary The T-DNA structure and organization in tissues obtained via transformation of tobacco protoplasts with Ti-plasmid DNA was found to be completely different from the T-DNA introduced via Agrobacterium tumefaciens. It is often fragmented. Overlapping copies of T-DNA, having various sizes, as well as separated fragments of T-DNA were detected. The border sequences of 23 basepairs (bp), flanking the T-region in the Ti-plasmid as direct repeats are not used as preferred sequences for integration. Similar results were obtained with a T-region clone lacking one of the TL-borders. This clone, which carried the cytokinin locus and only the right border sequence of TL and the left border sequence of TR, still had the capacity to transform protoplasts. Also the Vir-region of the Ti-plasmid is not required for integration of foreign DNA via DNA transformation. This is demonstrated by the results with the T-region clone mentioned and by the transforming capacity of a Ti-plasmid carrying a mutated Vir-region. Nevertheless, in a number of Ti-plasmid DNA transformants Vir-region fragments were found to be stably integrated. Furthermore, it has been established that co-transformation can occur with plant cells. Besides the detection of Ti-plasmid fragments from outside the T-region also DNA sequences originating from two DNA sources, which were both independently present in transformation experiments, have been found in some DNA transformants, e.g. calf thymus DNA, which was used as carrier DNA. No expression of the co-transferred DNA was observed. In total three phenotypical classes of DNA transformants were isolated. Although the T-DNA was often scrambled, polyA+ mRNA studies indicated that the different phenotypes studied can be explained by the presence of active T-DNA genes with known functions.  相似文献   

7.
Agrobacterium tumefaciens-mediated genetic transformation involves transfer of a single-stranded T-DNA molecule (T strand) into the host cell, followed by its integration into the plant genome. The molecular mechanism of T-DNA integration, the culmination point of the entire transformation process, remains largely obscure. Here, we studied the roles of double-stranded breaks (DSBs) and double-stranded T-DNA intermediates in the integration process. We produced transgenic tobacco (Nicotiana tabacum) plants carrying an I-SceI endonuclease recognition site that, upon cleavage with I-SceI, generates DSB. Then, we retransformed these plants with two A. tumefaciens strains: one that allows transient expression of I-SceI to induce DSB and the other that carries a T-DNA with the I-SceI site and an integration selection marker. Integration of this latter T-DNA as full-length and I-SceI-digested molecules into the DSB site was analyzed in the resulting plants. Of 620 transgenic plants, 16 plants integrated T-DNA into DSB at their I-SceI sites; because DSB induces DNA repair, these results suggest that the invading T-DNA molecules target to the DNA repair sites for integration. Furthermore, of these 16 plants, seven plants incorporated T-DNA digested with I-SceI, which cleaves only double-stranded DNA. Thus, T-strand molecules can be converted into double-stranded intermediates before their integration into the DSB sites within the host cell genome.  相似文献   

8.
Summary The detailed structural organization of DNA sequences transferred to the plant genome via Agrobacterium tumefaciens has been determined in 11 transgenic tomato plants that carry the transferred DNA (T-DNA) at a single genetic locus. The majority (seven) of these plants were found to carry multiple copies of T-DNA arranged in inverted repeat structures. Such a high frequency of inverted repeats among transgenotes has not been previously reported and appears to be characteristic of transformation events caused by C58/pGV3850 strains of Agrobacterium. The inverted repeats were found to be centered on either the left or the right T-DNA boundary and both types were observed at similar frequency. In several plants both types of inverted repeat were found to coexist in the same linear array of elements. Direct repeats were observed in two plants, each time at the end of an array of inverted repeat elements, and at a lower frequency than inverted repeats. The junctions between T-DNA elements and plant DNA sequences and the junctions between adjacent T-DNA elements were mapped in the same 11 plants, allowing the determination of the distribution of junction points at each end for both types of junction. Based on a total of 17 distinct junctions at the right end of T-DNA and 19 at the left end, the distribution of junction points was found to be much more homogeneous at the right end than at the left end. Left end junctions were found to be distributed over a 3 kb region of T-DNA with two thirds of the junctions within 217 bp of the left repeat. Two thirds of the right end junctions were found to lie within 11 bp of the right repeat with the rest more than 39 bp from the right repeat. T-DNA::plant DNA junctions and T-DNA::T-DNA inverted repeat junctions showed similar distributions of junction points at both right and left ends. The possibilities that T-DNA inverted repeats are unstable in plants and refractory to cloning in wild type Escherichia coli is discussed. Two distinct types of mechanisms for inverted repeat formation are contrasted, replication and ligation mechanisms.  相似文献   

