首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 132 毫秒
1.
The accessibility of five specific DNA sequences to six different single site restriction endonucleases was evaluated in replicating and mature simian virus 40 chromosomes isolated by three different methods. Electron microscopic and gel electrophoretic analysis of the DNA digestion products demonstrated that DNA accessibility in chromatin was established within 400 base pairs of replication forks and remained essentially unchanged during production of mature chromosomes and their subsequent re-entry into the replication pool. Saturating amounts of each enzyme reproducibly cut a fraction of the chromosomes, ranging from 13 to 49%. This is consistent with a nearly random phasing of chromatin structure. Examples in which all chromosomes were either cleaved or intact were never observed. Although variation in the accessibility of DNA sites near the origin of replication could be interpreted as preferred phasing in about 25% of the chromosomes, the finding that two isoschizomers, Hpa II and Msp I, did not cut chromosomes to the same extent precludes an unambiguous interpretation of the extents of cleavage of individual restriction enzymes. Since the extent of DNA cleavage observed at each restriction site was essentially indistinguishable in replicating as compared to mature chromosomes, the accessibility of DNA sequences near the origin is not obviously related to replication. Furthermore, the accessibility of DNA sites on one arm of a single replication fork was the same as the homologous sites on the other arm, consistent with a nearly random phasing of chromatin structure on both arms. This suggests that chromatin assembly occurs independently on the 2 sibling molecules of a single replicating chromosome.  相似文献   

2.
The BcgI endonuclease exemplifies a subset of restriction enzymes, the Type IIB class, which make two double-strand breaks (DSBs) at each copy of their recognition sequence, one either side of the site, to excise the sequence from the remainder of the DNA. In this study, we show that BcgI is essentially inactive when bound to a single site and that to cleave a DNA with one copy of its recognition sequence, it has to act in trans, bridging two separate DNA molecules. We also show that BcgI makes the two DSBs at an individual site in a highly concerted manner. Intermediates cut on one side of the site do not accumulate during the course of the reaction: instead, the DNA is converted straight to the final products cut on both sides. On DNA with two sites, BcgI bridges the sites in cis and then generally proceeds to cut both strands on both sides of both sites without leaving the DNA. The BcgI restriction enzyme can thus excise two DNA segments together, by cleaving eight phosphodiester bonds within a single-DNA binding event.  相似文献   

3.
4.
DNA-drug complexes containing various levels of covalently bound mitomycin C (MC) or anthramycin were subjected to the actions of a number of restriction enzymes. While MC presented only a partial block to the actions of a number of these enzymes, anthramycin, at high binding ratios, blocked enzymatic activity very well. The contrast seen in the restriction cleavage of these DNA-drug complexes may be related to the different points of attachment in DNA (minor groove vs. major groove) for these drugs. Although similarities in electrophoretic band patterns exist for both drug complexes, certain differences are indicative of preferences in binding sequences that these drugs may have for DNA. The results show that these sequences do not necessarily lie immediately within the restriction cut sites but may effect the cutting of these sites from a distance. The results also further support anthramycin's potential usage as a selective/reversible blocking agent for recombinant research.  相似文献   

5.
Once electroporated into the nucleus of eukaryotic cells, restriction enzymes will bind at specific DNA sequences and cleave DNA to make double-strand breaks. These induced breaks can lead to chromosome aberrations and consequently offer one approach to determining the mechanism(s) of aberration formation. Because the higher-order structure of DNA in eukaryotic cells might influence the ability of restriction enzymes to locate their recognition sequence, bind, and cleave DNA, we have investigated whether enzymes will cut DNA during metaphase when the chromosomes are most condensed. Chinese hamster ovary cells synchronized in mitosis and treated with either AluI or Sau3AI showed few chromosome aberrations when held in mitosis for 1, 2, or 3 h after enzyme treatment. However, some disruption of chromosome morphology was seen, especially after exposure to Sau3AI. When cells were allowed to complete one cell cycle after enzyme treatment in the preceding mitosis, there was extensive chromosome damage, with the most abundant type of lesion being the interstitial deletion. It appears that restriction enzymes will cleave the highly condensed DNA in mitotic cells but that decondensation, DNA replication, and recondensation are required before the aberrations are manifested.  相似文献   

