首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alteration of substrate specificity of aspartase by directed evolution   总被引:1,自引:0,他引:1  
Aspartase (l-aspartate ammonia-lyase, EC 4.3.1.1), which catalyzes the reversible deamination of l-aspartic acid to yield fumaric acid and ammonia, is highly selective towards l-aspartic acid. We screened for enzyme variants with altered substrate specificity by a directed evolution method. Random mutagenesis was performed on an Escherichia coli aspartase gene (aspA) by error-prone PCR to construct a mutant library. The mutant library was introduced to E. coli and the transformants were screened for production of fumaric acid-mono amide from l-aspartic acid-alpha-amide. Through the screening, one mutant, MA2100, catalyzing deamination of l-aspartic acid-alpha-amide was achieved. Gene analysis of the MA2100 mutant indicated that the mutated enzyme had a K327N mutation. The characteristics of the mutated enzyme were examined. The optimum pH values for the l-aspartic acid and l-aspartic acid-alpha-amide of the mutated enzyme were pH 8.5 and 6.0, respectively. The K(m) value and V(max) value for the l-aspartic acid of the mutated enzyme were 28.3 mM and 0.26 U/mg, respectively. The K(m) value and V(max) value for the l-aspartic acid-alpha-amide of the mutated enzyme were 1450 mM and 0.47 U/mg, respectively. This is the first report describing the alteration of the substrate specificity of aspartase, an industrially important enzyme.  相似文献   

2.
L-Aspartate 4-decarboxylase (Asd) is a major enzyme used in the industrial production of L-alanine. Its gene was cloned from Pseudomonas sp. ATCC 19121 and characterized in the present study. The 1,593-bp asd encodes a protein with a molecular mass of 59,243 Da. The Asd from this Pseudomonas strain was considerably homologous to other Asds and aminotransferases, and has evolved independently of these enzymes from gram-positive microbes. Productivity rate of the C-terminal His-tagged fusion Asd was at 33 mg/l of Escherichia coli transformant culture. The kinetic parameters K (m) and V (max) of the fusion protein were 11.50 mM and 0.11 mM/min, respectively. Gel filtration analysis demonstrated that Asd is a dodecamer at pH 5.0 while 4.4 % of the recombinant protein dissociated into dimer when the pH was increased to 7.0. Asd exhibited its maximum activity at pH 5.0 and specific activity of 280 U/mg, and remained stable over a broad range of pH. The optimum temperature for Asd reaction was 45 degrees C, and 92 % of the activity remained when the enzyme was incubated at 40 degrees C for 40 min. This enzyme did not have any preferred divalent cation for catalysis. The recombinant Asd also exhibited aminotransferase activity when D,L-Asp, L-Glu, L-Gln, and L-Ala were utilized as substrates. However, the decarboxylation activity of L-aspartate was 2,477 times higher than its aminotransferase activity. The present study is the first investigation on the important biochemical properties of the purified recombinant Asd.  相似文献   

3.
Syncephalastrum racemosum Cohn. produces an extracellular xylanase that was shown to potentially bleach pulp at pH 10 and 50 degrees C. The enzyme was found to be a dimer with an apparent molecular weight of 29 kDa as determined by SDS-PAGE. The optimum activity was found at two pH values 8.5 and 10.5; however the activity sharply decreased below pH 6 and above pH 10.5. The enzyme was stable for 72 h at pH 10.5 and at 50 degrees C. Kinetic experiments at 50 degrees C gave V(max) and K(m) of 1,400 U/ml min(-1) mg(-1) protein and 0.05 mg/ml respectively. The enzyme had no apparent requirement for cofactors, and its activity was strongly inhibited by group II b metal ions like Zn2+, Hg2+, etc. Xylan completely protected the enzyme from being inactivated by N-bromosuccinimide.  相似文献   

