首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dry lettuce seeds (achenes of Lactuca sativa L. cv. Grand Rapids) contain no detectable phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activity. Enzyme activity could be detected in these seeds within 4 h of imbibition under white light. The specific activity of PAL increased rapidly during the next 12–16 h of imbibition. Far-red light completely suppressed germination as well as the development of PAL. Gibberellic acid (GA3, 0.1 m M ), although effective in causing almost 100% germination in dark, did not induce proportionate increases in PAL. Seed germination as well as PAL activity were substantially inhibited by cis -4-cyclohexene-l, 2-dicarboximide (CHDC, 1.0 m M ) both in light and dark. Both GA3 and benzyladenine (BA, 0.1 m M ) retarded radicle elongation in light. Concomitantly, a decrease in PAL activity was observed. Benzyladenine was able to reverse the effects of CHDC on germination but PAL activity was still highly reduced, probably due to the inhibitory effects of BA on elongation of the radicle. More than 95% of the extractable PAL was found to be present in the radicle. When seeds incubated in white light for 10 h were transferred to FR, further increases in PAL activity as well as the growth of the radicle were severely inhibited. It is suggested that the induction of PAL in light-sensitive lettuce seeds is coincidental with the germination of seeds, and the amount of PAL per germinated seed is related to the extent of elongation of the embryonic axes.  相似文献   

2.
In plant tissue, a wound signal is produced at the site of injury and propagates or migrates into adjacent tissue where it induces increased phenylalanine ammonia lyase (PAL, EC 4.3.1.5) activity and phenylpropanoid metabolism. We used excised mid-rib leaf tissue from Romaine lettuce (Lactuca sativa L., Longifolia) as a model system to examine the involvement of components of the phospholipid-signaling pathway in wound-induced phenolic metabolism. Exposure to 1-butanol vapors or solutions inhibited wound-induced increase in PAL activity and phenolic metabolism. Phospholipases D (EC 3.1.4.4), an enzyme involved in the phospholipid-signaling pathway is specifically inhibited by 1-butanol. Re-wounding tissue, in which an effective 1-butanol concentration had declined below active levels by evaporation, did not elicit the normal wound response. It appears the 1-butanol-treated tissue developed resistance to wound-induced increases in phenylpropanoid metabolism that persisted even when active levels of 1-butanol were no longer present. However, a metabolic product of 1-butanol, rather than 1-butanol itself, may be the active compound eliciting persistence resistance. Inhibiting a subsequent enzyme in the phospholipid-signaling pathway, lipoxygenase (LOX; EC 1.13.11.12) with 1-phenyl-3-pyrazolidinone (1P3P) or reducing the product of LOX activity with diethyldithio-carbamic acid (DIECA) also inhibited wound-induced PAL activity and phenolic accumulation. The effectiveness of 1-butanol, DIECA, and 1P3P declined as the beginning of the 1-h immersion period was delayed from 0 to 4 h after excision. This decline in effectiveness is consistent with involvement of the inhibitors in the production or propagation of a wound signal. The wound signal in lettuce moves into adjacent tissue at 0.5 cm h−1, so delaying application would allow the signal to move into and induce the wound response in adjacent tissue before the delayed application inhibited synthesis of the signal. Salicylic acid (SA) inhibits allene oxide synthase (AOS, EC 4.2.1.92), another enzyme in the phospholipid-signaling pathway. Exposure to 1 or 10 mM SA for 60 min reduced wound-induced phenolic accumulation by 26 or 56%, respectively. However, 1 mM SA lost its effectiveness if applied 3 h after excision, while 10 mM SA remained effective even when applied 4 h after excision. At 1 mM, SA may be perturbing the wound signal through inhibition of AOS, while at 10 mM it appears to have some generally inhibitory effect on subsequent phenolic metabolism. These data further implicate the phospholipid-signaling pathway in the generation of a wound signal that induces phenolic metabolism in wounded leaf tissue.  相似文献   

