首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We evaluated the possible autocrine modulatory effect of insulin on glucose metabolism and glucose-induced insulin secretion in islets isolated from normal hamsters. We measured 14CO2 and 3H2O production from d-[U-14C]glucose and d-[5-3H]glucose, respectively, in islets incubated with 0.6, 3.3, 8.3, and 16.7 mM glucose alone or with 5 or 15 mU/ml insulin, anti-insulin guinea pig serum (1:500), 25 microM nifedipine, or 150 nM wortmannin. Insulin release was measured (radioimmunoassay) in islets incubated with 3.3 or 16.7 mM glucose with or without 75, 150, and 300 nM wortmannin. Insulin significantly enhanced 14CO2 and 3H2O production with 3.3 mM glucose but not with 0.6, 8.3, or 16.7 mM glucose. Addition of anti-insulin serum to the medium with 8.3 and 16.7 mM glucose decreased 14CO2 and 3H2O production significantly. A similar decrease was obtained in islets incubated with 8.3 and 16.7 mM glucose and wortmannin or nifedipine. This latter effect was reversed by adding 15 mU/ml insulin to the medium. Glucose metabolism was almost abolished when islets were incubated in a Ca2+-deprived medium, but this effect was not reversed by insulin. No changes were found in 14CO2 and 3H2O production by islets incubated with 3.3 mM glucose and anti-insulin serum, wortmannin, or nifedipine in the media. Addition of wortmannin significantly decreased insulin release induced by 16.7 mM glucose in a dose-dependent manner. Our results suggest that insulin exerts a physiological autocrine stimulatory effect on glucose metabolism in intact islets as well as on glucose-induced insulin release. Such an effect, however, depends on the glucose concentration in the incubation medium.  相似文献   

2.
To determine the role of phosphatidylinositol 3-kinase (PI3-kinase) in the regulation of insulin secretion, we examined the effect of wortmannin, a PI3-kinase inhibitor, on insulin secretion using the isolated perfused rat pancreas and freshly isolated islets. In the perfused pancreas, 10(-8) M wortmannin significantly enhanced the insulin secretion induced by the combination of 8.3 mM glucose and 10(-5) M forskolin. In isolated islets, cyclic AMP (cAMP) content was significantly increased by wortmannin in the presence of 3.3 mM, 8.3 mM, and 16.7 mM glucose with or without forskolin. In the presence of 16.7 mM glucose with or without forskolin, wortmannin promoted insulin secretion significantly. On the other hand, in the presence of 8.3 mM glucose with forskolin, wortmannin augmented insulin secretion significantly; although wortmannin tended to promote insulin secretion in the presence of glucose alone, it was not significant. To determine if wortmannin increases cAMP content by promoting cAMP production or by inhibiting cAMP reduction, we examined the effects of wortmannin on 10(-4) M 3-isobutyl-1-methylxantine (IBMX)-induced insulin secretion and cAMP content. In contrast to the effect on forskolin-induced secretion, wortmannin had no effect on IBMX-induced insulin secretion or cAMP content. Moreover, wortmannin had no effect on nonhydrolyzable cAMP analog-induced insulin secretion in the perfusion study. These data indicate that wortmannin induces insulin secretion by inhibiting phosphodiesterase to increase cAMP content, and suggest that PI3-kinase inhibits insulin secretion by activating phosphodiesterase to reduce cAMP content.  相似文献   