4.
A dimethoate-degrading enzyme from Aspergillus niger ZHY256 was purified to homogeneity with a specific activity of 227.6 U/mg of protein. The molecular mass of the purified enzyme was estimated to be 66 kDa by gel filtration and 67 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point was found to be 5.4, and the enzyme activity was optimal at 50 degrees C and pH 7.0. The activity was inhibited by most of the metal ions and reagents, while it was induced by Cu(2+). The Michaelis constant (K(m)) and V(max) for dimethoate were 1.25 mM and 292 micromol min(-1) mg of protein(-1), respectively.  相似文献   

5.
A beta-galactosidase isoenzyme, beta-Gall, from Bifidobacterium infantis HL96, was expressed in Escherichia coli and purified to homogeneity. The molecular mass of the beta-Gall subunit was estimated to be 115 kDa by SDS-PAGE. The enzyme appeared to be a tetramer, with a molecular weight of about 470 kDa by native PAGE. The optimum temperature and pH for o-nitrophenyl-beta-D-galactopyranoside (ONPG) and lactose were 60 degrees C, pH 7.5, and 50 degrees C, pH 7.5, respectively. The enzyme was stable over a pH range of 5.0-8.5, and remained active for more than 80 min at pH 7.0, 50 degrees C. The enzyme activity was significantly increased by reducing agents. Maximum activity required the presence of both Na+ and K+, at a concentration of 10 mM. The enzyme was strongly inhibited by p-chloromercuribenzoic acid, divalent metal cations, and Cr3+, and to a lesser extent by EDTA and urea. The hydrolytic activity using lactose as a substrate was significantly inhibited by galactose. The Km, and Vmax values for ONPG and lactose were 2.6 mM, 262 U/mg, and 73.8 mM, 1.28 U/mg, respectively. beta-Gall possesses strong transgalactosylation activity. The production rate of galactooligosaccharides from 20% lactose at 30 and 60 degrees C was 120 mg/ml, and this rate increased to 190 mg/ml when 30% lactose was used.  相似文献   

6.
The araA gene encoding L-arabinose isomerase (AI) from the hyperthermophilic bacterium Thermotoga maritima was cloned and overexpressed in Escherichia coli as a fusion protein containing a C-terminal hexahistidine sequence. This gene encodes a 497-amino-acid protein with a calculated molecular weight of 56,658. The recombinant enzyme was purified to homogeneity by heat precipitation followed by Ni(2+) affinity chromatography. The native enzyme was estimated by gel filtration chromatography to be a homotetramer with a molecular mass of 232 kDa. The purified recombinant enzyme had an isoelectric point of 5.7 and exhibited maximal activity at 90 degrees C and pH 7.5 under the assay conditions used. Its apparent K(m) values for L-arabinose and D-galactose were 31 and 60 mM, respectively; the apparent V(max) values (at 90 degrees C) were 41.3 U/mg (L-arabinose) and 8.9 U/mg (D-galactose), and the catalytic efficiencies (k(cat)/K(m)) of the enzyme were 74.8 mM(-1).min(-1) (L-arabinose) and 8.5 mM(-1).min(-1) (D-galactose). Although the T. maritima AI exhibited high levels of amino acid sequence similarity (>70%) to other heat-labile mesophilic AIs, it had greater thermostability and higher catalytic efficiency than its mesophilic counterparts at elevated temperatures. In addition, it was more thermostable in the presence of Mn(2+) and/or Co(2+) than in the absence of these ions. The enzyme carried out the isomerization of D-galactose to D-tagatose with a conversion yield of 56% for 6 h at 80 degrees C.  相似文献   

7.
Catalase was immobilized on the chitosan film that is a natural polymer. Studies were done on free catalase and immobilized catalase on chitosan film concerning the determination of optimum temperature, optimum pH, thermal stability, storage stability, operational stability, and kinetic parameters. It was determined that optimum temperature for free catalase and immobilized catalase on chitosan film is 25 degrees C, and optimum pH is 7.0. It was found as K(m) = 25.16 mM, V(max) = 24042 μmole/min mg protein for free catalase, K(m) = 27.67 mM, V(max) = 1022 μmole/min mg protein for immobilized catalase on chitosan. It was observed that there was a big difference between V(max) value of the free catalase and V(max) value of immobilized catalase on chitosan film whereas there were minor changes in the value of K(m) for free catalase and immobilized catalase. It was found that storage stability at 5 degrees C for immobilized catalase stored wet is greater than free catalase and immobilized catalase stored dry, and immobilized catalase showed a operational stability.  相似文献   

