首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Obata T 《Life sciences》2002,71(18):2083-2103
Adenosine exerts cardioprotective effects on the ischemic myocardium. A flexibly mounted microdialysis probe was used to measure the concentration of interstitial adenosine and to assess the activity of ecto-5'-nucleotidase (a key enzyme responsible for adenosine production) in in vivo rat hearts. The level of adenosine during perfusion of adenosine 5'-adenosine monophosphate (AMP) was given as an index of the activity of ecto-5'-nucleotidase in the tissue. Endogenous norepinephrine (NE) activates both alpha(1)-adrenoceptors and protein kinase C (PKC), which, in turn, activates ecto-5'-nucleotidase via phosphorylation thereby enhancing the production of interstitial adenosine. Histamine-release NE activates PKC, which increased ecto-5'-nucleotidase activity and augmented release of adenosine. Opening of cardiac ATP sensitive K(+) (K(ATP)) channels may cause hydroxyl radical (.OH) generation through NE release. Lysophosphatidylcholine (LPC), an endogenous amphiphiphilic lipid metabolite, also increases the concentration of interstitial adenosine in rat hearts, through the PKC-mediated activation of endogenous ecto-5'-nucleotidase. Nitric oxide (NO) facilitates the production of interstitial adenosine, via guanosine 3',5'-cyclic monophosphate (cGMP)-mediated activation of ecto-5'-nucleotidase as another pathway. These mechanisms play an important role in high sensitivity of the cardiac adenosine system. Adenosine plays an important role as a modulator of ischemic reperfusion injury, and that the production and mechanism of action of adenosine are linked with NE release.  相似文献   

4.
The mechanism underlying beta,gamma-methylene ATP (beta,gamma-MeATP)-induced cAMP elevation was investigated in rat glioma C6Bu-1 cells. Beta,gamma-MeATP increased forskolin-stimulated cAMP formation in a manner sensitive to both the P1 antagonist xanthine amine congener (XAC) and the P2 antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Adenosine deaminase (ADA; 1 U/mL), which abolished the adenosine-induced response, did not eliminate the beta,gamma-MeATP-induced response. However, combination of ADA with alpha,beta-methylene ADP (alpha,beta-MeADP), an ecto-5'-nucleotidase inhibitor, blocked the beta,gamma-MeATP-induced response. AMP, the substrate for ecto-5'-nucleotidase, also induced cAMP formation in a manner sensitive to XAC and alpha,beta-MeADP inhibition. However, the AMP-induced response was not blocked by PPADS. HPLC analyses revealed that adenosine was generated from beta,gamma-MeATP and AMP. In addition, alpha,beta-MeADP inhibited the conversion of beta,gamma-MeATP and AMP to adenosine, whereas PPADS blocked adenosine formation from beta,gamma-MeATP but not from AMP. [3H]Adenosine generated from [3H]AMP was preserved on the cell surface environment even in the presence of ADA. The mRNAs for ecto-phosphodiesterase/pyrophosphatase 1 (EC 3.1.4.1), ecto-5'-nucleotidase (EC 3.1.3.5) and adenosine A2B receptor were detected by RT-PCR. These results suggest that C6Bu-1 cells possess ecto-enzymes converting beta,gamma-MeATP to adenosine, and the locally accumulated adenosine in this mechanism efficiently stimulates A2B receptors in a manner resistant to exogenous ADA.  相似文献   

