首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The importance of extracellular glucose in the maintenance of performance of the heart of the American eel (Anguilla rostrata Le Sueur (L.) Under anoxia was assessed under a variety of experimental conditions. Ventricular strips, electrically paced at 36 bpm, in N(2)-gassed medium maintained the imposed pace rate and generated approximately 25% of the initial twitch force of contraction for at least 60 min when glucose was present in the medium. But ventricular strips challenged without glucose in the medium failed to maintain the pacing rate within 5-10 min. Isolated and intact, perfused hearts maintained pressure and followed an imposed pace rate of 24 bpm for at least 2 hr, under anoxic conditions, if glucose was present in the medium. But without glucose in the medium isolated hearts failed within 30 min. Endogenous glycogen stores were utilized in hearts perfused with medium containing NaCN to impair oxidative phosphorylation. The presence of glucose in the medium did not protect against glycogen mobilization. The data indicate that exogenous glucose is necessary to maintain performance under anoxia at high workloads and physiological Ca(2+) levels. Finally, ventricular strips treated with NaCN and forced to contract at 24 bpm lost 70% of initial twitch force. Increasing extracellular Ca(2+) concentration stepwise from 1.5 to 9.5 mM restored twitch force to approximately 50% of the initial level and this response was not dependent on exogenous glucose. However, glucose was required to maintain resting tension even under normoxic conditions in the face of a Ca(2+) challenge.  相似文献   

2.
The effects of zero extracellular Ca2+ on the contractility of rat diaphragmatic strips in vitro were studied in conjunction with various pharmacological agents known to influence the intracellular Ca2+ concentration: the Na+ ionophore, monensin, and the Na(+)-K+ pump inhibitor, ouabain, which enhance [Ca2+]i, caffeine, which induces Ca2+ release from the sarcoplasmic reticulum (SR), and ryanodine, which prevents Ca2+ retention by the SR. The effect of increasing [Ca2+]i on diaphragmatic contraction was assessed by comparing contractions induced by 120 mM K+ in the small muscle strips before and after the addition of ouabain or monensin. Monensin (20 microM) and ouabain (1-100 microM) augmented contractions up to threefold. Treatment of diaphragm strips with 3 nM ryanodine increased baseline tension 360% above the original resting tension but only if the diaphragm was electrically stimulated concurrently; 100 microM ryanodine induced contracture in quiescent tissue. High K+ contractures were of greater magnitude in the presence of ryanodine compared with control, and relaxation time was prolonged by greater than 200%. Ca(2+)-free conditions ameliorated these actions of ryanodine. Ryanodine reduced contractions induced by 10 mM caffeine and nearly abolished them in Ca(2+)-free solution. The data demonstrate that extracellular Ca2+ is important in certain types of contractile responses of the diaphragm and suggest that the processes necessary to utilize extracellular Ca2+ are present in the diaphragm.  相似文献   

3.
We have examined the effects of low Ca2+ solutions, Co2+, and ryanodine on the isometric tension and contraction speed of isolated, developing mouse EDL muscles. Twitch responses of young muscles (7-14 days postnatal) were more sensitive to lowered [Ca2+]o than those of more fully developed muscles (22-35 days postnatal). Responses of EDL muscles from a middle-aged group (15-21 days postnatal) were intermediate between the two other groups. Overall, the time course of contraction in a single twitch was accelerated by low [Ca2+]o. Ca(2+)-free solution induced a 7.95 and 9.25 mV depolarization in young and "old" muscle fibres, respectively. The presence of cobalt ions (5 mM) in the Krebs solution had a similar effect as Ca(2+)-free Krebs in terms of reduction of the isometric twitch and tetanic tensions of EDL muscles from the various age groups. In contrast, the shortening of the contraction time seen with Ca(2+)-free solution did not take place following exposure to Co(2+)-containing solutions. Finally, young (7-14 days postnatal) muscles were less sensitive to the inhibitory action of ryanodine on the twitch compared with more fully developed muscles (22-35 days postnatal). Taken together, our results indicate that from birth to maturity, there is a gradual change in the spectrum of calcium utilization for the contractile process.  相似文献   