8.
Histamine dehydrogenase from Nocardioides simplex IFO 12069 was purified to homogeneity. The enzyme had a molecular mass of 170 kDa and was suggested to be a dimer of subunits that had a molecular mass of 84 kDa. The enzyme showed highest activity toward histamine and produced ammonia in its oxidative deamination to imidazole acetaldehyde. The K(m) and V(max) values for histamine were 0.075 mM and 4.76 micromol min(-1) mg(-1), respectively. The enzyme was sensitive to the carbonyl reagent iproniazid and a structurally similar compound, tryptophan. The enzyme showed absorption maxima at 442 and 280 nm. Reduction with histamine under anaerobic conditions resulted in a different absorption maximum at 360 nm instead of 442 nm. The enzyme was most active at pH 8.5 in Tris-HCl buffer and most stable at pH 7.0 in potassium phosphate buffer. The E(1%) value of the enzyme was 8.6 at 280 nm.  相似文献   

9.
An extracellular lipase was isolated from the cell-free broth of Bacillus sp. GK 8. The enzyme was purified to 53-fold with a specific activity of 75.7 U mg(-1) of protein and a yield of 31% activity. The apparent molecular mass of the monomeric protein was 108 kDa as estimated by molecular sieving and 112 kDa by SDS-PAGE. The proteolysis of the native molecule yields a low molecular weight component of 11.5 kDa that still retains the active site. It was stable at the pH range of 7.0-10.0 with optimum pH 8.0. The enzyme was stable at 50 degrees C for 1 h with a half life of 2 h, 40 min, and 18 min at 60, 65, and 70 degrees C, respectively. With p-nitrophenyl laurate as substrate the enzyme exhibited a K(m) and V(max) of 3.63 mM and 0.26 microM/min/ml, respectively. Activity was stimulated by Mg(2+) (10 mM), Ba(2+) (10 mM), and SDS (0.1 mM), but inhibited by EDTA (10 mM), phenylmethane sulfonyl fluoride (100 mM), diethylphenylcarbonate (10 mM), and eserine (10 mM). It hydrolyzes triolein at all positions. The fatty acid specificity of lipase is broad with little preference for C(4) and C(18:1). Thermostability of the proteolytic fragment at 60 degrees C was observed to be 37% of the native protein. The native enzyme was completely stable in ethylene glycol and glycerol (30% v/v each) for 60 min at 65 degrees C.  相似文献   

10.
Prolylleucylglycinamide (MIF) at 1.0 mM concentration and pH 7.0 was hydrolyzed by mouse brain homogenate at a rate of 140 nmol/mg protein/hr. Nearly all of this activity can be accounted for by the action of two enzymes, both of which cleave Pro and Leu sequentially from the N-terminus of MIF. At pH 7.0 the predominant enzyme is arylamidase, inhibited by puromycin (1mM) and Mn2+ (2.5 mM). At pH 8.5, in the presence of Mn2+, a second enzyme with a higher potential activity (570 nmol/mg protein/hr) was observed. While the arylamidase is primarily localized in the cytosol, the Mn2+-stimulated enzyme is equally divided between soluble and particulate fractions. Because of its ability to cleave leucinamide, its high pH optimum, and its Mn2+ dependence, it can be classified as a leucine aminopeptidase (LAP). In its substrate specifically and its preference for Mn2+ over Mg2+ it resembles the LAP from connective tissue more than that from other sources.  相似文献   