6.
The effects of DNA methylation on gene expression and chromatin structure suggest the existence of a mechanism in the nucleus capable of distinguishing methylated and non-methylated sequences. We report the finding of a nuclear protein in several vertebrate tissues and cell lines that binds preferentially to methylated DNA in vitro. Its lack of sequence-specific requirements makes it potentially capable of binding to any methylated sequence in mammalian nuclei. An in vivo counterpart of these results is that methylated CpGs are inaccessible to nucleases within nuclei. In contrast, non-methylated CpG sites, located mainly at CpG islands, and restriction sites not containing this dinucleotide, are relatively accessible. The possibility that DNA methylation acts through binding to specific proteins that could alter chromatin structure is discussed.  相似文献   

7.
The first tandemly repeated sequence examined in a passerine bird, a 431-bp PstI fragment named pMAT1, has been cloned from the genome of the brown-headed cowbird (Molothrus ater). The sequence represents about 5-10% of the genome (about 4 x 10(5) copies) and yields prominent ethidium bromide stained bands when genomic DNA cut with a variety of restriction enzymes is electrophoresed in agarose gels. A particularly striking ladder of fragments is apparent when the DNA is cut with HinfI, indicative of a tandem arrangement of the monomer. The cloned PstI monomer has been sequenced, revealing no internal repeated structure. There are sequences that hybridize with pMAT1 found in related nine-primaried oscines but not in more distantly related oscines, suboscines, or nonpasserine species. Little sequence similarity to tandemly repeated PstI cut sequences from the merlin (Falco columbarius), saurus crane (Grus antigone), or Puerto Rican parrot (Amazona vittata) or to HinfI digested sequence from the Toulouse goose (Anser anser) was detected. The isolated sequence was used as a probe to examine DNA samples of eight members of the tribe Icterini. This examination revealed phylogenetically informative characters. The repeat contains cutting sites from a number of restriction enzymes, which, if sufficiently polymorphic, would provide new phylogenetic characters. Sequences like these, conserved within a species, but variable between closely related species, may be very useful for phylogenetic studies of closely related taxa.  相似文献   

8.
The SgrAI endonuclease usually cleaves DNA with two recognition sites more rapidly than DNA with one site, often converting the former directly to the products cut at both sites. In this respect, SgrAI acts like the tetrameric restriction enzymes that bind two copies of their target sites before cleaving both sites concertedly. However, by analytical ultracentrifugation, SgrAI is a dimer in solution though it aggregates to high molecular mass species when bound to its specific DNA sequence. Its reaction kinetics indicate that it uses different mechanisms to cleave DNA with one and with two SgrAI sites. It cleaves the one-site DNA in the style of a dimeric restriction enzyme acting at an individual site, mediating neither interactions in trans, as seen with the tetrameric enzymes, nor subunit associations, as seen with the monomeric enzymes. In contrast, its optimal reaction on DNA with two sites involves an association of protein subunits: two dimers bound to sites in cis may associate to form a tetramer that has enhanced activity, which then cleaves both sites concurrently. The mode of action of SgrAI differs from all restriction enzymes characterised previously, so this study extends the range of mechanisms known for restriction endonucleases.  相似文献   

9.
A survey of restriction endonucleases having different cleavage specificities has identified 10 that do not cut wild-type bacteriophage T7 DNA, 11 that cut at six or fewer sites, four that cut at 18 to 45 sites, and 12 that cut at more than 50 sites. All the cleavage sites for the 13 enzymes that cut at 26 or fewer sites have been mapped. Cleavage sites for each of the 10 enzymes that do not cut T7 DNA would be expected to occur an average of 9 to 10 times in a random nucleotide sequence the length of T7 DNA. A possible explanation for the lack of any cleavage sites for these enzymes might be that T7 encounters enzymes having these specificities in natural hosts, and that the sites have been eliminated from T7 DNA by natural selection. Five restriction endonucleases were found to cut within the terminal repetition of T7 DNA; one of these, KpnI, cuts at only three additional sites in the T7 DNA molecule. The length of the terminal repetition was estimated by two independent means to be approximately 155 to 160 base-pairs.  相似文献   