3.
Wounding, as during excision and preparation of lettuce ( Lactuca sativa L.) leaf tissue for salads, induces the synthesis and accumulation of phenolic compounds that participate in subsequent reactions that cause tissue browning. Exposure of excised 5-mm mid-rib segments of romaine lettuce leaf tissue to vapors of mono-carboxylic acids or aqueous solutions of mono-carboxylic acids or their salts inhibited wound-induced phenolic accumulation (WIPA) and subsequent tissue browning. The decline in phenolic content followed a quadratic curve with increasing concentration, reaching a maximum inhibition after 60 min of 74 ± 8% for 50 m M sodium acetate (2 carbons, C2) and 91 ± 4% for 20 m M sodium decanoate (capric acid, C10). Respiration (i.e. carbon dioxide production) was unaffected by concentrations of formic, acetic, or propionic acids that reduced wound-induced phenolic content or that increase ion leakage from the tissue into an isotonic mannitol solution. However, WIPA was suppressed up to 70% at concentrations (20 m M acetate) that did not increase ion leakage over that of water controls. Various acetate salts (i.e. ammonium, calcium, magnesium, and sodium) all produced the same level of inhibition. The effectiveness of the compounds increased with increasing number of carbons in the molecule from 1 to 10, and was unaffected by whether the carbons were a straight chain or branched or whether the treatment was delayed by up to 6 h. The effectiveness of butyrate (C4) in reducing WIPA (27% reduction at 20 m M ) was less than that predicted from the response of the two adjacent mono-carboxylates similarly applied: propionate (C3) (62%) and valerate (C5) (73%). It appears that, unlike the n-alcohols, mono-carboxylates are not interfering with the synthesis or propagation of a wound signal but are interfering with subsequent steps in the production and accumulation of wound-induced phenolic compounds.  相似文献   

4.
A tissue culture method using Murashige and Skoog's (MS) medium was devised to propagate healthy plants from field grown lettuce plants selected for seed production. Explants (2–3 mm long) from axillary buds were successfully grown on MS + 1.0 or 2.0 mg litre-1 kinetin and 6.4 mg litre-1 IAA to promote shoot growth. Concentrations of 0.5 and 4.0 mg litre-1 kinetin gave poor shoot growth. The cultures were successfully rooted after 3–4 wk on MS + 6.4 mg litres-1 IAA after transfer from MS + 1.0 mg litre-1 kinetin and on MS + 4.8 mg litre-1 IAA after transfer from MS + 2.0 mg litre-1 kinetin. Concentrations of 3.2 and 8.0 mg litre-1 IAA gave poor root initiation. Root initiation was more successful when cultures were grown at 40 Wm-2 than in cultures grown at 5 Wm-2. Rooted cultures were established in compost with a 90–95% success rate and the regenerated plants flowered c. 18 wk after the cultures were initiated.  相似文献   

5.
Exposing head lettuce ( Lactuca sativa L., crisphead or Iceberg type) leaf tissue to hormonal levels of ethylene (10 μl l−1) at 5°C promotes the de novo synthesis of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) and an increase in its activity. It also promotes the appearance of the postharvest physiological disorder called russet spotting (RS). Discontinuing ethylene exposure after 4 days resulted in a rapid decline in PAL activity which was delayed by treating excised midrib leaf tissue with actinornycin D or cycloheximide at 5°C. Only cycloheximide delayed the loss of PAL activity in tissue that was transferred from 5 to 15°C. Activity of PAL from Rhodolorula glutinis was. slowly lost during incubation in buffer alone, but there was a logarithmic decline in its activity over time when it was incubated with aliquots of the resuspended 10000 g pellet from homogenized, lettuce tissue affected with RS. The in vitro loss in PAL activity was 9–fold higher in extracts from lettuce showing RS symptoms than from control lettuce, boiled samples or the buffer control. The PAL-inactivating factor isolated from lettuce affected with RS had a pH optimum around 8.0. It appears that the rapid loss in PAL activity after the discontinuation of exposure to ethylene is dependent on the de novo synthesis of a PAL-inactivating factor.  相似文献   

