首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphoinositide-specific phospholipase C (PI-PLC) plays a pivotal role in regulation of intracellular signal transduction from various receptor molecules. More than 10 members of human PI-PLC isoforms have been identified and classified into three classes beta, gamma, and delta, which are regulated by distinct mechanisms. Here we report identification of a novel class of human PI-PLC, named PLCepsilon, which is characterized by the presence of a Ras-associating domain at its C terminus and a CDC25-like domain at its N terminus. The Ras-associating domain of PLCepsilon specifically binds to the GTP-bound forms of Ha-Ras and Rap1A. The dissociation constant for Ha-Ras is estimated to be approximately 40 nm, comparable with those of other Ras effectors. Co-expression of an activated Ha-Ras mutant with PLCepsilon induces its translocation from the cytosol to the plasma membrane. Upon stimulation with epidermal growth factor, similar translocation of ectopically expressed PLCepsilon is observed, which is inhibited by co-expression of dominant-negative Ha-Ras. Furthermore, using a liposome-based reconstitution assay, it is shown that the phosphatidylinositol 4,5-bisphosphate-hydrolyzing activity of PLCepsilon is stimulated in vitro by Ha-Ras in a GTP-dependent manner. These results indicate that Ras directly regulates phosphoinositide breakdown through membrane targeting of PLCepsilon.  相似文献   

2.
We previously identified RA-GEF-1, a novel guanine nucleotide exchange factor (GEF) for Rap1 with the ability to associate with Rap1.GTP at its Ras/Rap1-associating (RA) domain. Because it possesses a PSD-95/DlgA/ZO-1 (PDZ) domain, it was also named PDZ-GEF. In this report, we have examined the role of the RA domain of this protein in Rap1-mediated cellular responses. A mutant of RA-GEF-1 (RA-GEF-1DeltaRA) carrying a 21-residue deletion at its RA domain fully retains the in vitro GEF activity toward Rap1 but completely loses the Rap1 binding activity. In contrast, RA-GEF-1DeltaRA, expressed in COS-7 cells, exhibits a 3-fold reduction in its in vivo GEF activity toward Rap1 compared with wild-type RA-GEF-1 as examined by the Rap1 pull-down assay. Correspondingly, when coexpressed with wild-type Rap1, RA-GEF-1DeltaRA is unable to further activate B-Raf, whereas RA-GEF-1 stimulates B-Raf as efficiently as activated Rap1. Consistent with these observations, coexpression of activated Rap1 induces translocation of RA-GEF-1, which is otherwise located in the cytoplasm, to the perinuclear compartment, where Rap1 is also predominantly localized. This localization almost coincides with that of the Golgi apparatus, which was detected by anti-trans-Golgi-network 38 antibody. RA-GEF-1DeltaRA fails to show the translocation. These results indicate that RA-GEF-1 defines a novel category of GEF that is translocated to a particular subcellular compartment by association with the GTP-bound form of a small GTPase and catalyzes activation of the GDP-bound form present in the compartment, thereby causing an amplification of cellular responses induced by the small GTPase.  相似文献   

3.
The Ras family small GTPase Rap is regulated by an array of specific guanine nucleotide exchange factors (GEFs) in response to upstream stimuli. RA-GEF-1 was identified as a novel Rap GEF, which possesses a Ras/Rap1-associating (RA) domain. Here we report a protein closely related to RA-GEF-1, named RA-GEF-2. Like RA-GEF-1, a putative cyclic nucleotide monophosphate-binding domain, a Ras exchanger motif, a PSD-95/DlgA/ZO-1 domain, and an RA domain in addition to the GEF catalytic domain are found in RA-GEF-2. However, RA-GEF-2 displays a different tissue distribution profile from that of RA-GEF-1. RA-GEF-2 stimulates guanine nucleotide exchange of both Rap1 and Rap2, but not Ha-Ras. The RA domain of RA-GEF-2 binds to M-Ras in a GTP-dependent manner, but not to other Ras family GTPases tested, including Ha-Ras, N-Ras, Rap1A, Rap2A, R-Ras, RalA, Rin, Rit, and Rheb, in contrast to the RA domain of RA-GEF-1, which specifically binds to Rap1. In accordance with this, RA-GEF-2 colocalizes with activated M-Ras in the plasma membrane in COS-7 cells, suggesting a role of RA-GEF-2 in the regulation of Rap1 and Rap2, particularly in the plasma membrane. In fact, an increase in the level of the GTP-bound form of plasma membrane-located Rap1 was observed when coexpressed with RA-GEF-2 and activated M-Ras. Thus, RA-GEF-2 acts as a GEF for Rap1 and Rap2 downstream of M-Ras in the plasma membrane, whereas RA-GEF-1 exerts Rap GEF function in perinuclear compartments including the Golgi apparatus.  相似文献   