4.
Sodium-free contractures were studied in myocardial strips from R. pipiens with extracellular sodium (Na0+) replaced by choline chloride and extracellular calcium (Ca20+) varied with EGTA buffer. At calculated Ca02+ below 2.8 X 10(-7) mol/l, no contracture occurred in most of the experiments, even in the presence of cyanide. When Ca02+ was above 2.8 X 10(-7) mol/l, relatively short tension transients of up to 80 sec duration could be avoided if the myocardial strip was previously equilibrated for 20 min in a Na+-Ca2+-free solution. Instead, contractures developed slowly within one to several hours. The maximum contracture was dependent on Ca02+ in a dose-response-like pattern. The time-course of contracture development was not affected by verapamil, but KCN significantly increased the rate of resting tension increase. In solutions with normal Na+-Ca2+ content and even in a Na+-Ca2+-free milieu, the cellular ultrastructure was normal. Development of contracture after addition of Ca2+ to the Na+-free solution was combined with ultrastructural damage of the ventricular strip. It is concluded that Na+-free contractures depend on transsarcolemmal net-Ca2+ uptake as a sum of Na-Ca-exchange-dependent Ca2+ uptake and active sequestering of intracellular free calcium Ca2+ mediated by sarcolemmal and probably intracellular Ca2+-ATPases. The negative inotropic effect of the Ca blocker verapamil seems not to be mediated by the Na-Ca exchange.  相似文献   

5.
The cellular mechanisms underlying the development of congestive heart failure (HF) are not well understood. Accordingly, we studied myocardial function in isolated right ventricular trabeculae from rats in which HF was induced by left ventricular myocardial infarction (MI). Both early-stage (12 wk post-MI; E-pMI) and late, end-stage HF (28 wk post-Mi; L-pMI) were studied. HF was associated with decreased sarcoplasmic reticulum Ca(2+) ATPase protein levels (28% E-pMI; 52% L-pMI). HF affected neither sodium/calcium exchange, ryanodine receptor, nor phospholamban protein levels. Twitch force at saturating extracellular [Ca(2+)] was depressed in HF (30% E-pMI; 38% L-pMI), concomitant with a marked increase in sensitivity of twitch force toward extracellular [Ca(2+)] (26% E-pMI; 68% L-pMI). Ca(2+)-saturated myofilament force development in skinned trabeculae was unchanged in E-pMI but significantly depressed in L-pMI (45%). Tension-dependent ATP hydrolysis rate was depressed in L-pMI (49%), but not in E-pMI. Our results suggest a hierarchy of cellular events during the development of HF, starting with altered calcium homeostasis during the early phase followed by myofilament dysfunction at end-stage HF.  相似文献   

6.
An isometric muscle preparation was used to investigate the importance of the ventricular sarcoplasmic reticulum (SR) and extracellular Ca2+ (1.25 up to 11.25 mM) to force generation at 25 degrees C (acclimation temperature), 15 and 35 degrees C. The post-rest tension and force-frequency relationship were conducted with and without 10 microM ryanodine in the bathing medium. Increments in extracellular Ca2+ resulted in increases in twitch force development only at 35 degrees C. A significant post-rest potentiation was recorded for the control preparations at 25 degrees C (100% to 119.8+/-4.1%). However, this post-rest potentiation was inhibited by ryanodine only at 25 degrees C (100% to 97.6+/-1.5%). At 35 degrees C, force remained unchanged in the control preparations, but a significant post-rest decay was recorded in the presence of ryanodine (100% to 76.6+/-4.6%) while at 15 degrees C, ryanodine was not able to preventing the post-rest potentiation observed in the control preparations. The increases in the imposed contraction frequency caused a decline of the force at 25 and 35 degrees C and ryanodine decreased significantly peak tension at both temperatures. The findings suggest a high or medium calcium turnover, possibly related to the presence of a functional SR, whose functionality is diminished when temperature is decreased.  相似文献   