5.
We examined whether reserpine-induced norepinephrine (NE) depletion attenuated the products of adenosine in rat heart. A flexibly mounted microdialysis technique was used to measure the concentration of interstitial adenosine and to assess the activity of ecto-5'-nucleotidase in rat hearts in situ. The microdialysis probe was implanted in the left ventricular myocardium of anesthetized rats and perfused with Tyrode solution containing adenosine 5'-monophosphate (AMP) at rate of 1.0 microliter/min. The baseline level of dialysate adenosine was 0.51 +/- 0.09 microM. The introduction of AMP (100 microM) through the probe increased markedly the dialysate adenosine to 8.95 +/- 0.86 microM, and this increase was inhibited by ecto-5'-nucleotidase inhibitor, alpha, beta-methyleneadenosine 5'-diphosphate (AOPCP, 100 microM), to 0.66 +/- 0.38 microM. Thus, the level of dialysate adenosine is a measure of the ecto-5'-nucleotidase activity in the tissue in situ. AMP concentration for the half-maximal effect of adenosine release (EC(50)) was 107.3 microM. The maximum attainable concentration of dialysate adenosine (E(max)) by AMP was 21.1 microM. However, the EC(50) and E(max) values with reserpinized animals were 106.9 and 7.1 microM, respectively. Electrical stimulation of the left stellate ganglion increased significantly dialysate adenosine concentration, from the control level of 8.66 +/- 0.96 microM to 12.38 +/- 1.11 microM. After stimulation, dialysate adenosine returned to near the prestimulation level. When corresponding experiments were performed with reserpinized animals, the effect of electrical stimulation was abolished. Tyramine (endogenous catecholamine trigger) increased the adenosine concentration in a concentration-dependent manner. However, the elevation of adenosine concentration with reserpinized animals was not observed. These results suggest that reserpine attenuates NE-induced adenosine via stimulation of alpha(1)-adrenoceptor and protein kinase C mediated activation of ecto-5'-nucleotidase in rat heart.  相似文献   

6.
It is now well established that human lymphoblastoid cell lines showing immaturity characters display ecto-5'-nucleotidase activities lower than normal levels. A recent paper (Sun, A.S., Holland, J.F. and Ohnuma, T. (1983) Biochim. Biophys. Acta 762, 577-584) mentioned that this phenomenon resulted from the presence of a 5'-nucleotidase inhibitor in these cell lines. We demonstrate here that the use of 5'-[3H]AMP as a substrate, and inadequate analysis of the products formed, led them to a misinterpretation. [3H]Adenosine derived from 5'-[3H]AMP hydrolysis was further transformed into [3H]inosine by the adenosine deaminase activity of the leukemic cell lines tested; [3H]inosine was precipitated with the excess substrate and was not taken into account in the ecto-5'-nucleotidase determination, which led the authors to confuse this adenosine deaminase activity with a 5'-nucleotidase inhibitor. We did not observe 5'-nucleotidase inhibition by leukemic cell cytosol when convenient assay methods were used and showed that the presence of such an inhibitor remains to be established.  相似文献   

7.
Adenosine formation and release were studied in 48-h-old cultured ciliary ganglia and confluent peripheral and CNS glial cultures from embryonic chicks. Metabolic poisoning induced by 30 mM 2-deoxyglucose and 2 micrograms/ml oligomycin reduced ATP concentration by 90%. An increase in adenosine accounted for 15-40% of the fall in ATP. Dilazep (3 X 10(-6) M), a nucleoside transport inhibitor, decreased both incorporation of adenosine (an index of nucleoside transport) and release of adenosine by 80-90%. Dilazep trapped the newly formed adenosine intracellularly. A concentration of alpha, beta-methylene ADP that inhibited ecto-5'-nucleotidase by 80-90% did not alter the concentration of adenosine or AMP in neurons, glia, or medium. The results demonstrate that adenosine is formed intracellularly and exported out of the cell via the nucleoside transporter. The participation of ecto-5'-nucleotidase was excluded.  相似文献   