4.
Rap2 belongs to the Ras family of small GTP-binding proteins, but its specific roles in cell signaling remain unknown. In the present study, we have affinity-purified from rat brain a Rap2-interacting protein of approximately 155 kDa, p155. By liquid chromatography tandem mass spectrometry, we have identified p155 as Traf2- and Nck-interacting kinase (TNIK). TNIK possesses an N-terminal kinase domain homologous to STE20, the Saccharomyces cerevisiae mitogen-activated protein kinase kinase kinase kinase, and a C-terminal regulatory domain termed the citron homology (CNH) domain. TNIK induces disruption of F-actin structure, thereby inhibiting cell spreading. In addition, TNIK specifically activates the c-Jun N-terminal kinase (JNK) pathway. Among our observations, TNIK interacted with Rap2 through its CNH domain but did not interact with Rap1 or Ras. TNIK interaction with Rap2 was dependent on the intact effector region and GTP-bound configuration of Rap2. When co-expressed in cultured cells, TNIK colocalized with Rap2, while a mutant TNIK lacking the CNH domain did not. Rap2 potently enhanced the inhibitory function of TNIK against cell spreading, but this was not observed for the mutant TNIK lacking the CNH domain. Rap2 did not significantly enhance TNIK-induced JNK activation, but promoted autophosphorylation and translocation of TNIK to the detergent-insoluble cytoskeletal fraction. These results suggest that TNIK is a specific effector of Rap2 to regulate actin cytoskeleton.  相似文献   

5.
6.
The members of the Ras-like superfamily of small GTP-binding proteins are molecular switches that are in general regulated in time and space by guanine nucleotide exchange factors and GTPase activating proteins. The Ras-like G-proteins Ras, Rap and Ral are regulated by a variety of guanine nucleotide exchange factors that are characterized by a CDC25 homology domain. Here we study the evolution of the Ras pathway by determining the evolutionary history of CDC25 homology domain coding sequences. We identified CDC25 homology domain coding sequences in animals, fungi and a wide range of protists, but not in plants. This suggests that the CDC25 homology domain originated in or before the last eukaryotic ancestor but was subsequently lost in plant. We provide evidence that at least seven different ancestral Ras guanine nucleotide exchange factors were present in the ancestor of fungi and animals. Differences between present day fungi and animals are the result of loss of ancestral Ras guanine nucleotide exchange factors early in fungal and animal evolution combined with lineage specific duplications and domain acquisitions. In addition, we identify Ral guanine exchange factors and Ral in early diverged fungi, dating the origin of Ral signaling back to before the divergence of animals and fungi. We conclude that the Ras signaling pathway evolved by gradual change as well as through differential sampling of the ancestral CDC25 homology domain repertoire by both fungi and animals. Finally, a comparison of the domain composition of the Ras guanine nucleotide exchange factors shows that domain addition and diversification occurred both prior to and after the fungal–animal split.  相似文献   