3.
《Endocrine practice》2010,16(5):763-769
ObjectiveTo study the mechanism of increased insulin secretion in response to short-term administration of dexamethasone.MethodsMale Wistar rats were injected intraperitoneally with dexamethasone (dexamethasone; 200 mcg/kg body weight per day) or saline for 3 consecutive days. Insulin secretion in response to glucose, ionomycin, and KCl was quantified in islets isolated from the animals, and the amount of glucokinase was measured by Western blot.ResultsDexamethasone-treated animals had 1.18-fold higher fasting blood glucose concentration and 6.5-fold increase in fasting serum insulin concentration compared with findings from animals injected with saline. Compared with islets isolated from control rats, islets from dexamethasone-treated rats secreted more insulin at 60 minutes in response to 5.5 mM glucose (416.4 vs 115.6 fmoles/10 islets, P = .011) and in response to 16.6 mM glucose (985.5 vs 520.6 fmoles/10 islets, P = .014); no change in insulin secretion was observed at 10 minutes. Insulin secretion from islets of dexamethasone-treated rats and control rats was not differentially augmented in response to either ionomycin or potassium chloride. Glucokinase expression was not altered by treatment with dexamethasone.ConclusionsAugmentation of insulin secretion in response to glucose in the pancreatic islets from dexamethasone-treated rats is preserved in islets studied in vitro. The increase in glucose-stimulated insulin secretion appears to be mediated by steps upstream to β -cell membrane depolarization and the attended increase in intracellular calcium in the signaling pathway of insulin secretion. (Endocr Pract. 2010;16:763-769)  相似文献   

4.
The effect of various inhibitors of insulin secretion such as mannoheptulose (20 mM), atropine (1 mM), diphenylhydantoin (20 microng/ml), high concentration of Mg++ (5.3 mM) in the presence of 20 mM glucose (control) on insulin content and secretion from collagenase-isolated rat pancreatic islets was studied in vitro by cultivation of islets up to 5 or 9 days in glass Petri dishes without attachment. In a following short-term incubation for 60 min the glucose-induced insulin release without and with theophylline (5 mM) was investigated. Islets cultivated at 5 mM glucose and at 20 mM glucose with the inhibitors mannoheptulose or atropine lost the responsiveness to glucose and theophylline whereas such islets cultivated at 20 mM glucose alone or with diphenylhydantoin (DPH) or 5.3 mg Mg++ showed a stimulation of insulin secretion by glucose and theophylline. Compared, however, with freshly isolated islets all cultivated islets were restricted in their maximal glucose response and this defect was not evoked alone by quantitative changes in islet insulin content. Nevertheless, culture conditions which facilitate a net increase of insulin (content and release) during cultivation influenced also positively the glucose-induced insulin release without and with 5 mM theophylline in the following short-term experiments.  相似文献   

5.
A signaling role of glutamine in insulin secretion   总被引:7,自引:0,他引:7  
Children with hypoglycemia due to recessive loss of function mutations of the beta-cell ATP-sensitive potassium (K(ATP)) channel can develop hypoglycemia in response to protein feeding. We hypothesized that amino acids might stimulate insulin secretion by unknown mechanisms, because the K(ATP) channel-dependent pathway of insulin secretion is defective. We therefore investigated the effects of amino acids on insulin secretion and intracellular calcium in islets from normal and sulfonylurea receptor 1 knockout (SUR1-/-) mice. Even though SUR1-/- mice are euglycemic, their islets are considered a suitable model for studies of the human genetic defect. SUR1-/- islets, but not normal islets, released insulin in response to an amino acid mixture ramp. This response to amino acids was decreased by 60% when glutamine was omitted. Insulin release by SUR1-/- islets was also stimulated by a ramp of glutamine alone. Glutamine was more potent than leucine or dimethyl glutamate. Basal intracellular calcium was elevated in SUR1-/- islets and was increased further by glutamine. In normal islets, methionine sulfoximine, a glutamine synthetase inhibitor, suppressed insulin release in response to a glucose ramp. This inhibition was reversed by glutamine or by 6-diazo-5-oxo-l-norleucine, a non-metabolizable glutamine analogue. High glucose doubled glutamine levels of islets. Methionine sulfoximine inhibition of glucose stimulated insulin secretion was associated with accumulation of glutamate and aspartate. We hypothesize that glutamine plays a critical role as a signaling molecule in amino acid- and glucose-stimulated insulin secretion, and that beta-cell depolarization and subsequent intracellular calcium elevation are required for this glutamine effect to occur.  相似文献   