11.
The major leucyl aminopeptidase (LAP) from the midgut of Morimus funereus larvae was purified and characterised. Specific LAP activity was increased 292-fold by purification of the crude midgut extract. The purified enzyme had a pH optimum of 7.5 (optimum pH range 7.0-8.5) and preferentially hydrolysed p-nitroanilides containing hydrophobic amino acids in the active site, with the highest V(max)/K(M) ratio for leucine-p-nitroanilide (LpNA). Among a number of inhibitors tested, the most efficient were 1,10-phenanthroline having a K(i) value of 0.12 mM and cysteine with K(i) value of 0.31 mM, while EGTA stimulated LAP activity. Zn(2+), Mg(2+) and Mn(2+) all showed bi-modal effects on LAP activity (activated at low concentrations and inhibited at high concentrations). The purified LAP (after gel filtration on Superose 6 column) had molecular mass of 400 kDa with an isoelectric point of 6.2. Sodium dodecylsulphate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed one band of 67 kDa, suggesting that the enzyme is a hexamer. Six peptide sequences from protein band were obtained using ESI/MS-MS analysis. Comparison of the obtained peptide sequences with the EMBL-EBI sequence analysis toolbox and the BLASTP database showed a high degree of identity with other insect aminopeptidases.  相似文献   

12.
Mannitol 2-dehydrogenase (MDH) catalyzes the pyridine nucleotide dependent reduction of fructose to mannitol. Lactobacillus intermedius (NRRL B-3693), a heterofermentative lactic acid bacterium (LAB), was found to be an excellent producer of mannitol. The MDH from this bacterium was purified from the cell extract to homogeneity by DEAE Bio-Gel column chromatography, gel filtration on Bio-Gel A-0.5m gel, octyl-Sepharose hydrophobic interaction chromatography, and Bio-Gel Hydroxyapatite HTP column chromatography. The purified enzyme (specific activity, 331 U/mg protein) was a heterotetrameric protein with a native molecular weight (MW) of about 170 000 and subunit MWs of 43 000 and 34 500. The isoelectric point of the enzyme was at pH 4.7. Both subunits had the same N-terminal amino acid sequence. The optimum temperature for the reductive action of the purified MDH was at 35 degrees C with 44% activity at 50 degrees C and only 15% activity at 60 degrees C. The enzyme was optimally active at pH 5.5 with 50% activity at pH 6.5 and only 35% activity at pH 5.0 for reduction of fructose. The optimum pH for the oxidation of mannitol to fructose was 7.0. The purified enzyme was quite stable at pH 4.5-8.0 and temperature up to 35 degrees C. The K(m) and V(max) values of the enzyme for the reduction of fructose to mannitol were 20 mM and 396 micromol/min/mg protein, respectively. It did not have any reductive activity on glucose, xylose, and arabinose. The activity of the enzyme on fructose was 4.27 times greater with NADPH than NADH as cofactor. This is the first highly NADPH-dependent MDH (EC 1.1.1.138) from a LAB. Comparative properties of the enzyme with other microbial MDHs are presented.  相似文献   

13.
Acetylation of Escherichia coli aspartase (L-aspartate ammonia-lyase, EC 4.3.1.1) with acetic anhydride or N-hydroxysuccinimide acetate resulted in the alteration of catalytic and regulatory properties as follows. At pH 7.0, 2-fold activation was observed in 30 min, whereas at pH 8.5 the activity of the acetylated enzyme was lower than that of the native enzyme throughout the range of substrate concentrations tested, while maintaining the Vmax unchanged. The Hill coefficient values of the substrate saturation curves were also altered under both pH conditions to an appreciable extent toward higher values. The enzyme activity's requirement for divalent metal ions increased at both pH 7.0 and 8.5. In particular the ratio of the activities in the presence vs. absence of Mg2+ reached as high as 84.5 at the latter pH. Inspection of the acetylation-induced conformational change by difference absorption spectroscopy revealed that a red shift occurred in the ultraviolet region. Chemical analyses, including high-performance liquid chromatography, of the acetylated residues revealed that approximately three amino groups per subunit were acetylated concomitant with a 2.1-fold activation and that the acetylation site was restricted to a relatively specific region of the enzyme molecule. Acylation of the enzyme with other acid anhydrides such as n-butyric and propionic anhydrides also increased the activity at pH 7.0, although to a lesser extent.  相似文献   