8.
In skeletal muscle, adenosine monophosphate (AMP) is mainly deaminated by AMP deaminase. However, the C34T mutation in the AMPD1 gene severely reduces AMP deaminase activity. Alternatively, intracellular AMP is dephosphorylated to adenosine via cytosolic AMP 5'-nucleotidase (cN-I). In individuals with a homozygous C34T mutation, cN-I might be a more important pathway for AMP removal. We determined activities of AMP deaminase, cN-I, total cytosolic 5'-nucleotidase (total cN), ecto-5'-nucleotidase (ectoN) and whole homogenate 5'-nucleotidase activity in skeletal muscle biopsies from patients with different AMPD1 genotypes [homozygotes for C34T mutation (TT); heterozygotes for C34T mutation (CT); and homozygotes for wild type (CC): diseased controls CC; and normal controls CC]. AMP deaminase activity showed genotype-dependent differences. Total cN activity in normal controls accounted for 57+/-22% of whole homogenate 5'-nucleotidase activity and was not significantly different from the other groups. A weak inverse correlation was found between AMP deaminase and cN-I activities (r2=0.18, p<0.01). There were no significant differences between different groups in the activities of cN-I, whole homogenate 5'-nucleotidase and ectoN, or in cN-I expression on Western blots. No correlation for age, fibre type distribution and AMPD1 genotype was found for whole homogenate nucleotidase, total cN and cN-I using multiple linear regression analysis. There was no gender-specific difference in the activities of whole homogenate nucleotidase, total cN and cN-I. The results indicate no changes in the relative expression or catalytic behaviour of cN-I in AMP deaminase-deficient human skeletal muscle, but suggest that increased turnover of AMP by cN-I in working skeletal muscle is due to higher substrate availability of AMP.  相似文献   

9.
10.
11.
Adenosine increases blood flow and decreases excitatory nerve firing. In the heart, it reduces rate and force of contraction and preconditions the heart against injury by prolonged ischemia. Based on indirect kinetic arguments, an AMP-selective cytosolic 5'-nucleotidase designated cN-I has been implicated in adenosine formation during ATP breakdown. The molecular identity of cN-I is unknown, although an IMP/GMP-selective cytosolic 5'-nucleotidase (cN-II) and an ecto-5'-nucleotidase (e-N) have been cloned. We utilized the high abundance of cN-I in pigeon heart to purify a 40-kDa subunit for partial protein sequencing and subsequent cDNA cloning. We obtained a full-length clone encoding a novel 40-kDa peptide, unrelated to cN-II or e-N, that was most abundant in heart, brain, and breast muscle. Immunolocalization in heart showed a striated cytoplasmic location, suggesting association with contractile elements. Transient expression in COS-7 cells, generated a 5'-nucleotidase that catalyzed adenosine formation from AMP, which was increased during ATP catabolism. In conclusion, the cloning and expression of cN-I provides definitive evidence of its ability to produce adenosine during ATP breakdown.  相似文献   

12.
Macrophages are key elements in the inflammatory process, whereas depending on the micro-environmental stimulation they exhibit a pro-inflammatory (classical/M1) or an anti-inflammatory/reparatory (alternative/M2) phenotype. Extracellular ATP can act as a danger signal whereas adenosine generally serves as a negative feedback mechanism to limit inflammation. The local increase in nucleotides communication is controlled by ectonucleotidases, such as members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family and ecto-5'-nucleotidase/CD73 (ecto-5'-NT). In the present work we evaluated the presence of these enzymes in resident mice M1 (macrophages stimulated with LPS), and M2 (macrophages stimulated with IL-4) macrophages. Macrophages were collected by a lavage of the mice (6-8 weeks) peritoneal cavity and treated for 24 h with IL-4 (10 ng/mL) or LPS (10 ng/mL). Nitrite concentrations were measured using the Greiss reaction. Supernatants were harvested to determine cytokines and the ATPase, ADPase and AMPase activities were determined by the malachite green method and HPLC analysis. The expression of selected surface proteins was evaluated by flow cytometry. The results reveal that M1 macrophages presented a decreased ATP and AMP hydrolysis in agreement with a decrease in NTPDase1, -3 and ecto-5'-nucleotidase expression compared to M2. In contrast, M2 macrophages showed a higher ATP and AMP hydrolysis and increased NTPDase1, -3 and ecto-5'-nucleotidase expression compared to M1 macrophages. Therefore, macrophages of the M1 phenotype lead to an accumulation of ATP while macrophages of the M2 phenotype may rapidly convert ATP to adenosine. The results also showed that P1 and P2 purinoreceptors present the same mRNA profile in both phenotypes. In addition, M2 macrophages, which have a higher ATPase activity, were less sensitive to cell death. In conclusion, these changes in ectoenzyme activities might allow macrophages to adjust the outcome of the extracellular purinergic cascade in order to fine-tune their functions during the inflammatory set.  相似文献   