6.
In rat pancreatic islets the effects of cholecystokinin-8 (CCK8) on glucose-mediated insulin release, 45Ca2+ net uptake, 45Ca2+ efflux, 86Rb+ efflux, cAMP- and cGMP levels were studied. In the presence of a substimulatory glucose concentration (3 mM) CCK8 concentrations of up to 1 microM had no effect on insulin release, but CCK8 at 10 nM potentiated the stimulatory effect of glucose (11.1 mM). 10 nM CCK8 enhanced glucose-stimulated 45Ca2+ net uptake but was ineffective at substimulatory glucose levels. CCK8 had no effect on cAMP and cGMP levels in the presence of 11.1 mM glucose, CCK8 increased 86Rb+ (a measure of K+) in the presence of both 3 and 11.1 mM glucose. This effect was abolished when Ca2+ was omitted from the perifusion medium. CCK8 did not alter glucose (11.1 mM)-stimulated 45Ca2+ efflux rate. These data indicate that (1) CCK8 potentiates glucose-stimulated insulin secretion possibly via an effect on Ca2+ uptake, 2) by affecting Ca2+ uptake, CCK8 enhances K+ efflux, and 3) CCK8 does not mediate its effect via cAMP or cGMP. With respect to 86Rb+ efflux the mechanism of CCK8 action appears to be different from that of glucose. When the mechanism of CCK action on islets is compared with that on exocrine pancreas (data from others) there are similarities (importance of Ca2+ uptake and non-importance of cAMP and cGMP).  相似文献   

7.
Perifused isolated rat islets were used to show that biotin plus 16.5 mM glucose evoked more insulin secretion than 16.5 mM glucose alone. Whether or not this reinforcement of glucose-induced insulin secretion by biotin is unique was studied by using perifused islets stimulated with 16.5 mM glucose plus 100 microM of one of various components of the vitamin B group. No effect of any of these vitamins was found on glucose-induced insulin secretion. These results indicate that biotin is unique among the members of the vitamin B group in enhancing glucose-induced insulin secretion. Static incubation experiments showed that biotin did not potentiate insulin release when the islets were incubated with an experimental solution containing either no or 2.8 mM glucose. The addition of biotin to 27.7 mM glucose, which is the maximal concentration for stimulating insulin release, did not significantly enhance the effect of the glucose on insulin release (although it did at 16.5 mM glucose). These findings indicate that biotin, by itself, does not stimulate insulin secretion, and does not enhance glucose-induced insulin secretion beyond the ability of glucose itself to stimulate insulin secretion.  相似文献   

8.
The effects of L-asparaginase were evaluated on glucose-induced insulin release from isolated rat islets of Langerhans. Islets were obtained by enzymatic digestion of pancreas from Sprague-Dawley rats. The study of L-asparaginase effects on insulin secretion was performed in a static incubation of islets. Insulin secretion was measured at 60 min of incubation with different secretagogues with and without L-asparaginase. L-Asparaginase at concentrations from 310 to 5,000 U/ml could inhibit the glucose-induced insulin secretion in a dose-dependent manner. This effect was not recovered after incubation in the absence of the drug for another 2 h. The half-maximal inhibitory effect of the enzyme on insulin secretion was observed at L-asparaginase concentrations of 1,000 U/ml. Tolbutamide (200 microM) and ketoisocaproic acid (20 mM) did not induce insulin secretion in the presence of moderately high L-asparaginase concentrations. L-Asparaginase did not inhibit glucose-induced insulin secretion in the presence of isobutyl-methyl-xanthine (IBMX) (20 microM) or forskolin (20 microM). L-Asparaginase promoted a decrease in total c-AMP in isolated rat islets at concentrations from 500 to 1,500 U/ml when they were stimulated by glucose. If islets were treated with IBMX or forskolin, L-asparaginase did not inhibit the glucose-induced total c-AMP levels in islets.  相似文献   