14.
Phosphorylation of the calcium-transport ATPase of skeletal muscle sarcoplasmic reticulum by inorganic phosphate was investigated in the presence or absence of a calcium gradient. The maximum phosphoprotein formation in the presence of a calcium gradient at 20 degrees C and pH 7.0 is approximately 4 nmol/mg sarcoplasmic reticulum protein, but only between 2.4 and 2.8 nmol/mg protein in the absence of a calcium gradient, using Ionophore X-537 A or phospholipase-A-treated sarcoplasmic reticulum vesicles. Maximum phosphoprotein formation independent of calcium gradient at 20 degrees C and pH 6.2 is in the range of 3.6--4 nmol/mg protein. Half-maximum phosphoprotein formation dependent on calcium gradient was achieved with 0.1--0.2 mM free orthophosphate at 10 mM free magnesium or at 0.1--0.2 mM free magnesium at 10 mM free orthophosphate. Phosphoprotein formation independent of calcium gradient is in accordance with a model which assumes, firstly, the formation of a ternary complex of the ATPase protein with orthophosphate and magnesium (E . Pi . Mg) in equilibrium with the phosphoprotein (E-Pi . Mg) and, secondly, an interdependence of both ions in the formation of the ternary complex. The apparent equilibrium constant was 0.6 and the apparent dissociation constants KMg, KMg', KPi and KPi' were 8.8, 1.9, 7.2 and 1.5 mM respectively, assuming a total concentration of the phosphorylation site per enzyme of 7 nmol/mg protein.  相似文献   

15.
Wu S  Liu Y  Zhao G  Wang J  Sun W 《Biochimie》2006,88(3-4):237-244
A d-carbamoylase from Sinorhizobium morelens S-5 was purified and characterized. The enzyme was purified 189-fold to homogeneity with a yield of 19.1% by aqueous two-phase extraction and two steps of column chromatography. The enzyme is a homotetramer with a native molecular mass of 150 kDa and a subunit relative molecular mass of 38 kDa. The optimum pH and temperature of the enzyme were pH 7.0 and 60 degrees C, respectively. The enzyme showed high thermal and oxidative stability. It was found to have a K(m) of 3.76 mM and a V(max) of 383 U/mg for N-carbamoyl-d-p-hydroxyphenylglycine. The hyuC gene coding for this enzyme was cloned, and its nucleotide sequence was determined. The deduced amino acid sequence encoded by the hyuC gene exhibited high homology to the amino acid sequences of d-carbamoylase from other sources. The gene could be highly expressed in Escherichia coli, and the product was purified to homogeneity from the recombinant. Our results show that the enzyme has great potential for industrial application.  相似文献   

16.
The gene encoding a carboxylesterase from Anoxybacillus sp., PDF1, was cloned and sequenced. The recombinant protein was expressed in Escherichia coli BL21, under the control of isopropyl-β-D-thiogalactopyranoside-inducible T7 promoter. The enzyme, designated as PDF1Est, was purified by heat shock and ion-exchange column chromatography. The molecular mass of the native protein, as determined by SDS-PAGE, was about 26 kDa. PDF1Est was active under a broad pH range (pH 5.0-10.0) and a broad temperature range (25-90 °C), and it had an optimum pH of 8.0 and an optimum temperature of 60 °C. The enzyme was thermostable carboxylesterase, and did not lose any activity after 30 min of incubation at 60 °C. The enzyme exhibited a high level of activity with p-nitrophenyl butyrate with apparent K(m), V(max), and K(cat) values of 0.348 ± 0.030 mM, 3725.8 U/mg, and 1500 ± 54.50/s, respectively. The effect of some chemicals on the esterase activity indicated that Anoxybacillus sp. PDF1 produce an carboxylesterase having serine residue in active site and -SH groups in specific sites, which are required for its activity.  相似文献   