6.
A procedure is described in which vacuoles are isolated from leaf tissue of lettuce ( Lactuca sativa L.). After incubation in an enzyme solution, the vacuoles are directly extracted from the leaf tissue by osmotic shock using a phosphate buffer. In this method no protoplasts are released from the leaf tissue. This procedure avoids the problems of separating vacuoles from protoplasts with similar density. To evaluate the purity of the vacuoles, the activity of glucan synthetase 11 (EC 2.4.1.34), NAD(P) H-cytochrome c reductase (EC 1.6.99.3) and malate dehydrogenase (EC 1.1.1.37) was measured. To measure vanadate- and nitrate-sensitive ATPase activity (EC 3.6.1.8) vesicles were prepared from the vacuoles and ATP-dependent vesicle acidification was measured as acridine orange quenching. Nitrate inhibited the quenching, while addition of vanadate had no effect. It was concluded that the vacuoles were not contaminated with plasma membranes. To evaluate the viability of the vacuoles [14C]-malate uptake was measured. The vacuoles showed a constant rate of [14C]-malate uptake during 45 min. This rate was maximal at pH 6.8.  相似文献   

7.
A previously described procedure for the estimation of relative activities of phenylalanine ammonia-lyase (EC 4.3.1.5) in intact plant cells (Amrhein et al. (1976) Planta 131, 33–40) was reexamined for its specificity and its applicability to various tissues. In buckwheat hypocotyl segments 3H is stereospecifically released from the pro-3S-position of L-[2,3-3H]phenylalanine and is thus due to phenylalanine ammonia-lyase activity. In buck wheat and sunflower leaf disks, however, 3H release occurs from both the 2- and 3-positions of the labeled substrate and can only partially be attributed to phenylalanine ammonia-lyase activity.Abbreviations AOA -aminooxyacetic acid - L-AOD L-aminoacid oxidase (EC 1.4.3.2) - D-AOD D-amino-acid oxidase (EC 1.4.3.3) - L-AOPP L--aminooxy--phenylpropionic acid - PAL phenylalanine ammonia-lyase (EC 4.3.1.5) - TAL tyrosine ammonia-lyase  相似文献   

8.
9.
Russet spotting (RS), consisting of numerous small brown spots on the midrib of head lettuce (Lactuca sativa), is a physiological disorder induced by exposure to ethylene. In leaves suffering RS, the increase in spotting was accompanied by a parallel increase in the amount of phenolic compounds. Of these, chlorogenic acid and isochlorogenic acid were identified. Ethylene induced high phenylalanine ammonia-lyase (PAL) activity and RS formation in the susceptible cultivar Salinas, but not in the resistant cultivar Calmar. In the absence of ethylene neither significant PAL induction nor RS occurred. No correlation was found between the increase in polyphenol oxidase or peroxidase and the development of RS. The increase in PAL activity, however, was closely correlated with the development of RS. The increase in PAL activity preceded the development of RS, and the extent of RS was directly related to the level of PAL. Three temperatures (0.5, 5.5, and 12.5 C) were compared on the basis of their influence on both RS and PAL induction. At the lowest temperature (0.5 C) neither PAL induction nor RS occurred to a significant extent. At the highest temperature (12.5 C) an initial rapid increase in PAL activity and an earlier development of spotting were observed, but subsequently there was a decrease in both PAL activity and the rate of development of RS. At the medium temperature (5.5 C) both PAL activity and RS increased progresively with time. The decline of PAL activity at a higher temperature might be attributed to inactivation of the enzyme. Thus, a temperature favorable for induction of PAL activity by ethylene was also favorable for RS. These observations indicate a close interrelationship between the induction of PAL activity and the development of RS in response to ethylene, and suggest a causal relationship between the two events. PAL serves as a useful biochemical marker for the RS reaction.  相似文献   