9.
Transgenic loci obtained after Agrobacterium tumefaciens -mediated transformation can be simple, but fairly often they contain multiple T-DNA copies integrated into the plant genome. To understand the origin of complex T-DNA loci, floral-dip and root transformation experiments were carried out in Arabidopsis thaliana with mixtures of A. tumefaciens strains, each harboring one or two different T-DNA vectors. Upon floral-dip transformation, 6–30% of the transformants were co-transformed by multiple T-DNAs originating from different bacteria and 20–36% by different T-DNAs from one strain. However, these co-transformation frequencies were too low to explain the presence of on average 4–6 T-DNA copies in these transformants, suggesting that, upon floral-dip transformation, T-DNA replication frequently occurs before or during integration after the transfer of single T-DNA copies. Upon root transformation, the co-transformation frequencies of T-DNAs originating from different bacteria were similar or slightly higher (between 10 and 60%) than those obtained after floral-dip transformation, whereas the co-transformation frequencies of different T-DNAs from one strain were comparable (24–31%). Root transformants generally harbor only one to three T-DNA copies, and thus co-transformation of different T-DNAs can explain the T-DNA copy number in many transformants, but T-DNA replication is postulated to occur in most multicopy root transformants. In conclusion, the comparable co-transformation frequencies and differences in complexity of the T-DNA loci after floral-dip and root transformations indicate that the T-DNA copy number is highly determined by the transformation-competent target cells.  相似文献   

10.
The integration and structure of a transgene locus can have profound effects on the level and stability of transgene expression. We screened 28 transgenic birch (Betula platyphylla Suk.) lines transformed with an insect-resistance gene (bgt) using Agrobacterium tumefaciens. Among the transgenic plants, the copy number of transgene varied from one to four. A rearrangement or partial deletion had occurred in the process of T-DNA integration. T-DNA repeat formation, detected by reverse primer PCR, was found among randomly screened transgenic lines. Sequencing of the junctions between the T-DNA inserts revealed deletions of 19–589 bp and an additional 45 bp filler DNA sequence was inserted between the T-DNA repeats at one junction. Micro-homologous sequences (1–6 bp) were observed in the junctions between the T-DNA inserts. Using SiteFinding-PCR, a relatively high percentage of AT value was found for the flanking regions. Deletion of the right border repeat was observed in 12/18 of the T-DNA/plant junctions analyzed. The number of nucleotides deleted varied from 3 to 712. Deletions of 17–89 bp were observed in all left T-DNA/plant junctions analyzed. A vector backbone DNA sequence in the transgene loci was also detected using primer pairs outside the left and right T-DNA borders. Approximately 89.3% of the lines contained some vector backbone DNA. These observations revealed that it is important to check the specificity of the integration. A mechanism of T-DNA transport and integration is proposed for this long-lived tree species.  相似文献   

11.
T-DNA integration patterns in 49 transgenic grapevines produced via Agrobacterium-mediated transformation were analyzed. Inverse PCR (iPCR) was performed to identify T-DNA/plant junctions. Sequence comparison revealed several deletions in the T-DNA right border (RB) and left border (LB), and filler DNA and duplications or deletions of grapevine DNA at the T-DNA insertion loci. In 20 T-DNA/grapevine genome junctions microsimilarities were found associated with the joining points and in all grapevine lines microsimilarities were present near the breaking points along the 30 bases of T-DNA adjacent to the two borders. Analysis of target site preferences of T-DNA insertions indicated a non-random distribution of the T-DNA, with a bias toward the intron regions of the grapevine genes. Compositional analysis of grapevine DNA around the T-DNA insertion sites revealed an inverse relationship between the CG and AT-skews and AT rich sequences present at 300–500 bp upstream the insertion points, near the RB of the T-DNA. PCR assays showed that vector backbone sequences were integrated in 28.6% of the transgenic plants analyzed and multiple T-DNAs frequently integrated at the same position in the plant genome, resulting in the formation of tandem and inverted repeats.  相似文献   