9.
The role of the Ca2+/phospholipid-dependent protein kinase C (PKC) in cholinergic potentiation of insulin release was investigated by measuring islet PKC activity and insulin secretion in response to carbachol (CCh), a cholinergic agonist. CCh caused a dose-dependent increase in insulin secretion from cultured rat islets at stimulatory glucose concentrations (greater than or equal to 7 mM), with maximal effects observed at 100 microM. Short-term exposure (5 min) of islets to 500 microM-CCh at 2 mM- or 20 mM-glucose resulted in redistribution of islet PKC activity from a predominantly cytosolic location to a membrane-associated form. Prolonged exposure (greater than 20 h) of islets to 200 nM-phorbol myristate acetate caused a virtual depletion of PKC activity associated with the islet cytosolic fraction. Under these conditions of PKC down-regulation, the potentiation of glucose-stimulated insulin secretion by CCh (500 microM) was significantly decreased, but not abolished. CCh stimulated the hydrolysis of inositol phospholipids in both normal and PKC-depleted islets, as assessed by the generation of radiolabelled inositol phosphates. These results suggest that the potentiation of glucose-induced insulin secretion by cholinergic agonists is partly mediated by activation of PKC as a consequence of phospholipid hydrolysis.  相似文献   

10.
The effects of various sugars on the simultaneous release of insulin and accumulation of cyclic AMP were studied in collagenase isolated rat pancreatic islets. D-Glucose stimulated the formation of cyclic AMP at 3 and 60 min of incubation, whether measured by a label incorporation technique, or by the protein kinase binding assay of Gilman. Only D-glucose and D-mannose were able to stimulate insulin release and cyclic [3H]AMP accumulation in the absence of other substrate. D-fructose had a stimulatory effect in the presence of 3.3 mM D-glucose only at a high concentration (33.8 mM), and enhanced the effects of 8.3 mM glucose when added at the concentration of 8.3 mM. D-Galactose was effective only together with 8.3 mM D-glucose. The order of potency of these hexoses, both regarding insulin secretion and cyclic [3H]AMP accumulation, was glucose-mannose-fructose-galactose. L-Glucose and 3-O-methylglucose had no effects at 60 min when incubated together with 8.3 mM D-glucose, whereas at 3 min, 3-O-methylglucose induced a small stimulation of the cyclic [3H]AMP response. D-mannoheptulose and D-glucosamine inhibited the insulin and cyclic [3H]AMP responses to 27.7 mM glucose. Mannoheptulose suppressed completely the glucose effect on cyclic nucleotide accumulation within 90 s. Although under all incubation conditions, the threshold stimulatory or inhibitory concentration of a given agent was identical for insulin release and cyclic [3H]AMP accumulation, these two variables showed quantitative differences in incubations of 60 min, the magnitude of the changes in insulin secretion being larger than that for the cyclic nucleotide. It is suggested that modulation of islet cyclic AMP level is an important step in the transmission of the effect of various sugars on insulin release; however, glucose and possibly other sugars may also enhance insulin release by additional mechanisms not involving the adenylate cyclase-cyclic AMP system of the beta-cell.  相似文献   

11.
Effects of antisomatostatin and antiglucagon sera on insulin secretion were studied in isolated pancreatic islets of rats. Addition of antisomatostatin or antiglucagon serum to the incubation medium containing 5.5 mM glucose significantly increased insulin secretion from the islets. In contrast, these effect were not apparent when the glucose concentration was elevated to 20 mM. In the presence of antiglucagon serum the free glucagon concentration in the medium was decreased, while the total glucagon was markedly increased, suggesting that the antiglucagon serum caused an increase in glucagon secretion. These results suggest that A- and D-cells may play an important role in regulating insulin release at physiologic glucose concentration.  相似文献   

12.
We studied the effect of a specific-competitive inhibitor of the sucrose taste response, p-nitrophenyl-D-glucopyranoside (PNP-Glu) on insulin release and phosphoinositide metabolism in rat pancreatic islets. The alpha-anomer, but not the beta-anomer, of PNP-Glu at a concentration of 5 mM inhibited insulin release induced by 10 mM glucose. Islets were labeled by exposure for 2 h to 10 uCi of myo-[2-3H] inositol solution supplemented with 2.8 mM glucose. Forty islets were then incubated in the presence of 10 mM LiCl, 1 mM inositol and 10 mM glucose with or without the anomers of PNP-Glu. [3H] radioactivity in the incubation medium remained significantly greater in the presence of the alpha-anomer of PNP-Glu than in the presence of glucose alone after 5- and 20-min incubation. The inositol monophosphate levels in the islets incubated with glucose alone were increased more than in the islets with alpha-anomer. The beta-anomer of PNP-Glu did not change either glucose-induced insulin release or phosphoinositide breakdown. A patch-clamp study revealed that neither anomer affected the glucose-dependent ATP-sensitive K(+)-channels. These results indicate that the anomeric preference for glucose in insulin release in the pancreatic islets is closely associated with phosphoinositide breakdown.  相似文献   