10.
Stored cut lettuce gradually turns brown on the cut section after several days of storage, because cutting induces phenylalanine ammonia-lyase (PAL) activity, the biosynthesis of polyphenol is promoted, and the polyphenols are oxidized by polyphenol oxidase. Here, the effect of heat shock treatment at 50 degrees C for 90 s on the quality of cut lettuce during cold storage was examined. The heat shock treatment significantly repressed the induction of PAL activity and phenolics accumulation in cut lettuce during storage, and prevented the browning of cut lettuce. Ascorbic acid content was not affected by the heat shock treatment. The sensory analysis showed that the organoleptic quality of cut lettuce treated by heat shock was significantly better than that of the control cut lettuce. These results show that heat shock treatment is useful for prolonging the shelf life of cut lettuce.  相似文献   

11.
Low pH (5.2) decreased nodule number and acetylene reduction. Aluminium further depressed those parameters in theRhizobium leguminosarum-Pisum sativum associations examined. In the Al-treated plants nodule formation by strains 128C53 and 128C30 was not affected by 3 or 15 and 30 or 60 μM Al, respectively, as compared with the number of nodules on plants grown at pH 5.2 in the absence of Al. However, improved nodulation rates by those strains did not enhance plant dry weight or reduced nitrogen content. No differences in nitrogenase activity were found among strains of nodulating plants grown at the same aluminium level. These results suggest that Al-ions affected specifically nitrogenase activity and that this effect was primarily responsible for the reduction in plant growth.  相似文献   

12.
Lettuce seeds (Lactuca sativa L. cv. Grand Rapids) imbibed in darkness at supra-optimal temperatures (23 ± 1°C) develop a secondary dormancy, termed skotodormancy. The seeds first lose their ability to be promoted to germinate by gibberellic acid, and then lose their ability to be promoted by red light. A combination of red light and gibberellic acid will break skotodormancy for longer than either alone, but red light and benzyladenine together are much more effective. Desiccation of skotodormant seeds does not diminish their dormancy. Embryos dissected from skotodormant seeds will germinate, and are as capable of radicle expansion in the osmoticum polyethylene glycol as are newly-imbibed seeds. Hence skotodormancy is a whole seed dormancy and does not reside within the embryo as an inherent block to germination processes, but as an inability to respond to the stimulation of red light or to hormone.  相似文献   

13.
Two sets of overlapping experiments were conducted to examine recombination and spontaneous mutation events within clusters of resistance genes in lettuce. Multiple generations were screened for recombinants using PCR-based markers flanking Dm3. The Dm3 region is not highly recombinagenic, exhibiting a recombination frequency 18-fold lower than the genome average. Recombinants were identified only rarely within the cluster of Dm3 homologs and no crossovers within genes were detected. Three populations were screened for spontaneous mutations in downy mildew resistance. Sixteen Dm mutants were identified corresponding to spontaneous mutation rates of 10(-3) to 10(-4) per generation for Dm1, Dm3, and Dm7. All mutants carried single locus, recessive mutations at the corresponding Dm locus. Eleven of the 12 Dm3 mutations were associated with large chromosome deletions. When recombination could be analyzed, deletion events were associated with exchange of flanking markers, consistent with unequal crossing over; however, although the number of Dm3 paralogs was changed, no novel chimeric genes were detected. One mutant was the result of a gene conversion event between Dm3 and a closely related homolog, generating a novel chimeric gene. In two families, spontaneous deletions were correlated with elevated levels of recombination. Therefore, the short-term evolution of the major cluster of resistance genes in lettuce involves several genetic mechanisms including unequal crossing over and gene conversion.  相似文献   