12.
Zheng  Si-Jun  Henken  Betty  Sofiari  Eri  Jacobsen  Evert  Krens  Frans A.  Kik  Chris 《Transgenic research》2001,10(3):237-245
Genomic DNA blot hybridization is traditionally used to demonstrate that, via genetic transformation, foreign genes are integrated into host genomes. However, in large genome species, such as Allium cepa L., the use of genomic DNA blot hybridization is pushed towards its limits, because a considerable quantity of DNA is needed to obtain enough genome copies for a clear hybridization pattern. Furthermore, genomic DNA blot hybridization is a time-consuming method. Adaptor ligation PCR (AL-PCR) of genomic DNA flanking T-DNA borders does not have these drawbacks and seems to be an adequate alternative to genomic DNA blot hybridization. Using AL-PCR we proved that T-DNA was integrated into the A. cepa genome of three transgenic lines transformed with Agrobacterium tumefaciens EHA105 (pCAMBIA 1301). The AL-PCR patterns obtained were specific and reproducible for a given transgenic line. The results showed that T-DNA integration took place and gave insight in the number of T-DNA copies present. Comparison of AL-PCR and previously obtained genomic DNA blot hybridization results pointed towards complex T-DNA integration patterns in some of the transgenic plants. After cloning and sequencing the AL-PCR products, the junctions between plant genomic DNA and the T-DNA insert could be analysed in great detail. For example it was shown that upon T-DNA integration a 66bp genomic sequence was deleted, and no filler DNA was inserted. Primers located within the left and right flanking genomic DNA in transgenic shallot plants were used to recover the target site of T-DNA integration.  相似文献   

13.
Zhang J  Cai L  Cheng J  Mao H  Fan X  Meng Z  Chan KM  Zhang H  Qi J  Ji L  Hong Y 《Transgenic research》2008,17(2):293-306
While genetically modified upland cotton (Gossypium hirsutum L.) varieties are ranked among the most successful genetically modified organisms (GMO), there is little knowledge on transgene integration in the cotton genome, partly because of the difficulty in obtaining large numbers of transgenic plants. In this study, we analyzed 139 independently derived T0 transgenic cotton plants transformed by Agrobacterium tumefaciens strain AGL1 carrying a binary plasmid pPZP-GFP. It was found by PCR that as many as 31% of the plants had integration of vector backbone sequences. Of the 110 plants with good genomic Southern blot results, 37% had integration of a single T-DNA, 24% had two T-DNA copies and 39% had three or more copies. Multiple copies of the T-DNA existed either as repeats in complex loci or unlinked loci. Our further analysis of two T1 populations showed that segregants with a single T-DNA and no vector sequence could be obtained from T0 plants having multiple T-DNA copies and vector sequence. Out of the 57 T-DNA/T-DNA junctions cloned from complex loci, 27 had canonical T-DNA tandem repeats, the rest (30) had deletions to T-DNAs or had inclusion of vector sequences. Overlapping micro-homology was present for most of the T-DNA/T-DNA junctions (38/57). Right border (RB) ends of the T-DNA were precise while most left border (LB) ends (64%) had truncations to internal border sequences. Sequencing of collinear vector integration outside LB in 33 plants gave evidence that collinear vector sequence was determined in agrobacterium culture. Among the 130 plants with characterized flanking sequences, 12% had the transgene integrated into coding sequences, 12% into repetitive sequences, 7% into rDNAs. Interestingly, 7% had the transgene integrated into chloroplast derived sequences. Nucleotide sequence comparison of target sites in cotton genome before and after T-DNA integration revealed overlapping microhomology between target sites and the T-DNA (8/8), deletions to cotton genome in most cases studied (7/8) and some also had filler sequences (3/8). This information on T-DNA integration in cotton will facilitate functional genomic studies and further crop improvement.  相似文献   

