首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The gene encoding for the CMP-NeuNAc synthetase enzyme of Neisseria meningitidis group B was cloned by complementation of a mutant of Escherichia coli defective for this enzyme. The gene (neuA) was isolated on a 4.1-kb fragment of meningococcal chromosomal DNA. Determination of the nucleotide sequence of this fragment revealed the presence of three genes, termed neuA, neuB, and neuC, organized in a single operon. The presence of a truncated ctrA gene at one end of the cloned DNA and a truncated gene encoding for the meningococcal sialyltransferase at the other confirmed that the cloned DNA corresponded to region A and part of region C of the meningococcal capsule gene cluster. The predicted amino acid sequence of the meningococcal NeuA protein was 57% homologous to that of NeuA, the CMP-NeuNAc synthetase encoded by E. coli K1. The predicted molecular mass of meningococcal NeuA protein was 24.8 kDa, which was 6 kDa larger than that formerly predicted (U. Edwards and M. Frosch, FEMS Microbiol. Lett. 96:161-166, 1992). Purification of the recombinant meningococcal NeuA protein together with determination of the N-terminal amino acid sequence confirmed that this 24.8-kDa protein was indeed the meningococcal CMP-NeuNAc synthetase. The predicted amino acid sequences of the two other encoded proteins were homologous to those of the NeuC and NeuB proteins of E. coli K1, two proteins involved in the synthesis of NeuNAc. These results indicate that common steps exist in the biosynthesis of NeuNAc in these two microorganisms.  相似文献   

2.
3.
Seryl-tRNA synthetase is the gene product of the serS locus in Escherichia coli. Its gene has been cloned by complementation of a serS temperature sensitive mutant K28 with an E. coli gene bank DNA. The resulting clones overexpress seryl-tRNA synthetase by a factor greater than 50 and more than 6% of the total cellular protein corresponds to the enzyme. The DNA sequence of the complete coding region and the 5'- and 3' untranslated regions was determined. Protein sequence comparison of SerRS with all available aminoacyl-tRNA synthetase sequences revealed some regions of significant homology particularly with the isoleucyl- and phenylalanyl-tRNA synthetases from E. coli.  相似文献   

4.
In Escherichia coli, synthesis of sialic acid is not regulated by allosteric inhibition mediated by cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-NeuNAc). Evidence for the lack of metabolic control by feedback inhibition was demonstrated by measuring the intracellular level of sialic acid and CMP-NeuNAc in mutants defective in sialic acid polymerization and in CMP-NeuNAc synthesis. Polymerization-defective mutants could not synthesize the polysialic acid capsule and accumulated ca. 25-fold more CMP-NeuNAc than the wild type. Mutants unable to activate sialic acid because of a defect in CMP-NeuNAc synthetase accumulated ca. sevenfold more sialic acid than the wild type. An additional threefold increase in sialic acid levels occurred when a mutation resulting in loss of N-acylneuraminate pyruvate-lysase (sialic acid aldolase) was introduced into the CMP-NeuNAc synthetase-deficient mutant. The aldolase mutation could not be introduced into the polymerization-defective mutant, suggesting that any further increase in the intracellular CMP-NeuNAc concentration was toxic. These results show that sialic acid aldolase can regulate the intracellular concentration of sialic acid and therefore the concentration of CMP-NeuNAc. We conclude that regulation of aldolase, mediated by sialic acid induction, is necessary not only for dissimilating sialic acid (E.R. Vimr and F. A. Troy, J. Bacteriol. 164:845-853, 1985) but also for modulating the level of metabolic intermediates in the sialic acid pathway. In agreement with this conclusion, an increase in the intracellular sialic acid concentration was correlated with an increase in aldolase activity. Direct evidence for the central role of aldolase in regulating the metabolic flux of sialic adid in E. coli was provided by the finding that exogenous radiolabeled sialic acid was specifically incorporated into sialyl polymer in aldolase-negative strain but not in the wild type.  相似文献   

