共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
3.
A purine-sensitive phenotype results from a previously described mutation in the structural gene (pyrE) for orotate phosphoribosyltransferase (OPT) in Escherichia coli K-12. OPT from both the mutant and the wild-type was partially inhibited by adenine and adenosine, although other purine derivatives were not effective for this inhibition. The Km values of the mutant OPT were 580 and 760 microM for orotate and 5'-phosphoribosyl-1'-pyrophosphate (PRib-PP), respectively, whereas the corresponding values for the wild-type OPT were 40 and 60 microM. The intracellular level of PRib-PP was decreased to less than 15% of the normal level when purine derivatives were added to exponentially growing cultures of both the parent and mutant strains. However, this decrease of the PRib-PP level was not found in strains derived from the mutant, in which the purine-sensitive phenotype was suppressed by a secondary mutation. The purine-sensitive phenotype was caused by retardation of the pyrimidine de novo pathway, when the intracellular level of PRib-PP was diminished by exogenously supplied purine derivatives. 相似文献
4.
Biochemical and regulatory properties of Escherichia coli K-12 hisT mutants. 总被引:4,自引:15,他引:4 下载免费PDF全文
Escherichia coli K-12 hisT mutants were isolated, and their properties were studied. These mutants are derepressed for the histidine operon, map close to the purF locus at about 49.5 min on the E. coli linkage map, and lack pseudouridylate synthetase activity. The defect in this enzyme leads to the absence of pseudouridines in the anticodon loop of several transfer ribonucleic acid species, as evidenced by the altered elution profile on reversed-phase chromatography and resistance to amino acid analogues. Finally, the hisT mutants studied have a reduced growth rate that appears to be linked to hisT, although it is not known whether it is due to the same mutation. The normal generation time can be restored by supplementing the medium with adenine, uracil, and isoleucine. 相似文献
5.
6.
7.
Escherichia coli K-12 mutant PS187 carries a mutation, ilvA538, in the structural gene for the biosynthetic L-threonine deaminase that leads to a leucine-sensitive growth phenotype, an isoleucine- and leucine-hypersensitive L-threonine deaminase, and pleiotropic effects resulting in abnormally low and invariant expression of some of the isoleucine-valine biosynthetic enzymes. Fifty-eight derivatives of strain PS187 were isolated as resistant to growth inhibition by leucine, by valine, or by valine plus glycly-valine and were biochemically, genetically, and physiologically characterized. All of these derivatives produced the feedback-hypersensitive L-threonine deaminase, and thus presumably possess the ilvA538 allele of the parent strain. Elevated synthesis of L-threonine deaminase was observed in 41 of the 58 isolates. Among 18 strains analyzed genetically, only those with mutations linked to the ilv gene clusters at 83 min produced elevated levels of L-threonine deaminase. One of the strains, MSR91, isolated as resistant to valine plus glycyl-valine, was chosen for more detailed study. The locus in strain MSR91 conferring resistance was located in four factor crosses between ilvE and rbs, and is in or near the ilvO gene postulated to be a site controlling the expression of the ilvEDA genes. Synthesis of the ilvEDA gene products in strain MSR91 is constitutive and derepressed approximately 200-fold relative to the parent strain, indicating that the genetic regulatory effects of the ilvA538 allele have been suppressed. Strain MSR91 should be suitable for use in purification of the ilvA538 gene product, since enzyme synthesis is fully derepressed and the suppressor mutation is clearly not located within the ilvA gene. 相似文献
8.