7.
Little is known about the specific signaling roles of Rap2, a Ras family small GTP-binding protein. In a search for novel Rap2-interacting proteins by the yeast two-hybrid system, we isolated isoform 3 of the human mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), a previously described but uncharacterized isoform. Other isoforms of MAP4K4 in humans and mice are known as hematopoietic progenitor kinase (HPK)/germinal center kinase (GCK)-like kinase and Nck-interacting kinase, respectively. MAP4K4 belongs to the STE20 group of protein kinases and regulates c-Jun N-terminal kinase (JNK). MAP4K4 interacted with Rap2 through its C-terminal citron homology domain but did not interact with Rap1 or Ras. Interaction with Rap2 required the intact effector region of Rap2. MAP4K4 interacted preferentially with GTP-bound Rap2 over GDP-bound Rap2 in vitro. In cultured cells, MAP4K4 colocalized with Rap2, while a mutant MAP4K4 lacking the citron homology domain failed to do so. Furthermore, Rap2 enhanced MAP4K4-induced activation of JNK. These results suggest that MAP4K4 is a putative effector of Rap2 mediating the activation of JNK by Rap2.  相似文献   

8.
Three classes of mammalian phosphoinositide-specific phospholipase C (PLC) have been characterized, PLCbeta, PLCgamma and PLCdelta, that are differentially regulated by heterotrimeric G-proteins, tyrosine kinases and calcium. Here we describe a fourth class, PLCepsilon, that in addition to conserved PLC domains, contains a GTP exchange factor (GRF CDC25) domain and two C-terminal Ras-binding (RA) domains, RA1 and RA2. The RA2 domain binds H-Ras in a GTP-dependent manner, comparable with the Ras-binding domain of Raf-1; however, the RA1 domain binds H-Ras with a low affinity in a GTP-independent manner. While G(alpha)q, Gbetagamma or, surprisingly, H-Ras do not activate recombinant purified protein in vitro, constitutively active Q61L H-Ras stimulates PLC(epsilon) co-expressed in COS-7 cells in parallel with Ras binding. Deletion of either the RA1 or RA2 domain inhibits this activation. Site-directed mutagenesis of the RA2 domain or Ras demonstrates a conserved Ras-effector interaction and a unique profile of activation by Ras effector domain mutants. These studies identify a novel fourth class of mammalian PLC that is directly regulated by Ras and links two critical signaling pathways.  相似文献   

9.
It is known that the human Ras GTPase activating protein (GAP) p120-GAP can be phosphorylated by different members of the Src kinase family and recently phosphorylation of the GDP/GTP exchange factor (GEF) CDC25Mm/GRF1 by proteins of the Src kinase family has been revealed in vivo [Kiyono, M., Kaziro, Y. & Satoh, T. (2000) J. Biol. Chem. 275, 5441-5446]. As it still remains unclear how these phosphorylations can influence the Ras pathway we have analyzed the ability of p60c-Src and Lck to phosphorylate these two Ras regulators and have compared the activity of the phosphorylated and unphosphorylated forms. Both kinases were found to phosphorylate full-length or truncated forms of GAP and GEF. The use of the catalytic domain of p60c-Src showed that its SH3/SH2 domains are not required for the interaction and the phosphorylation of both regulators. Remarkably, the phosphorylations by the two kinases were accompanied by different functional effects. The phosphorylation of p120-GAP by p60c-Src inhibited its ability to stimulate the Ha-Ras-GTPase activity, whereas phosphorylation by Lck did not display any effect. A different picture became evident with CDC25Mm; phosphorylation by Lck increased its capacity to stimulate the GDP/GTP exchange on Ha-Ras, whereas its phosphorylation by p60c-Src was ineffective. Our results suggest that phosphorylation by p60c-Src and Lck is a selective process that can modulate the activity of p120-GAP and CDC25Mm towards Ras proteins.  相似文献   