5.
Escherichia coli K1 is responsible for 80% of E. coli neonatal meningitis and is a common pathogen in urinary tract infections. Bacteria of this serotype are encapsulated with the alpha(2-8)-polysialic acid NeuNAc(alpha2-8), common to several bacterial pathogens. The gene cluster encoding the pathway for synthesis of this polymer is organized into three regions: (i) kpsSCUDEF, (ii) neuDBACES, and (iii) kpsMT. The K1 polysialyltransferase, NeuS, cannot synthesize polysialic acid de novo without other products of the gene cluster. Membranes isolated from strains having the entire K1 gene cluster can synthesize polysialic acid de novo. We designed a series of plasmid constructs containing fragments of regions 1 and 2 in two compatible vectors to determine the minimum number of gene products required for de novo synthesis of the polysialic acid from CMP-NeuNAc in K1 E. coli. We measured the ability of the various combinations of region 1 and 2 fragments to restore polysialyltransferase activity in vitro in the absence of exogenously added polysaccharide acceptor. The products of region 2 genes neuDBACES alone were not sufficient to support de novo synthesis of polysialic acid in vitro. Only membrane fractions harboring NeuES and KpsCS could form sialic polymer in the absence of exogenous acceptor at the concentrations formed by wild-type E. coli K1 membranes. Membrane fractions harboring NeuES and KpsC together could form small quantities of the sialic polymer de novo.  相似文献   

6.
Genetic control of glutamine synthetase in Klebiella aerogenes.   总被引:7,自引:45,他引:7       下载免费PDF全文
Mutations at two sites, glnA and glnB, of the Klebsiella aerogenes chromosome result in the loss of glutamine synthetase. The locations of these sites on the chromosome were established by complementation by episomes of Escherichia coli and by determination of their linkage to other genetic sites by transduction with phage P1. The glnB gene is located at a position corresponding to 48 min on the Taylor map of the E. coli chromosome; it is linked to tryA, nadB, and GUA. The glnA gene is at a position corresponding to 77 min on the Taylor map and is linked to rha and metB; it is also closely linked to rbs, located in E. coli at 74 min, indicating a difference in this chromosomal region between E. coli and K. aerogenes. Mutations in the glnA site can also lead to nonrepressible synthesis of active glutamine synthetase. The examination of the fine genetic structure of glnA revealed that one such mutation is located between two mutations leading to the loss of enzymatic activity. This result, together with evidence that the structural gene for glutamine synthetase is at glnA, suggests that glutamine synthetase controls expression of its own structural gene by repression.  相似文献   

7.
The activity of the cytoplasmic CMP-2-keto-3-deoxyoctulosonic acid synthetase (CMP-KDO synthetase), which is low in Escherichia coli rough strains such as E. coli K-12 and in uncapsulated strains such as E. coli O111, was significantly elevated in encapsulated E. coli O10:K5 and O18:K5. This enzyme activity was even higher in an E. coli clone expressing the K5 capsule. This and the following findings suggest a correlation between elevated CMP-KDO synthetase activity and the biosynthesis of the capsular K5 polysaccharide. (i) Expression of the K5 polysaccharide and elevated CMP-KDO synthetase activity were observed with bacteria grown at 37 degrees C but not with cells grown at 20 degrees C or below. (ii) The recovery kinetics of capsule expression of intact bacteria, in vitro K5 polysaccharide-synthesizing activity of bacteria, and CMP-KDO synthetase activity of bacteria after temperature upshift from 18 to 37 degrees C were the same. (iii) Chemicals which inhibit capsule (polysaccharide) expression also inhibited the elevation of CMP-KDO synthetase activity. The chromosomal location of the gene responsible for the elevation of this enzyme activity was narrowed down to the distal segment of the transport region of the K5 expression genes.  相似文献   

8.
Group B Streptococcus (GBS) is the foremost cause of neonatal sepsis and meningitis in the United States. A major virulence factor for GBS is its capsular polysaccharide, a high molecular weight polymer of branched oligosaccharide subunits. N -acetylneuraminic acid (Neu5Ac or sialic acid), at the end of the polysaccharide side chains, is critical to the virulence function of the capsular polysaccharide. Neu5Ac must be activated by CMP-Neu5Ac synthetase before it is incorporated into the polymer. We showed previously that a transposon mutant of a serotype III GBS strain which had no detectable capsular Neu5Ac was deficient in CMP-Neu5Ac-synthetase activity (Wessels et al ., 1992). In this paper, we report the identification and characterization of cpsF , a gene interrupted by transposon insertion in the previously described Neu5Ac-deficient mutant. The predicted amino acid sequence of the cpsF gene product shares 57% similarity and 37% identity with CMP-Neu5Ac synthetase encoded by the Escherichia coli K1 gene, neuA . The enzymatic function of the protein encoded by cpsF was established by cloning the gene in E. coli under the control of the T7 polymerase/promoter. Lysates of E. coli in which the cpsF gene product was expressed, catalysed the condensation of CTP with Neu5Ac to form CMP-Neu5Ac. In addition, when a CMP-Neu5Ac synthetase-deficient mutant of E. coli K1 was transformed with cpsF , K1 antigen expression was restored. We conclude that cpsF encodes CMP-Neu5Ac synthetase in type III GBS, and that the GBS enzyme can function in the capsule-synthesis of a heterologous bacterial species.  相似文献   