10.
M Sanzo  B Stevens  M J Tsai  B W O'Malley 《Biochemistry》1984,23(26):6491-6498
We have fractionated oviduct tissue extracts by using a combination of ion-exchange and DNA-Sephadex chromatography. By comparing the electrophoretic patterns of proteins eluted from competing specific and nonspecific DNA columns, we isolated a fraction which bound with specificity to columns containing the chicken middle repetitive sequence "CR1". This fraction showed a clear preference for binding to separate, cloned CR1 fragments derived from either the 5' or the 3' transition region of the ovalbumin gene domain when examined by using nitrocellulose filter binding assays. To localize the protein binding site, a CR1 clone was digested with various restriction enzymes, and the resulting fragments were examined for preferential protein binding. Results suggest that the binding site lies within a 39-nucleotide sequence which is highly conserved among different CR1 elements. This finding represents the first isolation of a protein which demonstrates a preference for binding to a middle repetitive sequence and suggests that this interaction may have a biological role. The DNA column competition adsorption method should have general application to the isolation of other gene-regulating proteins possessing DNA sequence preference.  相似文献   

11.
Type I restriction enzymes bind to a specific DNA sequence and subsequently translocate DNA past the complex to reach a non-specific cleavage site. We have examined several potential blocks to DNA translocation, such as positive supercoiling or a Holliday junction, for their ability to trigger DNA cleavage by type I restriction enzymes. Introduction of positive supercoiling into plasmid DNA did not have a significant effect on the rate of DNA cleavage by EcoAI endonuclease nor on the enzyme's ability to select cleavage sites randomly throughout the DNA molecule. Thus, positive supercoiling does not prevent DNA translocation. EcoR124II endonuclease cleaved DNA at Holliday junctions present on both linear and negatively supercoiled substrates. The latter substrate was cleaved by a single enzyme molecule at two sites, one on either side of the junction, consistent with a bi-directional translocation model. Linear DNA molecules with two recognition sites for endonucleases from different type I families were cut between the sites when both enzymes were added simultaneously but not when a single enzyme was added. We propose that type I restriction enzymes can track along a DNA substrate irrespective of its topology and cleave DNA at any barrier that is able to halt the translocation process.  相似文献   

12.
R E Slatter  P Dupree    J C Gray 《The Plant cell》1991,3(11):1239-1250
Chromosomal scaffold-associated DNA has been isolated from pea leaf nuclei treated with lithium diiodosalicylate to remove histones and then digested with restriction enzymes to remove the DNA in chromosomal loops. A scaffold-associated region (SAR) of DNA has been identified 8 to 9 kb downstream of the single-copy pea plastocyanin gene in proximity to a repetitive sequence present in 300 copies in the pea haploid genome. Isolated restriction fragments from within the SAR can bind to scaffold preparations in a binding assay in vitro. The nucleotide sequence of the SAR indicates a 540-bp 77% A+T-rich region containing many sequence elements in common with SARs from other organisms. Sequences with homology to topoisomerase II binding sites, A-box and T-box sequences, and replication origins are present within this AT-rich region.  相似文献   