Mutational analysis of nitrate regulatory gene narL in Escherichia coli K-12. 总被引:3,自引:5,他引:3 下载免费PDF全文
The narL gene product, NarL, is the nitrate-responsive regulator of anaerobic respiratory gene expression. We used genetic analysis of narL mutants to better understand the mechanism of NarL-mediated gene regulation. We selected and analyzed seven nitrate-independent narL mutants. Each of three independent, strongly constitutive mutants had changes of Val-88 to Ala. The other four mutants were weakly constitutive. The narL505(V88A) allele was largely dominant to narL+, while narX+ had a negative influence on its constitutive phenotype, suggesting that NarX may play a negative role in nitrate regulation. We also constructed two narL mutations that are analogous to previously characterized constitutive degU alleles. The first, narL503(H15L), was a recessive null allele. The second, narL504(D110K), functioned essentially as wild type but was dependent on narX+ for full activity. We changed Asp-59 of NarL, which corresponds to the site of phosphorylation of other response regulators, to Asn. This change, narL502(D59N), was a recessive null allele, which is consistent with the hypothesis that NarL requires phosphorylation for activation. Finally, we tested the requirement for molybdate on regulation in a narL505(V88A) strain. Although narL505(V88A) conferred some nitrate-independent expression of fdnGHI (encoding formate dehydrogenase-N) in limiting molybdate, it required excess molybdate for full induction both in the absence and in the presence of nitrate. This finding suggests that narL505(V88A) did not confer molybdate-independent expression of fdnGHI. 相似文献
9.
John Guardiola Felice Cervone Alessandro Lamberti Mark Levinthal Maurizio Iaccarino 《Molecular & general genetics : MGG》1978,159(1):27-32
Summary We describe the regulatory properties of two strains carrying either the ilvA624 or the ilvA625 mutations, located in the structural gene for threonine deaminase. Crude extracts of both these strains possess a threonine deaminase activity migrating on polyacrylamide gels, differently from the wild type enzyme. Growth studies demonstrate that these mutations do not cause a limitation of isoleucine biosynthesis, suggesting normal catalytic activity of deaminase.A regulatory consequence of the ilvA624 allele is a derepression of the isoleucine-valine biosynthetic enzymes, which is recessive to an ilvA
+ allele. The ilvA625 mutation causes a derepression which is dominant in an ilvA625/ilvA
+ diploid. We interpret these data assuming that threonine deaminase, previously shown to be an autogenous regulator of the ilv genes, lacks a repressor function in the ilvA624 mutant, while in the ilvA625 mutant it is a better activator than wild type threonine deaminase.The data are discussed in terms of a model requiring that threonine deaminase, or a precursor of it, is in equilibrium between two forms, one being an activator of gene expression and the other being a repressor. 相似文献
10.
Escherichia coli K-12 lysyl-tRNA synthetase mutant with a novel reversion pattern 总被引:6,自引:8,他引:6 下载免费PDF全文
Fast-growing revertants have been selected from a slow-growing lysyl-tRNA synthetase mutant. All of the revertants had increased lysyl-tRNA synthetase activity compared with the mutant (5- to 85-fold), and in some revertants this amounted to two to three times the wild-type synthetase activity. Two-dimensional gel electrophoresis of a whole-cell extract of revertant IH2018 (1.5- to 2-fold wild-type synthetase activity) showed that the increase in synthetase activity is due to the induction of cryptic lysyl-tRNA synthetase forms and not to a change in the constitutive lysyl-tRNA synthetase. Genetic studies have shown that a locus termed rlu (for regulation of lysU ) which is cotransducible with purF at 49.5 min influences the amount of the cryptic lysyl-tRNA synthetase. 相似文献
11.
Thymidine-requiring strains of Escherichia coli isolated by trimethoprim selection often simultaneously acquire the ability to suppress bacteriophage T4 nonsense mutations. Suppression is lost in Thy+ revertants and recombinants, but is sometimes retained in thyA plasmid-bearing transformants. Suppression is restricted in Strr derivatives of the Thy- mutants, indicating that suppression occurs at the level of translation. 相似文献
12.