14.
For genetic transformation of plants, floral dip with Agrobacterium often results in integration of multiple T-DNA copies at a single locus and frequently in low and unstable transgene expression. To obtain efficient single-copy T-DNA transformants, two CRE/ loxP recombinase-based simplifying strategies for complex T-DNA loci were compared. A T-DNA vector with oppositely oriented loxP sites was transformed into CRE -expressing and wild-type control Arabidopsis thaliana plants. Of the primary CRE -expressing transformants, 55% harboured a single copy of the introduced T-DNA, but only 15% in the wild-type plants. However, 73% of the single-copy transformants in the CRE background showed continuous somatic inversion of the DNA segment between the two loxP sites. To avoid inversion of the loxP -flanked T-DNA segment, two T-DNA vectors harbouring only one loxP site were investigated for their suitability for CRE/ loxP recombinase-mediated resolution upon floral-dip transformation into CRE -expressing plants. On average, 70% of the transformants in the CRE background were single-copy transformants, whereas the single-copy T-DNA frequency was only 11% for both vectors in the wild-type background. Both resolution strategies yielded mostly Cre transformants in which the 35S-driven transgene expression was stable and uniform in the progeny and remarkably, also in Cre transformants with multiple T-DNA copies. Therefore, a role is proposed for the CRE recombinase in preventing inverted T-DNA repeat formation or modifying the locus chromatin structure, resulting in a reduced sensitivity for silencing.  相似文献   

15.
The AMA1 sequence is an efficient plasmid replicator and transformation enhancer in Aspergillus nidulans. It comprises two long perfect inverted repeats (MATE elements) flanking a short, unique, central spacer. Subclone analysis indicates that the complete inverted duplication, but not the unique central spacer, is necessary for efficient plasmid replication. The smallest fragments able to affect transformation efficiency lie within the AT-rich portions of the inverted repeats. We demonstrate that two or more copies of the repeat in any relative orientation are able to perform the replicator function. A single copy of a MATE element increases transformation frequency to a modest extent but leads to multiple rearrangement, unstable integration or concatenation of vector molecules. Multimeric concatenates generated during this process are more stable mitotically, and when reisolated, transform the fungus at a much higher frequency than the original monomeric vector. Selection for multiple copies leads to the accumulation of multimeric products which resemble amplified DNA in various eukaryotic systems.  相似文献   

16.
Summary We established tobacco tumour cell lines from crown galls induced by Agrobacterium. Restriction fragments containing T-DNA/plant DNA junctions were cloned from one of the cell lines, which has a single copy of the T-DNA in a unique region of its genome. We also isolated a DNA fragment that contained the integration target site from nontransformed tobacco cells. Nucleotide sequence analyses showed that the right and left breakpoints of the T-DNA mapped ca. 7.3 kb internal to the right 25 by border and ca. 350 by internal to the left border respectively. When the nucleotide sequences around these breakpoints were compared with the sequence of the target, significant homology was seen between the region adjacent to the integration target site and both external regions of the T-DNA breakpoints. In addition, a short stretch of plant DNA in the vicinity of the integration site was deleted. This deletion seems to have been promoted by homologous recombination between short repeated sequences that were present on both sides of the deleted stretch. Minor rearrangements, which included base substitutions, insertions and deletions, also took place around the integration site in the plant DNA. These results, together with previously reported results showing that in some cases sequences homologous to those in T-DNA are present in plant DNA regions adjacent to left recombinational junctions, indicate that sequence homology between the incoming T-DNA and the plant chromosomal DNA has an important function in T-DNA integration. The homology may promote close association of both termini of a T-DNA molecule on a target sequence; then TDNA may in some cases be integrated by a mechanism at least in part analogous to homologous recombination.Shogo Matsumoto is on leave from Biochemical Research Institute, Nippon Menard Cosmetic Co., Ltd, Ogaki, Gifu-ken 503, Japan  相似文献   