13.
More than 3000 type II restriction endonucleases have been discovered. They recognize short, usually palindromic, sequences of 4-8 bp and, in the presence of Mg(2+), cleave the DNA within or in close proximity to the recognition sequence. The orthodox type II enzymes are homodimers which recognize palindromic sites. Depending on particular features subtypes are classified. All structures of restriction enzymes show a common structural core comprising four beta-strands and one alpha-helix. Furthermore, two families of enzymes can be distinguished which are structurally very similar (EcoRI-like enzymes and EcoRV-like enzymes). Like other DNA binding proteins, restriction enzymes are capable of non-specific DNA binding, which is the prerequisite for efficient target site location by facilitated diffusion. Non-specific binding usually does not involve interactions with the bases but only with the DNA backbone. In contrast, specific binding is characterized by an intimate interplay between direct (interaction with the bases) and indirect (interaction with the backbone) readout. Typically approximately 15-20 hydrogen bonds are formed between a dimeric restriction enzyme and the bases of the recognition sequence, in addition to numerous van der Waals contacts to the bases and hydrogen bonds to the backbone, which may also be water mediated. The recognition process triggers large conformational changes of the enzyme and the DNA, which lead to the activation of the catalytic centers. In many restriction enzymes the catalytic centers, one in each subunit, are represented by the PD. D/EXK motif, in which the two carboxylates are responsible for Mg(2+) binding, the essential cofactor for the great majority of enzymes. The precise mechanism of cleavage has not yet been established for any enzyme, the main uncertainty concerns the number of Mg(2+) ions directly involved in cleavage. Cleavage in the two strands usually occurs in a concerted fashion and leads to inversion of configuration at the phosphorus. The products of the reaction are DNA fragments with a 3'-OH and a 5'-phosphate.  相似文献   

14.
Restriction endonuclease cleavage of satellite DNA in intact bovine nuclei   总被引:1,自引:0,他引:1  
Lolya Lipchitz  Richard Axel 《Cell》1976,9(2):355-364
We have analyzed the efficiency with which specific nucleotide sequences within nucleosomes are recognized and cleaved by DNA restriction endonucleases. A system amenable to this sort of analysis is the cleavage of the bovine genome with the restriction endonuclease EcoRI. Bovine satellite I comprises 7% of the genome and is tandemly repetitious with an EcoRI site at 1400 base pair (bp) intervals within this sequence. The ease with which this restriction fragment can be measured permits an analysis of the accessibility of this sequence when organized in a nucleosomal array.Initial studies indicated that satellite I sequences are organized in a nucleosomal structure in a manner analogous to that observed for total genomic DNA. We then examined the accessibility of the EcoRI cleavage sites in satellite to endonucleolytic cleavage in intact nuclei. We find that whereas virtually all the satellite I sequences from naked DNA are cleaved into discrete 1400 bp fragments, only 33% of the satellite I DNA is liberated as this fragment from intact nuclei. These data indicate that 57% of the EcoRI sites in nuclei are accessible to cleavage and that cleavage can occur within the core of at least half the nucleosomal subunits. Analysis of the products of digestion suggests a random distribution of nucleosomes about the EcoRI sites of satellite I DNA.Finally, the observation that satellite sequences can be cleaved from nuclei to 1400 bp length fragments with their associated proteins provides a method for the isolation of specific sequences as chromatin. Using sucrose gradient velocity centrifugation, we have isolated a 70% pure fraction of satellite I chromatin. Nuclease digestion of this chromatin fraction reveals the presence of nucleosomal subunits and indicates that specific sequences can be isolated in this manner without gross disorganization of their subunit structure.  相似文献   

15.
DNA is a useful material for constructing nanoscale structures in nearly any three-dimensional (3D) shape desired. The DNA nanostructure can also be equipped with specific docking sites for proteins. Cellular processes and chemical transformations take place in several reaction steps. Multiple enzymes cooperate in specific fashion to catalyze the sequential chemical transformation steps. Such natural systems are effectively reconstructed in vitro if the individual enzymes locate in the correct relative orientations. DNA-origami structures can be used as “molecular switchboards” to arrange enzymes and other proteins with nanometer-scale precision. A new method was developed for locating the proteins by means of special “adapters” known as zinc-finger proteins based only on proteins. Zinc fingers are suitable site-selective adapters for targeting specific locations within DNA-origami structures. Several different adapters carrying different proteins can independently bind at defined locations on this type of nanostructure. A basic leucine zipper (bZIP) protein is also a candidate for the site-selective adaptor. A well-characterized bZIP protein GCN4 was chosen as an adaptor for specific addresses. Analyses by atomic force microscopy and gel electrophoreses demonstrate specific binding of GCN4 adaptor to the addresses containing the GCN4 binding sites on DNA origami. The adaptor derived from GCN4 and that form a zinc-finger protein zif268, for which we have reported previously, acted as orthogonal adaptors to the respective addresses on DNA origami. Therefore, these orthogonal adaptors would be useful to place multiple engineered proteins at different addresses on DNA origami. Especially, the homodimeric nature of GCN4 adaptor is indispensable for constructing the assembly of the naturally abundant dimeric proteins and/or enzymes to efficiently carry out chemical reactions and signal transductions in vitro on DNA origami.  相似文献   