10.
The small GTPase Ha-Ras and Rap1A exhibit high mutual sequence homology and share various target proteins. However, they exert distinct biological functions and exhibit differential subcellular localizations; Rap1A is predominantly localized in the perinuclear region including the Golgi apparatus and endosomes, whereas Ha-Ras is predominantly localized in the plasma membrane. Here, we have identified a small region in Rap1A that is crucial for its perinuclear localization. Analysis of a series of Ha-Ras-Rap1A chimeras shows that Ha-Ras carrying a replacement of amino acids 46-101 with that of Rap1 exhibits the perinuclear localization. Subsequent mutational studies indicate that Rap1A-type substitutions within five amino acids at positions 85-89 of Ha-Ras, such as NNTKS85-89TAQST, NN85-86TA, and TKS87-89QST, are sufficient to induce the perinuclear localization of Ha-Ras. In contrast, substitutions of residues surrounding this region, such as FAI82-84YSI and FEDI90-93FNDL, have no effect on the plasma membrane localization of Ha-Ras. A chimeric construct consisting of amino acids 1-134 of Rap1A and 134-189 of Ha-Ras, which harbors both the palmitoylation and farnesylation sites of Ha-Ras, exhibits the perinuclear localization like Rap1A. Introduction of a Ha-Ras-type substitution into amino acids 85-89 (TAQST85-89NNTKS) of this chimeric construct causes alteration of its predominant subcellular localization site from the perinuclear region to the plasma membrane. These results indicate that a previously uncharacterized domain spanning amino acids 85-89 of Rap1A plays a pivotal role in its perinuclear localization. Moreover, this domain acts dominantly over COOH-terminal lipid modification of Ha-Ras, which has been considered to be essential and sufficient for the plasma membrane localization.  相似文献   

11.
Small GTPase proteins such as Ras are key regulators of cellular proliferation and are activated by guanine nucleotide exchange/releasing factors (GEFs/GRFs). Three classes of Ras GRFs have been identified to date, represented by Sos1/2, Ras-GRF1/2 and Ras-GRP. Here, we describe a novel candidate Ras activator, cyclic nucleotide rasGEF (CNrasGEF), which contains CDC25, Ras exchange motif (REM), Ras-association (RA), PDZ and cNMP (cAMP/cGMP) binding (cNMP-BD) domains, two PY motifs and a carboxy-terminal SxV sequence. CNrasGEF can activate Ras in vitro, and it binds cAMP directly via its cNMP-BD. In cells, CNrasGEF activates Ras in response to elevation of intracellular cAMP or cGMP, or treatment with their analogues 8-Br-cAMP or 8-Br-cGMP, independently of protein kinases A and G (PKA and PKG). This activation is prevented in CNrasGEF lacking its CDC25 domain or cNMP-BD. CNrasGEF can also activate the small GTPase Rap1 in cells, but this activation is constitutive and independent of cAMP. CNrasGEF is expressed mainly in the brain and is localized at the plasma membrane, a localization dependent on the presence of intact PDZ domain but not the SxV sequence. These results suggest that CNrasGEF may directly connect cAMP-generating pathways or cGMP-generating pathways to Ras.  相似文献   

12.
Receptor tyrosine kinase regulation of phospholipase C-epsilon (PLC-epsilon), which is under the control of Ras-like and Rho GTPases, was studied with HEK-293 cells endogenously expressing PLC-coupled epidermal growth factor (EGF) receptors. PLC and Ca(2+) signaling by the EGF receptor, which activated both PLC-gamma1 and PLC-epsilon, was specifically suppressed by inactivation of Ras-related GTPases with clostridial toxins and expression of dominant-negative Rap2B. EGF induced rapid and sustained GTP loading of Rap2B, binding of Rap2B to PLC-epsilon, and Rap2B-dependent translocation of PLC-epsilon to the plasma membrane. GTP loading of Rap2B by EGF was inhibited by chelation of intracellular Ca(2+) and expression of lipase-inactive PLC-gamma1 but not of PLC-epsilon. Expression of RasGRP3, a Ca(2+)/diacylglycerol-regulated guanine nucleotide exchange factor for Ras-like GTPases, but not expression of various other exchange factors enhanced GTP loading of Rap2B and PLC/Ca(2+) signaling by the EGF receptor. EGF induced tyrosine phosphorylation of RasGRP3, but not RasGRP1, apparently caused by c-Src; inhibition of c-Src interfered with EGF-induced Rap2B activation and PLC stimulation. Collectively, these data suggest that the EGF receptor triggers activation of Rap2B via PLC-gamma1 activation and tyrosine phosphorylation of RasGRP3 by c-Src, finally resulting in stimulation of PLC-epsilon.  相似文献   