13.
The extracellular catabolism of exogenously added AMP was studied in immunopurified cholinergic nerve terminals and in slices of the hippocampus and cerebral cortex of the rat. AMP (10 microM) was catabolized into adenosine and inosine in hippocampal cholinergic nerve terminals and in hippocampal slices, as well as in cortical slices. IMP formation from extracellular AMP was not detected. alpha, beta-Methylene ADP (100 microM) inhibited almost completely the extracellular catabolism of AMP in these preparations. The relative rate of catabolism of AMP was greater in hippocampal slices than in cortical slices. AMP was virtually not catabolized when added to immunopurified cortical cholinergic nerve terminals, although ATP could be catabolized extracellularly under identical conditions. The comparison of the relative rates of catabolism of exogenously added AMP, calculated from the amount of AMP catabolized after 5 min, in hippocampal cholinergic nerve terminals and in hippocampal slices revealed a nearly 50-fold enrichment in the specific activity of ecto-5'-nucleotidase upon immunopurification of the cholinergic nerve terminals from the hippocampus. The results suggest that there is a regional variation in the subcellular distribution of ecto-5'-nucleotidase activity in the rat brain, the ecto-5'-nucleotidase in the hippocampus being closely associated with the cholinergic nerve terminals, whereas in the cerebral cortex ecto-5'-nucleotidase activity seems to be located preferentially outside the cholinergic nerve terminals.  相似文献   

14.
1. The activities of ecto- and cytosolic 5'-nucleotidase (EC 3.1.3.5), adenosine kinase (EC 2.7.1.20), adenosine deaminase (EC 3.5.4.4) and AMP deaminase (EC 3.5.4.6) were compared in ventricular myocardium from man, rats, rabbits, guinea pigs, pigeons and turtles. The most striking variation was in the activity of the ecto-5'-nucleotidase, which was 20 times less active in rabbit heart and 300 times less active in pigeon heart than in rat heart. The cytochemical distribution of ecto-5'-nucleotidase was also highly variable between species. 2. Adenosine formation was quantified in pigeon and rat ventricular myocardium in the presence of inhibitors of adenosine kinase and adenosine deaminase. 3. Both adenosine formation rates and the proportion of ATP catabolized to adenosine were greatest during the first 2 min of total ischaemia at 37 degrees C. Adenosine formation rates were 410 +/- 40 nmol/min per g wet wt. in pigeon hearts and 470 +/- 60 nmol/min per g wet wt. in rat hearts. Formation of adenosine accounted for 46% of ATP plus ADP broken down in pigeon hearts and 88% in rat hearts. 4. The data show that, in both pigeon and rat hearts, adenosine is the major catabolite of ATP in the early stages of normothermic myocardial ischaemia. The activity of ecto-5'-nucleotidase in pigeon ventricle (16 +/- 4 nmol/min per g wet wt.) was insufficient to account for adenosine formation, indicating the existence of an alternative catabolic pathway.  相似文献   

15.
Adenosine produces analgesia in the spinal cord and can be formed extracellularly through enzymatic conversion of adenine nucleotides. A transverse push-pull microprobe was developed and characterized to sample extracellular adenosine concentrations of the dorsal horn of the rat spinal cord. Samples collected via this sampling technique reveal that AMP is converted to adenosine in the dorsal horn. This conversion is decreased by the ecto-5'-nucleotidase inhibitor, alpha,beta-methylene ADP. Related behavioral studies demonstrate that AMP administered directly to the spinal cord can reverse the secondary mechanical hyperalgesia characteristic of the intradermal capsaicin model of inflammatory pain. The specific adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT) inhibits the antihyperalgesia produced by AMP. This research introduces a novel microprobe that can be used as an adjunct sampling technique to microdialysis and push-pull cannulas. Furthermore, we conclude that AMP is converted to adenosine in the dorsal horn of the spinal cord by ecto-5'-nucleotidase and subsequently may be one source of adenosine, acting through adenosine A(1) receptors in the dorsal horn of the spinal cord, which produce antihyperalgesia.  相似文献   