16.
Orthodox Type IIP restriction endonucleases, which are commonly used in molecular biological work, recognize a single palindromic DNA recognition sequence and cleave within or near this sequence. Several new studies have reported on structural and biochemical peculiarities of restriction endonucleases that differ from the orthodox in that they require two copies of a particular DNA recognition sequence to cleave the DNA. These two sites requiring restriction endonucleases belong to different subtypes of Type II restriction endonucleases, namely Types IIE, IIF and IIS. We compare enzymes of these three types with regard to their DNA recognition and cleavage properties. The simultaneous recognition of two identical DNA sites by these restriction endonucleases ensures that single unmethylated recognition sites do not lead to chromosomal DNA cleavage, and might reflect evolutionary connections to other DNA processing proteins that specifically function with two sites.  相似文献   

17.
18.
Rare-cutting restriction enzymes are important tools in genome analysis. We report here the crystal structure of SdaI restriction endonuclease, which is specific for the 8 bp sequence CCTGCA/GG ("/" designates the cleavage site). Unlike orthodox Type IIP enzymes, which are single domain proteins, the SdaI monomer is composed of two structural domains. The N domain contains a classical winged helix-turn-helix (wHTH) DNA binding motif, while the C domain shows a typical restriction endonuclease fold. The active site of SdaI is located within the C domain and represents a variant of the canonical PD-(D/E)XK motif. SdaI determinants of sequence specificity are clustered on the recognition helix of the wHTH motif at the N domain. The modular architecture of SdaI, wherein one domain mediates DNA binding while the other domain is predicted to catalyze hydrolysis, distinguishes SdaI from previously characterized restriction enzymes interacting with symmetric recognition sequences.  相似文献   

19.
The mechanism of chromosome banding induced by restriction endonucleases was analyzed by measuring the amount of radioactivity extracted from [14C]thymidine-labeled chromosomes digested first with restriction enzymes and subsequently with proteinase K and DNase I. Restriction enzymes with a high frequency of recognition sites in the DNA produced a large number of short DNA fragments, which were extracted from chromosomes during incubation with the enzyme. This loss of DNA resulted in decreased chromosomal staining, which did not occur in regions resistant to restriction enzyme digestion and thus led to banding. Subsequent digestion of chromosomes with proteinase K produced a further loss of DNA, which probably corresponded to long fragments retained in the chromosome by the proteins of fixed chromatin. Restriction enzymes induce chromatin digestion and banding in G1 and metaphase chromosomes, and they induce digestion and the appearance of chromocenters in interphase nuclei. This suggests that the spatial organization and folding of the chromatin fibril plays little or no role in the mechanism of chromosome banding.It was confirmed that the pattern of chromosome banding induced by AluI, MboI, HaeIII, DdeI, RsaI, and HinfI is characteristic for each endonuclease. Moreover, several restriction banding polymorphisms that were not found by conventional C-banding were detected, indicating that there may be a range of variability in the frequency and distribution of restriction sites in homologous chromosome regions.  相似文献   

20.
We present complete restriction endonuclease cleavage site maps of the bacteriophage P22 chromosome for 16 enzymes with six base recognition sequences, thereby positioning 116 new sites on the chromosome. Twenty-four such restriction maps for P22 DNA, containing 162 sites, have now been completed, and three enzymes were found that did not cut P22 DNA. Our results are consistent with the ideas that ClaI does not cleave the methylated recognition sequence ATCGA(me)T or A(me)TCGAT and StuI does not cleave the methylated recognition sequence AGGCC(me)T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号