13.
Porcine islet isolation, cellular composition and secretory response   总被引:1,自引:0,他引:1  
Porcine islets were isolated by infusion of a warm collagenase solution into whole pancreata followed by static incubation at 37 degrees C for 15 minutes. The pancreata were then chopped into small pieces and the free islets purified by filtration and centrifugation over a ficoll gradient. The insulin:amylase ratio of the islets compared to that in the intact pancreas was determined in 19 pancreata and indicates that the isolated islets were of a high degree of purity. The distribution of insulin, glucagon, somatostatin and pancreatic polypeptide containing cells in pig pancreas sections was compared with that in rat. Porcine islets were much smaller and less well defined than rat islets with infiltration of acinar material even into the islet core. The levels of insulin, glucagon and somatostatin in porcine pancreas and isolated porcine islets were measured using conventional radioimmunoassay techniques. The ratio of these hormones in the pancreas was 105.1:5.8:1 respectively, and in the islets 105.1:0.68:0.087 respectively. Fragmentation of the islets during the isolation may have led to the loss of glucagon and somatostatin-containing cells. Islets cultured overnight and tested with a range of glucose concentrations for one hour did not show a significant stimulation of insulin secretion in the presence of 8.3 mM or 16.7 mM glucose compared to that in 2.8 mM glucose. However freshly isolated islets challenged with 8.3 mM, 13.9 mM and 22.2 mM glucose showed a 1.8 fold, 2.0 fold and 2.3 fold response respectively, over that in 2.8 mM glucose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Exposure of rat pancreatic islets to 20 mM leucine for 24 h reduced insulin release in response to glucose (16.7 and 22.2 mM). Insulin release was normal when the same islets were stimulated with leucine (40 mM) or glyburide (1 microM). To investigate the mechanisms responsible for the different effect of these secretagogues, we studied several steps of glucose-induced insulin secretion. Glucose utilization and oxidation rates in leucine-precultured islets were similar to those of control islets. Also, the ATP-sensitive K(+) channel-independent pathway of glucose-stimulated insulin release, studied in the presence of 30 mM K(+) and 250 microM diazoxide, was normal. In contrast, the ATP-to-ADP ratio after stimulation with 22.2 mM glucose was reduced in leucine-exposed islets with respect to control islets. The decrease of the ATP-to-ADP ratio was due to an increase of ADP levels. In conclusion, prolonged exposure of pancreatic islets to high leucine levels selectively impairs glucose-induced insulin release. This secretory abnormality is associated with (and might be due to) a reduced ATP-to-ADP ratio. The abnormal plasma amino acid levels often present in obesity and diabetes may, therefore, affect pancreatic islet insulin secretion in these patients.  相似文献   

15.
The presence of muscarinic receptors in islets of Langerhans was assessed by measurement of specific binding of [3H]methylscopolamine. Specific binding was defined as total binding minus binding obtained in the presence of 1000-fold or higher excess of unlabeled methylscopolamine. At 37 degrees C specific binding was significant after 1 min and plateaued after 10 min of incubation. Displacement of label by increasing concentrations of unlabeled methylscopolamine indicated a dissociation constant of 1.5 x 10(-12) M. Effects of methylscopolamine on insulin release were evaluated from the inhibitions of cholinergic-induced insulin release. 4 x 10(-10) M methylscopolamine inhibited acetylcholine (20 microM)-induced insulin release more than 60%. Binding was not influenced by the following variations during binding incubations: changing the glucose concentration from 0 to 8.3 mM, adding rotenon (1 microM) or omitting calcium from the incubation medium. Islets kept in tissue culture exhibited higher binding when cultured at 11.1 than at 3.3 mM glucose for 96 h. It is concluded that islets contain muscarinic receptors, the binding to which can be subject to alteration by the long-term glucose environment.  相似文献   