14.
Transverse cortical microtubule (CMT) arrays in lettuce root epidermal cells randomize soon after a shift from pH 6.0 to pH 4.0, and this randomization is essential for root hair initiation. We investigated the hormonal regulation of CMT randomization. At pH 4.0, 1 micro M of the auxin competitive inhibitor 2-(p-chlorophenoxy)-2-methylpropionic acid (PCIB), 0.1 micro M of the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG) or 0.1 micro M of the ethylene action inhibitor Ag(+) suppressed CMT randomization and root hair initiation. At pH 6.0, addition of 0.1 micro M indole-3-acetic acid (IAA) or 1 micro M of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) induced CMT randomization and root hair initiation. Culturing with 0.1 micro M IAA plus 0.1 micro M AVG, or 1 micro M ACC plus 1 micro M PCIB also induced these phenomena. ACC (1 micro M) plus 100 micro M PCIB inhibited CMT randomization and root hair initiation, but 1 micro M AVG with 0.1 micro M Ag(+) and 0.1 micro M IAA induced them. These results suggest that auxin is essential for CMT randomization. As a higher concentration of PCIB was required to suppress CMT randomization when ACC was added, the greater amount of ethylene produced at pH 4.0 may promote the induction by auxin of CMT randomization in hair-forming cells.  相似文献   

15.
The biosynthesis of ethylene was examined in suspension-cultured cells of parsley (Petroselinum hortense) treated with an elicitor from cell walls of Phytophthora megasperma. Untreated cells contained 50 nmol g-1 of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), and produced ethylene at a rate of about 0.5 nmol g-1 h-1. Within 2 h after addition of elicitor to the culture medium, the cells started to produce more ethylene and accumulated more ACC. Exogenously added ACC did not increase the rate of ethylene production in control or elicitor-treated cells, indicating that the enzyme converting ACC to ethylene was limiting in both cases. The first enzyme in ethylene biosynthesis, ACC synthase, was very rapidly and transiently induced by the elicitor treatment. Its activity increased more than tenfold within 60 min. Density labelling with 2H2O showed that this increase was caused by the denovo synthesis of the enzyme protein. Cordycepin and actinomycin D did not affect the induction of ACC synthase, indicating that the synthesis of new mRNA was not required. The peak of ACC-synthase activity preceded the maximal phenylalanine ammonia-lyase (PAL) activity by several hours. Exogenously supplied ethylene or ACC did not induce PAL. However, aminoethoxyvinylglycine, an inhibitor of ACC synthase, suppressed the rise in ethylene production in elicitor-treated cells and partially inhibited the induction of PAL. Exogenously supplied ACC reversed this inhibition. It is concluded that induction of the ethylene biosynthetic pathway is a very early symptom of elicitor action. Although ethylene alone is not a sufficient signal for PAL induction, the enhanced activity of ACC synthase and the ethylene biosynthetic pathway may be important for the subsequent induction of PAL.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - PAL phenylalanine ammonia-lyase  相似文献   

16.
Cut lettuce stored at 4 degrees C gradually turned brown on the cut section after several days of storage. Three factors for enzymatic browning, the polyphenol content, polyphenol oxidase activity, and phenylalanine ammonia-lyase (PAL) activity, were examined during the cold storage of cut lettuce. A relationship between the browning and PAL activity was apparent. We tried to prevent this browning by using the two enzyme inhibitors, 2-aminoindane-2-phosphonic acid (AIP), an inhibitor of the phenylpropanoid pathway, and glyphosate, an inhibitor of the shikimate pathway. AIP and glyphosate significantly inhibited the browning of cut lettuce. The polyphenol content and PAL activity were both reduced by the treatment with AIP. These results show that regulating the biosynthesis of polyphenols is essential to prevent the browning of cut lettuce.  相似文献   