17.
In genetically transformed plants, transgene silencing has been correlated with multiple and complex insertions of foreign DNA, e.g. T-DNA and vector backbone sequences. Occasionally, single-copy transgenes also suffer transgene silencing. We have compared integration patterns and T-DNA/plant DNA junctions in a collection of 37 single-copy T-DNA-transformed Arabidopsis lines, of which 13 displayed silencing. Vector sequences were found integrated in five lines, but only one of these displayed silencing. Truncated T-DNA copies, positioned in inverse orientation to an intact T-DNA copy, were discovered in three lines. The whole nptII gene with pnos promoter was present in the truncated copy of one such line in which heavy silencing has been observed. In the two other lines no silencing has been observed over five generations. Thus, vector sequences and short additional T-DNA sequences are not sufficient or necessary to induce transgene silencing. DNA methylation of selected restriction endonuclease sites could not be correlated with silencing. Our collection of T-DNA/plant DNA junctions has also been used to evaluate current models of T-DNA integration. Data for some of our lines are compatible with T-DNA integration in double-strand breaks, while for others initial invasion of plant DNA by the left or by the right T-DNA end seem important.  相似文献   

18.
In a spontaneous, chloramphenicol-sensitive (Cms), arginine-auxotrophic (Arg-) mutant of Streptomyces lividans 1326, two amplified DNA sequences were found. One of them was the well-characterized 5.7-kb ADS1 sequence, amplified to about 300 copies per chromosome. The second one was a 92-kb sequence called ADS2. ADS2 encoding the previously isolated mercury resistance genes of S. lividans was amplified to around 20 copies per chromosome. The complete ADS2 sequence was isolated from a genomic library of the mutant S. lividans 1326.32, constructed in the phage vector lambda EMBL4. In addition, the DNA sequences flanking the corresponding amplifiable element called AUD2 in the wild-type strain were isolated by using another genomic library prepared from S. lividans 1326 DNA. Analysis of the ends of AUD2 revealed the presence of an 846-bp sequence on both sides repeated in the same orientation. Each of the direct repeats ended with 18-bp inverted repeated sequences. This insertion sequence-like structure was confirmed by the DNA sequence determined from the amplified copy of the direct repeats which demonstrated a high degree of similarity of 65% identity in nucleic acid sequence to IS112 from Streptomyces albus. The recombination event leading to the amplification of AUD2 occurred within these direct repeats, as shown by DNA sequence analysis. The amplification of AUD2 was correlated with a deletion on one side of the flanking chromosomal region beginning very near or in the amplified DNA. Strains of S. lividans like TK20 and TK21 which are mercury sensitive have completely lost AUD2 together with flanking chromosomal DNA on one or both sides.  相似文献   

19.
转基因水稻T—DNA侧翼序列的扩增与分析   总被引:19,自引:2,他引:17  
利用现有的转抗白叶枯病基因Xa21的水稻材料,通过TAIL-PCR技术扩增出携带Xa21基因的T-DNA的侧翼序列,对24个有效扩增片段的序列分析结果表明,其中14个侧翼序列是水稻DNA,9个含载体主干序列,1个是外源基因Xa21片段,14个T-DNA侧翼的水稻DNA序列与直接转化法外源基因整合位点的基因组序列具有不同的特点,这些T-DNA在水稻染色体上整合后其两端序列的特点类似于在转基因双子叶植物中观察到的现象,在含主干序列的侧翼序列(37.5%,9/24),中,载体主干序列是以不同的类型出现的。  相似文献   

20.
DNA fragments containing T-DNA/plant DNA junctions isolated from 17 transgenic tobacco plants were amplified using inverse PCR. Analysis of the nucleotide sequences of 34 cloned DNA fragments revealed 100% homology with vector sequences outside T-DNA in 10 cases. Nine nucleotide sequences had homology with the repeats in the tobacco genome. The percentage of homology varied from 70 to 90%, with the identified repeats belonging to different types. In most clones no homology was revealed with the GENEBANK sequences. Alignment of the sequences truncated during the integration of the left and the right borders of the T-DNA insertions demonstrated significant clusterization (10 bp region) of truncation sites for the left border. Five sequences had identical truncation sites (+23 T) that showed the perferable use of this nucleotide. The AT content varied from 51 to 72% which was close to the total percentage of AT pairs in the tobacco genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号