16.
The effects of various sugars on the simultaneous release of insulin and accumulation of cyclic AMP were studied in collagenase isolated rat pancreatic islets. d-Glucose stimulated the formation of cyclic AMP at 3 and 60 min of incubation, whether measured by a label incorporation technique, or by the protein kinase binding assay of Gilman. Only d-glucose and d-mannose were able to stimulate insulin release and cyclic [3H]AMP accumulation in the absence of other substrate. d-fructose had a stimulatory effect in the presence of 3.3 mM d-glucose only at a high concentration (38.8 mM), and enhanced the effects of 8.3 mM glucose when added at the concentration of 8.3 mM. d-Galactose was effective only together with 8.3 mM d-glucose. The order of potency of these hexoses, both regarding insulin secretion and cyclic [3H]AMP accumulation, was glucose-mannose-fructose-galactose.l-Glucose and 3-O-methylglucose had no effects at 60 min when incubated together with 8.3 mM d-glucose, whereas at 3 min, 3-O-methylglucose induced a small stimulation of the cyclic [3H]AMP response.d-mannoheptulose and d-glucosamine inhibited the insulin and cyclic [3H]-AMP responses to 27.7 mM glucose. Mannoheptulose suppressed completely the glucose effect on cyclic nucleotide accumulation within 90 s.Although under all incubation conditions, the threshold stimulatory or inhibitory concentration of a given agent was identical for insulin release and cyclic [3H]AMP accumulation, these two variables showed quantitative differences in incubations of 60 min, the magnitude of the changes in insulin secretion being larger than that for the cyclic nucleotide. It is suggested that modulation of islet cyclic AMP level is an important step in the transmission of the effect of various sugars on insulin release; however, glucose and possibly other sugars may also enhance insulin release by additional mechanisms not involving the adenylate cyclase-cyclic AMP system of the β-cell.  相似文献   

17.
The effect of synthetic somatostatin on insulin release was studied in vitro by using isolated islets of rats. Somatostatin, with concentrations from 10 ng/ml to 10μg/ml, inhibited insulin release induced by 16.7 mM glucose. Insulin release elicited by 10 μg/ml glucagon or 2 mM dibutyryl cyclic AMP was likewise inhibited by 100ng/ml somatostatin. By raising the calcium concentration of the incubation medium to 6 mM, glucose-induced insulin release was fully restored even in the presence of somatostatin.However, the same maneuver only partially counteracted the somatostatin inhibition of dibutyryl cyclic AMP-induced insulin release. These results suggest the involvement of calcium mobilization process in the inhibitory action of somatostatin.  相似文献   

18.
Galanin is a neurotransmitter peptide that suppresses insulin secretion. The present study aimed at investigating how a non-peptide galanin receptor agonist, galnon, affects insulin secretion from isolated pancreatic islets of healthy Wistar and diabetic Goto-Kakizaki (GK) rats. Galnon stimulated insulin release potently in isolated Wistar rat islets; 100 microM of the compound increased the release 8.5 times (p<0.001) at 3.3 mM and 3.7 times (p<0.001) at 16.7 mM glucose. Also in islet perifusions, galnon augmented several-fold both acute and late phases of insulin response to glucose. Furthermore, galnon stimulated insulin release in GK rat islets. These effects were not inhibited by the presence of galanin or the galanin receptor antagonist M35. The stimulatory effects of galnon were partly inhibited by the PKA and PKC inhibitors, H-89 and calphostin C, respectively, at 16.7 but not 3.3 mM glucose. In both Wistar and GK rat islets, insulin release was stimulated by depolarization of 30 mM KCl, and 100 microM galnon further enhanced insulin release 1.5-2 times (p<0.05). Cytosolic calcium levels, determined by fura-2, were increased in parallel with insulin release, and the L-type Ca2+-channel blocker nimodipine suppressed insulin response to glucose and galnon. In conclusion, galnon stimulates insulin release in islets of healthy rats and diabetic GK rats. The mechanism of this stimulatory effect does not involve galanin receptors. Galnon-induced insulin release is not glucose-dependent and appears to involve opening of L-type Ca2+-channels, but the main effect of galnon seems to be exerted at a step distal to these channels, i.e., at B-cell exocytosis.  相似文献   