9.
T Daws  C J Lim    J A Fuchs 《Journal of bacteriology》1989,171(9):5218-5221
The Escherichia coli structural gene for glutathione synthetase, gshB, was cloned into pBR322. Plasmids containing gshB were able to complement the glutathione requirement of a trxA gshB double mutant, and cells containing the plasmids were found to have elevated levels of glutathione synthetase. A mutant gshB allele was constructed by inserting the kan gene from pUC4K into a unique HpaI site located within gshB. The resulting plasmid-encoded allele was used to replace a genomic gshB+ by homologous recombination. The resulting strain had no detectable glutathione synthetase activity. The gshB allele containing the kan insertion was used to map gshB on the E. coli chromosome by P1 transduction. The results indicated that gshB is located at 63.4 min, between metK and speC. The allele was further localized to a region of 3,100 to 3,120 kilobase pairs on the physical map (restriction map) of E. coli by DNA-DNA hybridization to a series of lambda bacteriophages (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987).  相似文献   

10.
Mutants of Escherichia coli K12 requiring glutamine as a nitrogen source were isolated, and characterized as lacking glutamine synthetase activity. Temperature sensitive revertants of one of the mutants had a heat labile glutamine synthetase, while temperature insensitive revertants had a glutamine synthetase which was thermostable in vitro, indicating that the mutation was in the structural gene for the enzyme. All of the mutations mapped in the same region of the chromosome suggesting that they might all be in the same gene. The glutamine synthetase gene (gln) was located on the E. coli chromosome by conjugation and P1-mediated transduction at minute 77. The gln gene cotransduced with the genes for oleate degradation (old), and the genes for L-rhamnose utilization (rha). The most probable gene order is old-gln-rha.  相似文献   

11.
We studied the physiology of cells of Klebsiella aerogenes containing the structural gene for glutamine synthetase (glnA) of Escherichia coli on an episome. The E. coli glutamine synthetase functioned in cells of K. aerogenes in a manner similar to that of the K. aerogenes enzyme: it allowed the level of histidase to increase and that of glutamate dehydrogenase to decrease during nitrogen-limited growth. The phenotype of mutations in the glnA site was restored to normal by the introduction of the episomal glnA+ gene. These results are consistent with the hypothesis that glutamine synthetase regulates the function of its own structural gene.  相似文献   

12.
We isolated an F' episome of Escherichia coli carrying the glnA+ gene from K. aerogenes and an F' episome of E. coli carrying the glnA4 allele from K. aerogenes responsible for the constitutive synthesis of glutamine synthetase. Complementation tests with these episomes showed that the glnA4 mutation (leading to the constitutive synthesis of active glutamine synthetase) was in the gene identified by mutations glnA20, glnA51, and glnA5 as the structural gene for glutamine synthetase. By using these merodiploid strains we were able to show that the glnA51 mutation lead to the synthesis of a glutamine synthetase that lacked enzymatic activity but fully retained its regulatory properties. Finally, we discuss a model that explains the several phenotypes associated with mutations such as glnA4 located within the structural gene for glutamine synthetase leading to constitutive synthesis of active glutamine synthetase.  相似文献   