13.
Although the Ras subfamily of GTPases consists of approximately 20 members, only a limited number of guanine nucleotide exchange factors (GEFs) that couple extracellular stimuli to Ras protein activation have been identified. Furthermore, no novel downstream effectors have been identified for the M-Ras/R-Ras3 GTPase. Here we report the identification and characterization of three Ras family GEFs that are most abundantly expressed in brain. Two of these GEFs, MR-GEF (M-Ras-regulated GEF, KIAA0277) and PDZ-GEF (KIAA0313) bound specifically to nucleotide-free Rap1 and Rap1/Rap2, respectively. Both proteins functioned as Rap1 GEFs in vivo. A third GEF, GRP3 (KIAA0846), activated both Ras and Rap1 and shared significant sequence homology with the calcium- and diacylglycerol-activated GEFs, GRP1 and GRP2. Similarly to previously identified Rap GEFs, C3G and Smg GDS, each of the newly identified exchange factors promoted the activation of Elk-1 in the LNCaP prostate tumor cell line where B-Raf can couple Rap1 to the extracellular receptor-activated kinase cascade. MR-GEF and PDZ-GEF both contain a region immediately N-terminal to their catalytic domains that share sequence homology with Ras-associating or RalGDS/AF6 homology (RA) domains. By searching for in vitro interaction with Ras-GTP proteins, PDZ-GEF specifically bound to Rap1A- and Rap2B-GTP, whereas MR-GEF bound to M-Ras-GTP. C-terminally truncated MR-GEF, lacking the GEF catalytic domain, retained its ability to bind M-Ras-GTP, suggesting that the RA domain is important for this interaction. Co-immunoprecipitation studies confirmed the interaction of M-Ras-GTP with MR-GEF in vivo. In addition, a constitutively active M-Ras(71L) mutant inhibited the ability of MR-GEF to promote Rap1A activation in a dose-dependent manner. These data suggest that M-Ras may inhibit Rap1 in order to elicit its biological effects.  相似文献   

14.
Three families of phospholipase C (PI-PLCbeta, gamma, and delta) are known to catalyze the hydrolysis of polyphosphoinositides such as phosphatidylinositol 4,5-bisphosphate (PIP(2)) to generate the second messengers inositol 1,4,5 trisphosphate and diacylglycerol, leading to a cascade of intracellular responses that result in cell growth, cell differentiation, and gene expression. Here we describe the founding member of a novel, structurally distinct fourth family of PI-PLC. PLCepsilon not only contains conserved catalytic (X and Y) and regulatory domains (C2) common to other eukaryotic PLCs, but also contains two Ras-associating (RA) domains and a Ras guanine nucleotide exchange factor (RasGEF) motif. PLCepsilon hydrolyzes PIP(2), and this activity is stimulated selectively by a constitutively active form of the heterotrimeric G protein Galpha(12). PLCepsilon and a mutant (H1144L) incapable of hydrolyzing phosphoinositides promote formation of GTP-Ras. Thus PLCepsilon is a RasGEF. PLCepsilon, the mutant H1144L, and the isolated GEF domain activate the mitogen-activated protein kinase pathway in a manner dependent on Ras but independent of PIP(2) hydrolysis. Our findings demonstrate that PLCepsilon is a novel bifunctional enzyme that is regulated by the heterotrimeric G protein Galpha(12) and activates the small G protein Ras/mitogen-activated protein kinase signaling pathway.  相似文献   