7.
We observed the effects of ryanodine on the aequorin luminescence, membrane potential, and contraction of canine cardiac Purkinje fibers and ferret ventricular muscle. In canine Purkinje fibers, ryanodine (10 nM to 1 microM) abolished the spontaneous spatiotemporal fluctuations in [Ca2+] that occur as a result of Ca2+-induced Ca2+ release from the sarcoplasmic reticulum (SR) during exposure to low-Na+ solutions. Ryanodine strongly reduced the twitch and both components of the intracellular aequorin luminescence signal (L1 and L2), which normally accompanies contraction. The small luminescence signals that remained in ryanodine could be abolished by a Ca2+ channel blocker (nitrendipine, 10 microM). The plateau phase of the action potential was reduced by nitrendipine in the presence of ryanodine, which suggests that Ca2+ current was not blocked by ryanodine. In ferret ventricular tissue, ryanodine (1 microM) prolonged the action potential and reduced the peak amplitudes of both the aequorin transient and the twitch, while greatly prolonging the time-to-peak of both signals. Increases in extracellular [Ca2+] restored the peak amplitudes of the twitch and the aequorin luminescence, but did not restore the normal time-to-peak. The results show that in both tissues, the negative inotropic effect of ryanodine is due to the reduction of the intracellular [Ca2+] transient. Inasmuch as neither Ca2+ entry via surface membrane Ca2+ channels nor Na+-Ca2+ exchange appears to be blocked by ryanodine, the most probable cause of reduction of the [Ca2+] transient is an inhibition of Ca2+ release by the SR.  相似文献   

8.
Early cardiovascular changes evoked by pressure overload (PO) may reveal adaptive strategies that allow immediate survival to the increased hemodynamic load. In this study, systolic and diastolic Ca(2+) cycling was analyzed in left ventricular rat myocytes before (day 2, PO-2d group) and after (day 7, PO-7d group) development of hypertrophy subsequent to aortic constriction, as well as in myocytes from time-matched sham-operated rats (sham group). Ca(2+) transient amplitude was significantly augmented in the PO-2d group. In the PO-7d group, intracellular Ca(2+) concentration ([Ca(2+)](i)) was reduced during diastole, and mechanical twitch relaxation (but not [Ca(2+)](i) decline) was slowed. In PO groups, fractional sarcoplasmic reticulum (SR) Ca(2+) release at a twitch, SR Ca(2+) content, SR Ca(2+) loss during diastole, and SR-dependent integrated Ca(2+) flux during twitch relaxation were significantly greater than in sham-operated groups, whereas the relaxation-associated Ca(2+) flux carried by the Na(+)/Ca(2+) exchanger was not significantly changed. In the PO-7d group, mRNA levels of cardiac isoforms of SR Ca(2+)-ATPase (SERCA2a), phospholamban, calsequestrin, ryanodine receptor, and NCX were not significantly altered, but the SERCA2a-to-phospholamban ratio was increased 2.5-fold. Moreover, greater sensitivity to the inotropic effects of the beta-adrenoceptor agonist isoproterenol was observed in the PO-7d group. The results indicate enhanced Ca(2+) cycling between SR and cytosol early after PO imposition, even before hypertrophy development. Increase in SR Ca(2+) uptake may contribute to enhancement of excitation-contraction coupling (augmented SR Ca(2+) content and release) and protection against arrhythmogenesis due to buildup of [Ca(2+)](i) during diastole.  相似文献   