A Ssrman P Chartrand R Proschek M Desrochers D Tardif C Lapointe 《Journal of bacteriology》1975,124(3):1205-1212
An uroporphyrin III-accumulating mutant of Escherichia coli K-12 was isolated by neomycin. The mutant, designated SASQ85, was catalase deficient and formed dwarf colonies on usual media. Comparative extraction by cyclohexanone and ethyl acetate showed the superiority of the former for the extraction of the uroporphyrin accumulated by the mutant. Cell-free extracts of SASQ85 were able to convert 5-aminolevulinic acid and porphobilinogen to uroporphyrinogen, but not to copro- or protoporphyrinogen. Under the same conditions cell-free extracts of the parent strain converted 5-aminolevulinic to uroporphyringen, coproporphyrinogen, and protoporphyrinogen. The conversion of porphobilinogen to uroporphyrinogen by cell-free extracts of the mutant was inhibited 98 and 95%, respectively, by p-chloromercuribenzoate and p-chloromercuriphenyl-sulfonate, indicating the presence of uroporphyrinogen synthetase activity in the extracts. Spontaneous transformation of porphobilinogen to uroporphyrin was not detectable under the experimental conditions used [4 h at 37 C in tris(hydroxymethyl)aminomethane-potassium phosphate buffer, pH 8.2]. The results indicate a deficient uroporphyrinogen decarboxylase activity of SASQ85 which is thus the first uroporphyrinogen decarboxylase-deficient mutant isolated in E. coli K-12. Mapping of the corresponding locus by P1-mediated transduction revealed the frequent joint transduction of hemE and thiA markers (frequency of co-transduction, 41 to 44%). The results of the genetic analysis suggest the gene order rif, hemE, thiA, metA; however, they do not totally exclude the gene order rif, thiA, hemE, metA. 相似文献
13.
Without significant killing, d-serine at concentrations greater than 50 mug/ml inhibits growth in minimal media of mutants of Escherichia coli K-12 unable to form d-serine deaminase. The mutants eventually recover at lower concentrations. There is no evidence of d-serine toxicity in rich media. Toxicity is partially reversed by l-serine. d-Serine does not interfere with l-serine activation, one-carbon metabolism, or (Cronan, personal communication) formation of phosphatidylserine. Pizer (personal communication) finds, however, that it is a powerful feedback inhibitor of the first enzyme of l-serine biosynthesis. In the presence of l-serine, the residual toxicity is largely and noncompetitively over come by pantothenate, indicating that d-serine inhibits growth by affecting two targets: pantothenate biosynthesis and l-serine biosynthesis. l-Serine causes transient growth inhibition in E. coli K-12. Contaminating l-serine in d-serine preparations contributes to the d-serine inhibitory response. 相似文献
14.
15.
A Del Campillo-Campbell G Kayajanian A Campbell S Adhya 《Journal of bacteriology》1967,94(6):2065-2066
16.
Hemin-deficient mutants of Escherichia coli K-12. 总被引:32,自引:16,他引:16
A Ssrman M Surdeanu G Szgli T Horodniceanu V Greceanu A Dumitrescu 《Journal of bacteriology》1968,96(2):570-572
17.
18.
19.
B L Wanner 《Journal of molecular biology》1986,191(1):39-58
20.
109Cd2+ uptake by Escherichia coli occurred by means of an active transport system which has a Km of 2.1 microM Cd2+ and a Vmax of 0.83 mumol/min X g (dry weight) in uptake buffer. 109Cd2+ accumulation was both energy dependent and temperature sensitive. The addition of 20 microM Cd2+ or Zn2+ (but not Mn2+) to the cell suspensions preloaded with 109Cd2+ caused the exchange of Cd2+. 109Cd2+ (0.1 microM) uptake by cells was inhibited by the addition of 20 microM Zn2+ but not Mn2+. Zn2+ was a competitive inhibitor of 109Cd2+ uptake with an apparent Ki of 4.6 microM Zn2+. Although Mn2+ did not inhibit 109Cd2+ uptake, the addition of either 20 microM Cd2+ or Zn2+ prevented the uptake of 0.1 microM 54Mn2+, which apparently occurs by a separate transport system. The inhibition of 54Mn2+ accumulation by Cd2+ or Zn2+ did not follow Michaelis-Menten kinetics and had no defined Ki values. Co2+ was a competitive inhibitor of Mn2+ uptake with an apparent Ki of 34 microM Co2+. We were unable to demonstrate an active transport system for 65Zn2+ in E. coli. 相似文献