13.
We have introduced the T4 thymidylate synthetase gene, resident in a 2.7-kilobase EcoRI restriction fragment, into an amplification plasmid, pKC30. By regulating expression of this gene from the phage lambda pL promoter within pKC30 in a thyA host containing a temperature-sensitive lambda repressor, the T4 synthetase could be amplified about 200-fold over that after T4 infection. At this stage, a 20-fold purification was required to obtain homogeneous enzyme, mainly by an affinity column procedure. The purified plasmid-amplified T4 synthetase appeared to be identical with the T2 phage synthetase purified from phage-infected Escherichia coli in molecular weight, amino end group analysis, and immunochemical reactivity. The individual nature of the phage and host proteins was revealed by the fact that neither the T2 nor the T4 enzyme reacted with antibody to the E. coli synthetase, nor did antibody to the phage enzymes react with the E. coli synthetase. These differences were corroborated by DNA hybridization experiments, which revealed the absence of apparent homology between the T4 and E. coli synthetase genes. The techniques and genetic constructions described support the feasibility of employing similar amplification methods to prepare highly purified thymidylate synthetases from other sources.  相似文献   

14.
In contrast with most aminoacyl-tRNA synthetases, the lysyl-tRNA synthetase of Escherichia coli is coded for by two genes, the normal lysS gene and the inducible lysU gene. During its purification from E. coli K12, lysyl-tRNA synthetase was monitored by its aminoacylation and adenosine(5')tetraphospho(5')adenosine (Ap4A) synthesis activities. Ap4A synthesis was measured by a new assay using DEAE-cellulose filters. The heterogeneity of lysyl-tRNA synthetase (LysRS) was revealed on hydroxyapatite; we focused on the first peak, LysRS1, because of its higher Ap4A/lysyl-tRNA activity ratio at that stage. Additional differences between LysRS1 and LysRS2 (major peak on hydroxyapatite) were collected. LysRS1 was eluted from phosphocellulose in the presence of the substrates, whereas LysRS2 was not. Phosphocellulose chromatography was used to show the increase of LysRS1 in cells submitted to heat shock. Also, the Mg2+ optimum in the Ap4A-synthesis reaction is much higher for LysRS1. LysRS1 showed a higher thermostability, which was specifically enhanced by Zn2+. These results in vivo and in vitro strongly suggest that LysRS1 is the heat-inducible lysU-gene product.  相似文献   

15.
Adenylosuccinate synthetase (EC 6.3.4.4), encoded by the purA gene of Escherichia coli K12, catalyzes the synthesis of adenylosuccinate (SAMP) from IMP, the first committed step in AMP biosynthesis. The E. coli K12 purA gene and flanking DNA was cloned by miniMu-mediated transduction, and the nucleotide sequence was determined. The mature SAMP synthetase subunit, as deduced from the DNA sequence, contains 427 amino acid residues and has a calculated Mr of 47,277. The size of the purA mRNA was determined by Northern blotting to be approximately 1.5 kilobase pairs. The 5'-end of the purA mRNA was identified by primer extension and is located 23 nucleotides upstream of the ATG translational initiation codon. Comparison of the purA control region with the guaBA control region revealed a common region of dyad symmetry which may suggest mutual elements of regulation. The purA control region did not resemble the control regions of the other known pur loci.  相似文献   

16.
H Edwards  P Schimmel 《Cell》1987,51(4):643-649
We have investigated the function of an E. coli aminoacyl-tRNA synthetase in S. cerevisiae strains that are respiration-deficient because of a mutation or a gene disruption in the nuclear encoded gene for the mitochondrial tyrosyl-tRNA synthetase. Although the yeast mitochondrial and E. coli tyrosine tRNAs differ significantly in sequence, expression of the E. coli tyrosyl-tRNA synthetase from a gene fusion restores respiration. The fusion gene contains a presumptive sequence for mitochondrial import from the mitochondrial tyrosyl-tRNA synthetase gene fused to the E. coli coding region. The fusion protein is incorporated into mitochondria. This incorporation and the rescue of the respiratory defect require the presumptive sequence for mitochondrial import. These experiments suggest a more limited definition of the identity of a tyrosine tRNA.  相似文献   