9.
The effects of 50 microM lanthanum (La3+) on the contractile force, rate and coronary flow of rat hearts perfused with solutions containing 2.5, 5, 7.5 mM calcium (Ca2+) have been investigated. La3+ produced a rapid and marked decrease in contractile force within 1-3 min ("early La(3+)-effect"). The inhibition of contractility by La3+ was reduced progressively when the Ca2+ ion concentration in the perfusion fluid was raised from 2.5 to 7.5 mM. However, after 10-80 min of La3+ perfusion the contractile force was increased significantly ("late La(3+)-effect"). Elevation of Ca2+ during exposure to La3+ increased its effect. During the late La(3+)-effect, a marked decrease in heart rate and a significant increase in time to reach peak tension, time for half relaxation and twitch duration was observed. High concentrations of perfusate Ca2+ decreased the chronotropic response to La3+, in contrast, elevated Ca2+ potentiated La(3+)-induced increase in time to reach peak tension, time for half relaxation and twitch duration. La3+ produced a significant decrease in coronary flow. High Ca2+ augmented the decrease coronary flow. The findings indicate that La3+ may produce marked effects on myocardial function. High extracellular Ca2+ reduces the La(3+)-induced initial decrease in force of contraction, but potentiates the late increase in contractile force by La3+. Elevated external Ca2+ also increases the effects of La3+ on twitch parameters, heart rate and coronary flow.  相似文献   

10.
Mechanisms underlying the negative inotropic response to alpha-adrenoceptor stimulation in adult mouse ventricular myocardium were studied. In isolated ventricular tissue, phenylephrine (PE), in the presence of propranolol, decreased contractile force by approximately 40% of basal value. The negative inotropic response was similarly observed under low extracellular Ca(2+) concentration ([Ca(2+)](o)) conditions but was significantly smaller under high-[Ca(2+)](o) conditions and was not observed under low-[Na(+)](o) conditions. The negative inotropic response was not affected by nicardipine, ryanodine, ouabain, or dimethylamiloride (DMA), inhibitors of L-type Ca(2+) channel, Ca(2+) release channel, Na(+)-K(+) pump, or Na(+)/H(+) exchanger, respectively. KB-R7943, an inhibitor of Na(+)/Ca(2+) exchanger, suppressed the negative inotropic response mediated by PE. PE reduced the magnitude of postrest contractions. PE caused a decrease in duration of the late plateau phase of action potential and a slight increase in resting membrane potential; time courses of these effects were similar to that of the negative inotropic effect. In whole cell voltage-clamped myocytes, PE increased the L-type Ca(2+) and Na(+)/Ca(2+) exchanger currents but had no effect on the inwardly rectifying K(+), transient outward K(+), or Na(+)-K(+)-pump currents. These results suggest that the sustained negative inotropic response to alpha-adrenoceptor stimulation of adult mouse ventricular myocardium is mediated by enhancement of Ca(2+) efflux through the Na(+)/Ca(2+) exchanger.  相似文献   

11.
Physiologically, human atrial and ventricular myocardium are coupled by an identical beating rate and rhythm. However, contractile behavior in atrial myocardium may be different from that in ventricular myocardium, and little is known about intracellular Ca(2+) handling in human atrium under physiological conditions. We used rapid cooling contractures (RCCs) to assess sarcoplasmic reticulum (SR) Ca(2+) content and the photoprotein aequorin to assess intracellular Ca(2+) transients in atrial and ventricular muscle strips isolated from nonfailing human hearts. In atrial myocardium (n = 19), isometric twitch force frequency dependently (0. 25-3 Hz) increased by 78 +/- 25% (at 3 Hz; P < 0.05). In parallel, aequorin light signals increased by 111 +/- 57% (P < 0.05) and RCC amplitudes by 49 +/- 13% (P < 0.05). Similar results were obtained in ventricular myocardium (n = 13). SR Ca(2+) uptake (relative to Na(+)/Ca(2+) exchange) frequency dependently increased in atrial and ventricular myocardium (P < 0.05). With increasing rest intervals (1-240 s), atrial myocardium (n = 7) exhibited a parallel decrease in postrest twitch force (at 240 s by 68 +/- 5%, P < 0.05) and RCCs (by 49 +/- 10%, P < 0.05). In contrast, postrest twitch force and RCCs significantly increased in ventricular myocardium (n = 6). We conclude that in human atrial and ventricular myocardium the positive force-frequency relation results from increased SR Ca(2+) turnover. In contrast, rest intervals in atrial myocardium are associated with depressed contractility and intracellular Ca(2+) handling, which may be due to rest-dependent SR Ca(2+) loss (Ca(2+) leak) and subsequent Ca(2+) extrusion via Na(+)/Ca(2+) exchange. Therefore, the influence of rate and rhythm on mechanical performance is not uniform in atrial and ventricular myocardium.  相似文献   