19.
Apelin is the endogenous ligand of the G-protein coupled apj receptor. Apelin is expressed in the brain, the hypothalamus and the stomach and was recently shown also to be an adipokine secreted from the adipocytes. Although apelin has been suggested to be involved in the regulation of food intake, it is not known whether the peptide affects islet function and glucose homeostasis. We show here that the apj receptor is expressed in pancreatic islets and that intravenous administration of full-length apelin-36 (2 nmol/kg) inhibits the rapid insulin response to intravenous glucose (1 g/kg) by 35% in C57BL/6J mice. Thus, the acute (1-5 min) insulin response to intravenous glucose was 682+/-23 pmol/l after glucose alone (n=17) and 445+/-58 pmol/l after glucose plus apelin-36 (n=18; P=0.017). This was associated with impaired glucose elimination (the 5-20 min glucose elimination was 2.9+/-0.1%/min after glucose alone versus 2.3+/-0.2%/min after glucose plus apelin-36, P=0.008). Apelin (2 nmol/kg) also inhibited the insulin response to intravenous glucose in obese insulin resistant high-fat fed C57BL/6J mice (P=0.041). After 60 min incubation of isolated islets from normal mice, insulin secretion in the presence of 16.7 mmol/l glucose was inhibited by apelin-36 at 1 mumol/l, whereas apelin-36 did not significantly affect insulin secretion at 2.8 or 8.3 mmol/l glucose or after stimulation of insulin secretion by KCl. Islet glucose oxidation at 16.7 mmol/l was not affected by apelin-36. We conclude that the apj receptor is expressed in pancreatic islets and that apelin-36 inhibits glucose-stimulated insulin secretion both in vivo and in vitro. This may suggest that the islet beta-cells are targets for apelin-36.  相似文献   

20.
Isolated pancreatic islets of the rat were either prelabeled with [3H]arachidonic acid, or were incubated over the short term with the concomitant addition of radiolabeled arachidonic acid and a stimulatory concentration of glucose (17mM) for prostaglandin (PG) analysis. In prelabeled islets, radiolabel in 6-keto-PGF1 alpha, PGE2, and 15-keto-13,14-dihydro-PGF2 alpha increased in response to a 5 min glucose (17mM) challenge. In islets not prelabeled with arachidonic acid, label incorporation in 6-keto-PGF1 alpha increased, whereas label in PGE2 decreased during a 5 min glucose stimulation; after 30-45 min of glucose stimulation labeled PGE levels increased compared to control (2.8mM glucose) levels. Enhanced labelling of PGF2 alpha was not detected in glucose-stimulated islets prelabeled or not. Isotope dilution with endogenous arachidonic acid probably occurs early in the stimulus response in islets not prelabeled. D-Galactose (17mM) or 2-deoxyglucose (17mM) did not alter PG production. Indomethacin inhibited islet PG turnover and potentiated glucose-stimulated insulin release. Islets also converted the endoperoxide [3H]PGH2 to 6-keto-PGF1 alpha, PGF2 alpha, PGE2 and PGD2, in a time-dependent manner and in proportions similar to arachidonic acid-derived PGs. In dispersed islet cells, the calcium ionophore ionomycin, but not glucose, enhanced the production of labeled PGs from arachidonic acid. Insulin release paralleled PG production in dispersed cells, however, indomethacin did not inhibit ionomycin-stimulated insulin release, suggesting that PG synthesis was not required for secretion. In confirmation of islet PGI2 turnover indicated by 6-keto-PGF1 alpha production, islet cell PGI2-like products inhibited platelet aggregation induced by ADP. These results suggest that biosynthesis of specific PGs early in the glucose secretion response may play a modulatory role in islet hormone secretion, and that different pools of cellular arachidonic acid may contribute to PG biosynthesis in the microenvironment of the islet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号