16.
1. The role of adenosine deaminase (EC 3.5.4.4), ecto-(5'-nucleotidase) (EC 3.1.3.5) and ecto-(non-specific phosphatase) in the CN-induced catabolism of adenine nucleotides in intact rat polymorphonuclear leucocytes was investigated by inhibiting the enzymes in situ. 2. KCN (10mM for 90 min) induced a 20-30% fall in ATP concentration accompanied by an approximately equimolar increase in hypoxanthine, ADP, AMP and adenosine concentrations were unchanged, and IMP and inosine remained undetectable ( less than 0.05 nmol/10(7) cells). 3. Cells remained 98% intact, as judged by loss of the cytoplasmic enzyme lactate dehydrogenase (EC 1.1.1.27). 4. Pentostatin (30 microM), a specific inhibitor of adenosine deaminase, completely inhibited hypoxanthine production from exogenous adenosine (55 microM), but did not black CN-induced hypoxanthine production or cause adenosine accumulation in intact cells. This implied that IMP rather than adenosine was an intermediate in AMP breakdown in response to cyanide. 5. Antibodies raised against purified plasma-membrane 5'-nucleotidase inhibited the ecto-(5'-nucleotidase) by 95-98%. Non-specific phosphatases were blocked by 10 mM-sodium beta-glycerophosphate. 6. These two agents together blocked hypoxanthine production from exogenous AMP and IMP (200 microM) by more than 90%, but had no effect on production from endogenous substrates. 7. These data suggest that ectophosphatases do not participate in CN-induced catabolism of intracellular AMP in rat polymorphonuclear leucocytes. 8. A minor IMPase, not inhibited by antiserum, was detected in the soluble fraction of disrupted cells.  相似文献   

17.
The interaction of annexin A6 (AnxA6) with membrane phospholipids and either specific extracellular matrix (ECM) components or F-actin suggests that it may influence cellular processes associated with rapid plasma membrane reorganization such as cell adhesion and motility. Here, we examined the putative roles of AnxA6 in adhesion-related cellular processes that contribute to breast cancer progression. We show that breast cancer cells secrete annexins via the exosomal pathway and that the secreted annexins are predominantly cell surface-associated. Depletion of AnxA6 in the invasive BT-549 breast cancer cells is accompanied by enhanced anchorage-independent cell growth but cell–cell cohesion, cell adhesion/spreading onto collagen type IV or fetuin-A, cell motility and invasiveness were strongly inhibited. To explain the loss in adhesion/motility, we show that vinculin-based focal adhesions in the AnxA6-depleted BT-549 cells are elongated and randomly distributed. These focal contacts are also functionally defective because the activation of focal adhesion kinase and the phosphoinositide-3 kinase/Akt pathway were strongly inhibited while the MAP kinase pathway remained constitutively active. Compared with normal human breast tissues, reduced AnxA6 expression in breast carcinoma tissues correlates with enhanced cell proliferation. Together this suggests that reduced AnxA6 expression contributes to breast cancer progression by promoting the loss of functional cell–cell and/or cell–ECM contacts and anchorage-independent cell proliferation.  相似文献   

18.
The extracellular cAMP-adenosine pathway refers to the local production of adenosine mediated by cAMP egress into the extracellular space, conversion of cAMP to AMP by ectophosphodiesterase (PDE), and the metabolism of AMP to adenosine by ecto-5'-nucleotidase. The goal of this study was to assess whether the cAMP-adenosine pathway is expressed in oviduct cells. Studies were conducted in cultured bovine oviduct cells (mixed cultures of fibroblasts and epithelial cells, 1:1 ratio). Confluent monolayers of oviduct cells were exposed to cAMP (0.01-100 micromol/L) in the presence and absence of 3-isobutyl-1-methylxanthine (IBMX, 1 mmol/L, an inhibitor of both extracellular and intracellular PDE activity), 1,3-dipropyl-8-p-sulfophenylxanthine (DPSPX, 100 micromol/L, a xanthine that can inhibit extracellular or ecto-PDE activity at high concentrations), or alpha,beta-methylene-adenosine-5'-diphosphate (AMPCP, 100 micromol/L, an ecto-5'-nucleotidase inhibitor) for 0-60 min. The medium was then sampled and assayed for AMP, adenosine, and inosine. Addition of exogenous cAMP to oviduct cells increased extracellular levels of AMP, adenosine, and inosine in a concentration- and time-dependent manner. This effect was attenuated by blockade of total (extracellular and intracellular) PDE activity (IBMX), ecto-PDE activity (DPSPX), or ecto-5'-nucleotidase (AMPCP). The functional relevance of the cAMP-adenosine pathway is supported by the findings that treatment with adenylyl cyclase stimulants (forskolin plus isoproterenol) resulted in the egress of cAMP (97% extracellular) into the extracellular space and its conversion into adenosine. The extracellular cAMP-adenosine pathway exists in oviduct cells and may play an important role in regulating the biology and physiology of the oviduct. This pathway also may play a critical role in regulating sperm function, fertilization, and early embryo development.  相似文献   