12.
An isometric muscle preparation was used to study the inhibitory effect of ryanodine on contractile function in isolated ventricular trabeculae of the Pacific mackerel (Scomber japonicus). Ryanodine (an inhibitor of sarcoplasmic reticulum (SR) function) caused a 20% reduction in peak tension at 20 degrees C, but not 15 degrees C, over the range of frequencies (0.2-3.0 Hz) tested. This indicates that in the absence of a functional SR, the mackerel ventricle can maintain most of its contractile strength utilizing other modes of Ca(2+) delivery to the myofilaments. Ca(2+) flux through the sarcolemmal (SL) L-type Ca(2+)-channels is most likely the predominant pathway for Ca(2+) activation of the myofilaments, although reverse mode Na(+)/Ca(2+) exchange could potentially contribute to a significant extent. High levels of adrenergic stimulation overwhelmed the negative inotropy caused by ryanodine, returning tension to pre-ryanodine levels, further suggesting that the mackerel ventricle can maintain contractile function without Ca(2+) contribution from the SR. These results are discussed within the context of what is known about SR Ca(2+) utilization in rainbow trout and tuna hearts.  相似文献   

13.
14.
In hearts, intracellular acidosis disturbs contractile performance by decreasing myofibrillar Ca(2+) response, but contraction recovers at prolonged acidosis. We examined the mechanism and physiological implication of the contractile recovery during acidosis in rat ventricular myocytes. During the initial 4 min of acidosis, the twitch cell shortening decreased from 2.3 +/- 0.3% of diastolic length to 0.2 +/- 0.1% (means +/- SE, P < 0.05, n = 14), but in nine of these cells, contractile function spontaneously recovered to 1.5 +/- 0.3% at 10 min (P < 0.05 vs. that at 4 min). During the depression phase, both the diastolic intracellular Ca(2+) concentration ([Ca(2+)](i)) and Ca(2+) transient (CaT) amplitude increased, and the twitch [Ca(2+)](i) decline prolonged significantly (P < 0.05). In the cells that recovered, a further increase in CaT amplitude and a reacceleration of twitch [Ca(2+)](i) decline were observed. The increase in diastolic [Ca(2+)](i) was less extensive than the increase in the cells that did not recover (n = 5). Blockade of sarcoplasmic reticulum (SR) function by ryanodine (10 microM) and thapsigargin (1 microM) or a selective inhibitor of Ca(2+)-calmodulin kinase II, 2-[N- (2-hydroxyethyl)-N-(4-methoxybenzenesulfonyl)] amino-N-(4-chlorocinnamyl)-N-methyl benzylamine (1 microM) completely abolished the reacceleration of twitch [Ca(2+)](i) decline and almost eliminated the contractile recovery. We concluded that during prolonged acidosis, Ca(2+)-calmodulin kinase II-dependent reactivation of SR Ca(2+) uptake could increase SR Ca(2+) content and CaT amplitude. This recovery can compensate for the decreased myofibrillar Ca(2+) response, but may also cause Ca(2+) overload after returning to physiological pH(i).  相似文献   