17.
Escherichia coli CMP-NeuAc synthetase (EC 2.7.7.43) catalyzes the synthesis of CMP-NeuAc from CTP and NeuAc, which is essential for the formation of capsule polysialylate for strain K1. Alignment of the amino acid sequence of E. coli CMP-NeuAc synthetase with those from other bacterial species revealed that the conserved motifs were located in its N termini, whereas the C terminus appeared to be redundant. Based on this information, a series of deletions from the 3'-end of the CMPNeuAc synthetase coding region was constructed and expressed in E. coli. As a result, the catalytic domain required for CMP-NeuAc synthetase was found to be in the N-terminal half consisting of amino acids 1-229. Using the strategy of tertiary structure prediction based on the homologous search of the secondary structure, the C-terminal half was recognized as an alpha1-subunit of bovine brain platelet-activating factor acetylhydrolase isoform I. The biochemical analyses showed that the C-terminal half consisting of amino acids 228-418 exhibited platelet-activating factor acetylhydrolase activity. The enzyme properties and substrate specificity were similar to that of bovine brain alpha1-subunit. Although its physiological function is still unclear, it has been proposed that the alpha1-subunit-like domain of E. coli may be involved in the traversal of the blood-brain barrier.  相似文献   

18.
Cells of Escherichia coli K12 were sensitive to 100 mM-methylammonium when cultured under nitrogen limitation, and resistant when grown with an excess of either NH4Cl or glutamine. Glutamine synthetase activity was required for expression of the methylammonium-sensitive phenotype. Mutants were isolated which were resistant to 100 mM-methylammonium, even when grown under nitrogen limitation. P1 bacteriophage transduction and F' complementation analysis revealed that the resistance-conferring mutations mapped either inside the glnA structural gene and/or elsewhere in the E. coli chromosome. Glutamine synthetase was purified from the wild-type and from some of the mutant strains. Strains carrying glnA-linked mutations that were solely responsible for the methylammonium-resistant phenotype yielded an altered enzyme, which was less active biosynthetically with either ammonium or methylammonium as substrate. Sensitivity to methylammonium appeared to be due to synthesis of gamma-glutamylmethylamide by glutamine synthetase, which was synthesized poorly, if at all, by mutants carrying an altered glutamine synthetase enzyme.  相似文献   

19.
Free N-acetylsialic acid (NeuNAc) and CMP-N-acetylsialic acids (CMP-NeuNAc) are extracted from freeze-clamped or liquid nitrogen-frozen biological material by sequential extraction with cold acetone and acetone/water. [14C]NeuNAc and [14C]CMP-NeuNAc (20,000 dpm each) are added to the frozen material to correct for small losses occurring during the subsequent steps. NeuNAc and CMP-NeuNAc are separated by anion-exchange chromatography. CMP-NeuNAc is hydrolyzed with formic acid and again chromatographed on an ion-exchange column. The NeuNAc-containing fractions (representing free NeuNAc and CMP-NeuNAc) are converted to [14C]CMP-NeuNAc in the presence of [14C]CTP and CMP-NeuNAc synthetase. [14C]CMP-NeuNAc is separated by paper chromatography and the radioactivity measured by liquid scintillation counting. The amount of NeuNAc is calculated from a calibration curve obtained with NeuNAc standards. The small amounts of [14C]NeuNAc and [14C]CMP-NeuNAc added initially do not interfere with the final assay. The method gives reliable values down to 50 pmol/assay, but the sensitivity can be easily increased by a factor of 10. Recoveries, with NeuNAc and CMP-NeuNAc added to biological extracts, were 98.3 and 98.5% for NeuNAc and CMP-NeuNAc, respectively. With this method values of 61.2 ± 12.8 and 24.4 ± 5.2 nmol/g wet wt were found in rat liver for free NeuNAc and CMP-NeuNAc, respectively. Values for free NeuNAc found in human blood plasma were 600 ± 476 and 373 ± 180 pmol/g plasma for healthy persons and patients with breast cancer, respectively. Free CMP-NeuNAc could not be found in plasma.  相似文献   

20.
大肠杆菌ispB基因的克隆及鉴定   总被引:2,自引:0,他引:2  
ispB基因编码八聚异戊二烯焦磷酸合成酶,是决定大肠杆菌CoQ8生物合成的关键因子。克隆ispB基因是构建产辅酶Q10基因工程菌的前提,本实验从野生型大肠杆菌MC4100出发,以pUC18为载体,构建了大肠杆菌SspI限制性基因文库。筛选得到目的重组子pXF98,其酶切鉴定图谱与实验期望值吻合。测序结果表明,pXF98外源DNA片段包含完整的ispB基因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号