17.
Growth of temperate lettuce (Lactuca sativa) plants aeroponically in tropical greenhouses under ambient root-zone temperatures (A-RZTs) exposes roots to temperatures of up to 40 degrees C during the middle of the day, and severely limits root and shoot growth. The role of ethylene in inhibiting growth was investigated with just-germinated (24-h-old) seedlings in vitro, and 10-d-old plants grown aeroponically. Compared with seedlings maintained at 20 degrees C, root elongation in vitro was inhibited by 39% and root diameter increased by 25% under a temperature regime (38 degrees C/24 degrees C for 7 h/17 h) that simulated A-RZT in the greenhouse. The effects on root elongation were partially alleviated by supplying the ethylene biosynthesis inhibitors aminooxyacetic acid (100-500 microM) or aminoisobutyric acid (5-100 microM) to the seedlings. Application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid to seedlings grown at 20 degrees C mimicked the high temperature effects on root elongation (1 microM) and root diameter (1 mM). Compared with plants grown at a constant 20 degrees C root-zone temperature, A-RZT plants showed decreased stomatal conductance, leaf relative water content, photosynthetic CO(2) assimilation, shoot and root biomass, total root length, the number of root tips, and root surface area, but increased average root diameter. Addition of 10 microM ACC to the nutrient solution of plants grown at a constant 20 degrees C root-zone temperature mimicked the effects of A-RZT on these parameters but did not influence relative water content. Addition of 30 microM aminoisobutyric acid or 100 microM aminooxyacetic acid to the nutrient solution of A-RZT plants increased stomatal conductance and relative water content and decreased average root diameter, but had no effect on other root parameters or root and shoot biomass or photosynthetic CO(2) assimilation. Although ethylene is important in regulating root morphology and elongation at A-RZT, the failure of ethylene biosynthesis inhibitors to influence shoot carbon gain limits their use in ameliorating the growth inhibition induced by A-RZT.  相似文献   

18.
Data are presented on the segregation of resistance to four races of Bremia lactucae in the F2 progenies of crosses involving 15 resistant and various susceptible lettuce cultivars. Most of these data and those recently published by other workers fit the systematic model for the genetics of race specific resistance to B. lactucae proposed by Crute & Johnson(1976). Seven different dominant resistance genes of major effect were found. There was also evidence of a pair of dominant genes with complementary effect, one of which may sometimes be effective on its own. Two of the genes may be linked and another may have two different alleles for resistance at the same locus. The resistance conferred by these genes is specified in relation to two British, two Dutch and four French races of the fungus. Resistance genotypes are proposed for 16 cultivars.  相似文献   

19.
The mutated melon ethylene receptor gene Cm-ERS1/H70A was introduced into tobacco and induced stable sterility in transgenic lines. This gene contains a missense mutation that converts the His(70) residue to Ala in the melon ethylene receptor gene Cm-ERS1. To test the applicability of this inducible sterility system to other plants, lettuce (Lactuca sativa) was transformed with the gene using Agrobacterium, and putative transformants containing Cm-ERS1/H70A were obtained. Thirteen randomly selected putative transformants were grown in a growth room under constant conditions, and seven of the lines showed sterility or significantly reduced fertility. DNA gel blot analysis confirmed the integration of the Cm-ERS1/H70A gene into the genomes of the putative transformants, and RT-PCR and protein gel blot analysis confirmed the expression of Cm-ERS1/H70A mRNA and protein in all of the transformants. Five transformants showing sterility or reduced fertility when grown in a growth room under constant conditions were randomly selected to be grown in an open-air greenhouse under various environmental conditions. All five showed stable sterility under the various conditions. These results suggest that Cm-ERS1/H70A can induce sterility in heterologous transgenic plants.  相似文献   

20.
The concentrations of adenine nucleotides were determined in germinating lettuce (Lactuca sativa) seeds after transitions from air to hypoxic or anoxic atmospheres. The ratio ATP/ADP and the energy charge were rapidly lowered after the transitions and remained stable at low values for hours. The energy charge in anoxia stabilized at a value close to 0.3. After 24 h in anoxia the energy charge rose rapidly to high values (0.9) when N2 was replaced by air. The metabolic properties of lettuce seeds had then been conversed for hours at low energy charge. In hypoxia the O2 uptake was decreased and the energy charge was stabilized at values intermediate between that in air and that in anoxia. When the O2 partial pressures (pO2) were 5 and 2kPa, the values of O2 uptake were one-third and one-sixth of that in air, and the energy charges were 0.7 and 0.5. These results show that the energy charge is regulated over a wide range of values. The ratio ATP/ADP and the energy charge are indicators of the limitation of metabolic activity by hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号