15.
The existence of functionally distinct intracellular Ca(2+) stores has been proposed in some types of smooth muscle. In this study, we sought to examine Ca(2+) stores in the gallbladder by measuring intracellular Ca(2+) concentration ([Ca(2+)](i)) in fura 2-loaded isolated myocytes, membrane potential in intact smooth muscle, and isometric contractions in whole mount preparations. Exposure of isolated myocytes to 10 nM CCK caused a transient elevation in [Ca(2+)](i) that persisted in Ca(2+)-free medium and was inhibited by 2-aminoethoxydiphenylborane (2-APB). Application of caffeine induced a rapid spike-like elevation in [Ca(2+)](i) that was insensitive to 2-APB but was abolished by pretreatment with 10 muM ryanodine. These data support the idea that both inositol trisphosphate (IP(3)) receptors (IP(3)R) and ryanodine receptors (RyR) are present in this tissue. When caffeine was applied in Ca(2+)-free solution, the [Ca(2+)](i) transients decreased as the interval between Ca(2+) removal and caffeine application was increased, indicating a possible leakage of Ca(2+) in these stores. The refilling of caffeine-sensitive stores involved sarcoendoplasmic reticulum Ca(2+)-ATPase activation, similar to IP(3)-sensitive stores. The moderate Ca(2+) elevation caused by CCK was associated with a gallbladder contraction, but caffeine or ryanodine failed to induce gallbladder contraction. Nevertheless, caffeine caused a concentration-dependent relaxation in gallbladder strips either under resting tone conditions or precontracted with 1 muM CCK. Taken together, these results suggest that, in gallbladder smooth muscle, multiple pharmacologically distinct Ca(2+) pools do not exist, but IP(3)R and RyR must be spatially separated because Ca(2+) release via these pathways leads to opposite responses.  相似文献   

16.
Na+- and CA2+-sensitive microelectrodes were used to measure intracellular Na+ and Ca2+ activities (alpha iCa) of sheep ventricular muscle and Purkinje strands to study the interrelationship between Na+ and Ca2+ electrochemical gradients (delta muNa and delta muCa) under various conditions. In ventricular muscle, alpha iNa was 6.4 +/- 1.2 mM and alpha iCa was 87 +/- 20 nM ([Ca/+] = 272 nM). A graded decrease of external Na+ activity (alpha oNa) resulted in decrease of alpha iNa, and increase of alpha iCa. There was increase of twitch tension in low- alpha oNa solutions, and occasional increase of resting tension in 40% alpha oNa. Increase of external Ca2+ (alpha oCa) resulted in increase of alpha iCa and decrease of alpha iNa. Decrease of alpha oCa resulted in decrease of alpha iCa and increase of alpha iNa. The apparent resting Na-Ca energy ratio (delta muCa/delta muNa) was between 2.43 and 2.63. When the membrane potential (Vm) was depolarized by 50 mM K+ in ventricular muscle, Vm depolarized by 50 mV, alpha iNa decreased, and alpha iCa increased, with the development of a contracture. The apparent energy coupling ratio did not change with depolarization. 5 x 10(-6) M ouabain induced a large increase in alpha iNa ad alpha iCa, accompanied by an increase in twitch and resting tension. Under the conditions we have studied, delta muNa and delta muCa appeared to be coupled and n was nearly constant at 2.5, as would be expected if the Na-Ca exchange system was able to set the steady level of alpha iCa. Tension threshold was about 230 nM alpha iCa. The magnitude of twitch tension was directly related to alpha iCa.  相似文献   

17.
Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) is the most recently identified phosphoinositide, and its functions have yet to be fully elucidated. Recently, members of our muscle group have shown that PI(3,5)P2 plays an important role in skeletal muscle function by altering Ca(2+) homeostasis. Therefore, we hypothesized that PI(3,5)P2 may also modulate cardiac muscle contractility by altering intracellular Ca(2+) ([Ca(2+)](i)) in cardiac myocytes. We first confirmed that PI(3,5)P2 was present and increased by insulin treatment of cardiomyocytes via immunohistochemistry. To examine the acute effects of PI(3,5)P2 treatment, electrically paced left ventricular muscle strips were incubated with PI(3,5)P2. Treatment with PI(3,5)P2 increased the magnitude of isometric force, the rate of force development, and the area associated with the contractile waveforms. These enhanced contractile responses were also observed in MIP/Mtmr14(-/-) mouse hearts, which we found to have elevated levels of PI(3,5)P2. In cardiac myocytes loaded with fura-2, PI(3,5)P2 produced a robust elevation in [Ca(2+)](i). The PI(3,5)P2-induced elevation of [Ca(2+)](i) was not present in conditions free of extracellular Ca(2+) and was completely blocked by ryanodine. We investigated whether the phosphoinositide acted directly with the Ca(2+) release channels of the sarcoplasmic reticulum (ryanodine receptors; RyR2). PI(3,5)P2 increased [(3)H]ryanodine binding and increased the open probability (P(o)) of single RyR2 channels reconstituted in lipid bilayers. This strongly suggests that the phosphoinositide binds directly to the RyR2 channel. Thus, we provide inaugural evidence that PI(3,5)P2 is a powerful activator of sarcoplasmic reticulum Ca(2+) release and thereby modulates cardiac contractility.  相似文献   