19.
Ecto-5'-nucleotidase is regarded as being the key enzyme in the formation of the neuromodulator adenosine from released ATP. However, the association of ecto-5'-nucleotidase with nerve terminals is not consensual. Only enzyme histochemical and biochemical studies, but not immunocytochemical studies, agree on a general synaptic location of the enzyme. To clarify this issue further we tested the effect of an antibody against ecto-5'-nucleotidase, previously used in immunocytochemical studies, on the activity of ecto-5'-nucleotidase in fractions of nerve terminals isolated from different areas of rat hippocampus. The specific activity of extracellular AMP catabolism was higher in synaptosomes from the CA3 area (0.81+/-0.06 nmol/min/mg of protein) than from synaptosomes from the CA1 area or the dentate gyrus or from the whole hippocampus (0.49-0.68 nmol/ min/mg of protein). The catabolism of AMP (10 microM) was equally inhibited (85-92%) in synaptosomes from whole hippocampus, CA1, CA3, or dentate gyrus by alpha,beta-methylene-ADP (100 microM) and equally unaffected by p-nitrophenyl phosphate (0.5 mM) or rabbit IgGs (100 microg/ml). However, the antiserum against ecto-5'-nucleotidase (100 microg/ml) inhibited extracellular AMP catabolism by 44% in CA3 synaptosomes but had little or no effect in synaptosomes from CA1, dentate gyrus, or whole hippocampus. A similar difference in the inhibitory potential of the antibody was observed between fractions of isolated 5'-nucleotidase binding to concanavalin A-Sepharose (70%) and fractions not retained by the lectin column (18%). Taken together, these results suggest that immunological isoforms of ecto-5'-nucleotidase exist in the rat hippocampal nerve terminals, with predominance in the CA3 area.  相似文献   

20.
Adenosine, a well-known neuromodulator, may be formed intracellularly in the CNS from degradation of AMP and then exit via bi-directional nucleoside transporters, or extracellularly by the metabolism of released nucleotides. This study reports the enzymatic properties of an ecto-5'-nucleotidase activity in brain membranes of zebrafish (Danio rerio). This enzyme was cation-dependent, with a maximal rate for AMP hydrolysis in a pH range of 7.0-7.5 in the presence of Mg(2+). The enzyme presented a maximal activity for AMP hydrolysis at 37 degrees C. The apparent K(m) and V(max) values for Mg(2+)-AMP were 135.3+/-16 microM and 29+/-4.2 nmol Pi.min(-1).mg(-1) protein, respectively. The enzyme was able to hydrolyze both purine and pyrimidine monophosphate nucleotides, such as UMP, GMP and CMP. Levamisole and tetramisole (1 mM), specific inhibitors of alkaline phosphatases, did not alter the enzymatic activity. However, a significant inhibition of AMP hydrolysis (42%) was observed in the presence of 100 microM alpha,beta-methylene-ADP, a known inhibitor of ecto-5'-nucleotidase. Since 5'-nucleotidase represents the major enzyme responsible for the formation of extracellular adenosine, the enzymatic characterization is important to understand its role in purinergic systems and the involvement of adenosine in the regulation of neurotransmitter release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号