15.
Ras signaling to its downstream effectors appears to include combinations of extracellular-signal-regulated Ras activation at the plasma membrane (PM) and endomembranes, dynamic lateral segregation in the PM, and translocation of Ras from the PM to intracellular compartments. These processes are governed by the C-terminal polybasic farnesyl domain in K-Ras 4B and by the cysteine-palmitoylated C-terminal farnesyl domains in H-Ras and N-Ras. K-Ras 4B has no palmitoylated cysteines. Depalmitoylation/repalmitoylation of H-/N-Ras proteins promotes their cellular redistribution and signaling by mechanisms as yet unknown, possibly involving chaperones. Palmitoylation of H-/N-Ras also promotes their association with 'rasosomes', randomly diffusing nanoparticles that apparently provide a means by which multiple copies of activated Ras and its signal can spread rapidly. Ubiquitination of H-Ras evidently targets it to the endosomes. The polybasic farnesyl domain of K-Ras 4B was shown to act as a target for Ca++/calmodulin, which sequesters the active protein from the PM, thereby facilitating its trafficking to Golgi apparatus and early endosomes. Protein kinase C-dependent phosphorylation of S181 in K-Ras 4B was shown to provide a regulated farnesyl-electrostatic switch on K-Ras 4B, which promotes its translocation to the mitochondria. All these translocation events are characterized by nonconventional trafficking of the farnesyl-modified Ras proteins and seem to govern the selectivity and probably also the robustness of the Ras signal. In this review, we discuss the various modifications and interactions of the farnesylated C-terminus, the trafficking of Ras proteins in the PM and between the PM and the endomembranes, and the relevance of the subcellular localization of Ras for Ras function.  相似文献   

16.
Dbs is a Rho-specific guanine nucleotide exchange factor that was identified in a screen for proteins whose overexpression cause deregulated growth in murine fibroblasts. Dbs contains multiple recognizable motifs including a centrally located Rho-specific guanine nucleotide exchange factor domain, a COOH-terminal Src homology 3 domain, two spectrin-like repeats, and a recently identified NH(2)-terminal Sec14 homology domain. The transforming potential of Dbs is substantially activated by the removal of inhibitory sequences that lie outside of the core catalytic sequences, and in this current study we mapped this inhibition to the Sec14 domain. Surprisingly removal of the NH(2) terminus did not alter the catalytic activity of Dbs in vivo but rather altered its subcellular distribution. Whereas full-length Dbs was distributed primarily in a perinuclear structure that coincides with a marker for the Golgi apparatus, removal of the Sec14 domain was associated with translocation of Dbs to the cell periphery where it accumulated within membrane ruffles and lamellipodia. However, translocation of Dbs and the concomitant changes in the actin cytoskeleton were not sufficient to fully activate Dbs transformation. The Sec14 domain also forms intramolecular contacts with the pleckstrin homology domain, and these contacts must also be relieved to achieve full transforming activity. Collectively these observations suggest that the Sec14 domain regulates Dbs transformation through at least two distinct mechanisms, neither of which appears to directly influence the in vivo exchange activity of the protein.  相似文献   

17.
Phospholipase Cepsilon (PLCepsilon) is activated by various growth factors or G-protein-coupled receptor ligands via different activation mechanisms. The Ras association (RA) domain of PLCepsilon is known to be important for its ability to bind with Ras-family GTPase upon growth factor stimulation. In the present study, we identified Siah1 and Siah2 as novel binding partners of the PLCepsilon RA domain. Both Siah1 and Siah2 interacted with the RA2 domain of PLCepsilon, and the mutation of Lys-2186 of the PLCepsilon RA2 domain abolished this association. Moreover, Siah induced the ubiquitination and degradation of PLCepsilon upon epidermal growth factor (EGF) stimulation, and Siah proteins were phosphorylated on multiple tyrosine residues via an Src-dependent pathway upon EGF treatment. The Src inhibitor abolished the EGF-dependent ubiquitination of PLCepsilon, and the Siah1 phosphorylation-deficient mutant could not increase the EGF-dependent ubiquitination and degradation of PLCepsilon. The EGF-dependent degradation of PLCepsilon was blocked in mouse embryonic fibroblast (MEF) cells derived from Siah1a/Siah2 double knockout mice, and the extrinsic expression of wild-type Siah1 restored the degradation of PLCepsilon, whereas the phosphorylation-deficient mutant did not. Siah1 expression abolished PLCepsilon-dependent potentiation of EGF-dependent cell growth. In addition, the expression of wild-type Siah1 in Siah1a/Siah2-double knockout MEF cells inhibited EGF-dependent cell growth, and this inhibition was abolished by PLCepsilon knockdown. Our results suggest that the Siah-dependent degradation of PLCepsilon plays a role in the regulation of growth factor-dependent cell growth.  相似文献   