18.
Increases in contraction amplitude following rest or in elevated extracellular Ca(2+) concentration ([Ca(2+)]) have been attributed to increased sarcoplasmic reticulum (SR) Ca(2+) stores and/or increased trigger Ca(2+). However, either manipulation also may elevate diastolic [Ca(2+)]. The objective of this study was to determine whether elevation of diastolic [Ca(2+)] could contribute to positive inotropy in isolated ventricular myocytes. Voltage-clamp experiments were conducted with high-resistance microelectrodes in isolated myocytes at 37 degrees C. Intracellular free [Ca(2+)] was measured with fura-2, and cell shortening was measured with an edge detector. SR Ca(2+) stores were assessed with 10 mM caffeine (0 mM Na(+), 0 mM Ca(2+)). Following a period of rest, cells were activated with trains of pulses, which generated contractions of increasing amplitude, called positive staircases. Positive staircases were accompanied by increasing diastolic [Ca(2+)] but no change in Ca(2+) transient amplitudes. When extracellular [Ca(2+)] was elevated from 2.0 to 5.0 mM, resting intracellular [Ca(2+)] increased and resting cell length decreased. Amplitudes of contractions and L-type Ca(2+) current increased in elevated extracellular [Ca(2+)], although SR Ca(2+) stores, assessed by rapid application of caffeine, did not increase. Although Ca(2+) transient amplitude did not increase in 5.0 mM extracellular [Ca(2+)], diastolic [Ca(2+)] continued to increase with increasing extracellular [Ca(2+)]. These data suggest that increased diastolic [Ca(2+)] contributes to positive inotropy following rest or with increasing extracellular [Ca(2+)] in guinea pig ventricular myocytes.  相似文献   

19.
o-Phthalaldehyde (OPA) is a bifunctional reagent that forms an isoindole derivative by reacting with cysteine and lysine residues separated by approximately 0.3 nm. OPA inhibits sarcoplasmic reticulum (SR) Ca(2+)-ATPase activity at low micromolar concentrations and induces Ca(2+) release from actively loaded SR vesicles by activating the ryanodine receptor from fast twitch skeletal muscle. Both ryanodine binding and single-channel activity show a biphasic concentration dependence. At low OPA concentrations (<100 microM), ryanodine binding and single channel activity are stimulated, while at higher concentrations, a time-dependent sequential activation and inhibition of receptor binding is observed. Activation is characterized by a Ca(2+)-independent increase in maximal receptor occupancy. Data are presented to support a model in which Ca(2+) channel and ryanodine binding activity are enhanced due to an intramolecular cross-linking of nearby lysine and nonhyperreactive cysteine residues. OPA complexation with endogenous lysine residue(s) is critical for receptor activation.  相似文献   

20.
目的:研究兔膈肌肌条力学对不同频率慢性电刺激(CES)的适应性变化特征和细胞外Ca^2+变化夺其力学特征的影响。方法:测定正常对照组和CES组的颤搐收缩张力(Pt)、峰值张力时间(TPT)、1/2松弛时间(1/2RT)、强直颤搐收缩张力(Po)、疲劳指数(FI)和疲劳恢复指数(FRI);观察在无Ca^2+Hank’s液和标准Hank’s液时肌条收缩张力消失和恢复的时间差异。结果:①同对照组作比较,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号