17.
High concentrations of D-aspartate occur in blood shell Scapharca broughtonii (Mollusca) tissues. We purified aspartate racemase from the foot muscle of the bivalve to electrophoretic homogeneity. The molecular mass shown by sodium dodecyl sulfate polyacrylamide gel was 39 kDa, while that shown by gel filtration ranged from 51 to 63 kDa. Pyridoxal 5'-phosphate-dependency of the enzyme was demonstrated by its absorption spectrum as well as the effects of amino-oxyacetate and other reagents on the activity and spectrum. The enzyme is highly specific to aspartate and does not racemize L-alanine, L-serine and L-glutamate. It showed the highest activity at pH 8 both in the conversion of L- to D- and D- to L-aspartate, and the optimal temperature was 25 degrees C. V(max) and K(m) values for L-aspartate were 7.39 micromolmin(-1)mg(-1) and 60.4 mM and those for D-aspartate were 22.6 micromolmin(-1)mg(-1) and 159 mM, respectively.  相似文献   

18.
Polygalacturonase produced by Streptomyces lydicus was purified to homogeneity by ultrafiltration and a combination of ion exchange and gel filtration chromatographic procedures. The purified enzyme was an exo-polygalacturonase with a molecular weight of 43 kDa. It was optimally active at 50 degrees C and pH 6.0. The enzyme was stable from pH 4.0 to 7.0 and at or below 45 degrees C for 90 min. K(m) value for polygalacturonic acid was 1.63 mg/mL and the corresponding V(max) was 677.8 microM min(-1) mg(-1). The inhibition constant (K(i)) for gluconic acid d-lactone was 20.75 mM. Purified enzyme had been inhibited by N-bromosuccinimide, while l-tryptophan could induce enzyme activity, indicating the involvement of tryptophan at the active site.  相似文献   

19.
AMP-deaminase was purified to electrophoretic homogeneity from white skeletal muscle of a teleost fish, the common carp, Cyprinus carpio. The purified enzyme was highly stable and showed non-Michaelis-Menten kinetics with a S(0.5) value for AMP of 2.52+/-0.16 mM (SEM) and a Hill coefficient of 1.19+/-0.11. Specific activity of the purified enzyme was 1000-1200 U/mg protein. The pH optimum was 6.3 and the enzyme was activated by ADP and ATP, but inhibited by phosphate and fluoride. Low concentrations of NaCl and KCl (100-150 mM) activated, whereas higher concentrations were inhibitory. Free radicals inactivated the enzyme, decreasing V(max) by one-half but not affecting S(0.5) or Hill coefficient. Possible regulatory mechanisms of AMP-deaminase activity in fish muscle are discussed.  相似文献   

20.
The fungus Geotrichum candidum was selected from isolates of oil-mill waste as a potent lipase producer. Factors affecting lipase production by the fungus G. candidum in yeast-extract-peptone medium have been optimized by using a Box–Behnken design with seven variables to identify the significant correlation between effects of these variables in the production of the enzyme lipase. The experimental values were found to be in accordance with the predicted values, the correlation coefficient is 0.9957. It was observed that the variables days (6), pH (7.0), temperature (30 °C), carbon (1.25%), nitrogen (2.0%), Tween (1.0%) and salt concentrations (0.5 mM) were the optimum conditions for maximum lipase production (87.7 LU/ml). The enzyme was purified to homogeneity with an apparent molecular mass of 32 kDa by SDS-PAGE. The optimum pH at 40 °C was 7.0 and the optimum temperature at pH 7.0 was 40 °C. The enzyme was stable within a pH range of 6.5 to 8.5 at 30 °C for 24 h. The enzyme activity was strongly inhibited by AgNO3, NiCl2, HgCl2, and EDTA. However, the presence of Ca2+ and Ba2+ ions enhanced the activity of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号