18.
A yeast two-hybrid screening for Ras-binding proteins in nematode Caenorhabditis elegans has identified a guanine nucleotide exchange factor (GEF) containing a Ras/Rap1A-associating (RA) domain, termed Ce-RA-GEF. Both Ce-RA-GEF and its human counterpart Hs-RA-GEF possessed a PSD-95/DlgA/ZO-1 (PDZ) domain and a Ras exchanger motif (REM) domain in addition to the RA and GEF domains. They also contained a region homologous to a cyclic nucleotide monophosphate-binding domain, which turned out to be incapable of binding cAMP or cGMP. Although the REM and GEF domains are conserved with other GEFs acting on Ras family small GTP-binding proteins, the RA and PDZ domains are unseen in any of them. Hs-RA-GEF exhibited not only a GTP-dependent binding activity to Rap1A at its RA domain but also an activity to stimulate GDP/GTP exchange of Rap1A both in vitro and in vivo at the segment containing its REM and GEF domains. However, it did not exhibit any binding or GEF activity toward Ras. On the other hand, Ce-RA-GEF associated with and stimulated GDP/GTP exchange of both Ras and Rap1A. These results indicate that Ce-RA-GEF and Hs-RA-GEF define a novel class of Rap1A GEF molecules, which are conserved through evolution.  相似文献   

19.
The Saccharomyces cerevisiae CDC25 gene encodes a guanine nucleotide exchange factor for Ras proteins whose catalytic domain is highly homologous to Ras-guanine nucleotide exchange factors from higher eukaryotes. In this study, glucose-induced Ras activation and cAMP response were investigated in mutants lacking the N-terminal domain of Cdc25 or where the entire CDC25 coding sequence was substituted by an expression cassette for a mammalian guanine nucleotide exchange factor catalytic domain. Our results suggest that an unregulated, low Ras guanine nucleotide exchange factor activity allows a normal glucose-induced cAMP signal that appears to be mediated mainly by the Gpr1/Gpa2 system, but it was not enough to sustain the glucose-induced increase of Ras2-GTP normally observed in a wild-type strain.  相似文献   

20.
Serum stimulates cells to increase their proportion of Ras protein in the active GTP-bound state. We have recently identified four types (I to IV) of apparently full-length cDNAs from a single mammalian gene, called CDC25Mm or GRF, which is homologous to the Ras-specific exchange factor CDC25 of S. cerevisiae. The largest cDNA (type IV) is brain specific, with the other three classes, although they have distinct 5' ends, essentially representing progressive N-terminal deletions of this cDNA. When placed in a retroviral expression vector, all four types of cDNAs induced morphologic transformation of NIH 3T3 cells and an increase in the basal level of GTP.Ras. Serum stimulation of these transformants lead to a further increase in GTP.Ras only in cells expressing the type IV cDNA. Each type of GRF protein was found in cytosolic and membrane fractions, and the protein in each fraction could stimulate guanine nucleotide release from GDP.Ras in vitro. When NIH 3T3 cells and cells expressing the type IV protein were transfected with two versions of a mutant ras gene, one encoding membrane-associated Ras protein and the other encoding a cytosolic Ras protein, the basal levels of GTP bound to both forms of the mutant Ras protein were significantly higher in the cells expressing the type IV protein. However, serum increased the level of GTP bound to the membrane-associated mutant Ras protein in NIH 3T3 cells and in cells expressing the type IV protein but not in cells expressing the cytosolic version of the Ras protein. We conclude that each type of CDC25Mm induces cell transformation via the ability of its C terminus to stimulate guanine nucleotide exchange on Ras, the presence of N-terminal sequences is associated with a serum-dependent change in GTP.Ras, and the serum-dependent increase in GTP.Ras by exogenous CDC25Mm or by endogenous exchange factors probably requires membrane association of both Ras and the exchange factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号