首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
When potato sprouts or potato tuber slices were incubated with 0.1 m glucose 1-phosphate, a soluble amylopectin-like polysaccharide was excreted to the medium. This polysaccharide was found to be a very good primer for phosphorylase and a poor one for starch synthetase. Beside the formation of this extracellular polysaccharide, a more branched intracellular polysaccharide could be isolated. This polysaccharide was an excellent primer for starch synthetase. Fructose 6-phosphate, glucose 6-phosphate, fructose 1,6-diphosphate, glucose or sucrose could not substitute for glucose 1-phosphate. 2,4-Dinitrophenol or nitrogen did not affect the excretion of the polysaccharide. Some properties of these 2 polysaccharides are described.  相似文献   

2.
Endometrial biopsies obtained throughout the menstrual cycle of the Macaca arctoides show the glycogen content paralleling the serum progesterone fluctuations which occur during the menstrual cycle. Secretory phase samples contained a three-fold higher concentration of glycogen when compared to follicular phase tissue. Changes in the activity levels of the glycogen metabolizing enzymes, glycogen phosphorylase and glycogen synthetase, during various stages of the menstrual cycle are in accord with the concept that the post-ovulatory increase in endometrial metabolism is a function of progesterone influence on this tissue. Endometrial glycogen synthetase activity remains low during the early proliferative phase of the cycle and becomes significantly elevated (two-to three-fold) during the early secretory phase of the cycle. Glycogen phosphorylase shows a similar cyclicity later in the luteal phase, reaching maximal activity between the seventeenth to nineteenth day of the cycle and remaining elevated through the twenty-sixth day of the cycle. The coincident nature of the rise in peripheral progesterone to increases in uterine glycogen metabolism suggest that progesterone may be the prime modulator of uterine endometrial metabolism during the post-ovulatory phase.  相似文献   

3.
Oral adminstration of 30,000 IU of retinol once daily for 2-days caused deposition of glycogen in the liver with a concurrent stimulation of hepatic glycogen synthesis, as evidenced by increased in vivo incorporation of d-[U-14C]glucose into glycogen and increased net synthesis of the polysaccharide in response to feeding of glucose to 20-h fasted rats. Excessive intake of the vitamin increased markedly the activity of glycogen synthetase a and decreased that of phosphorylase. However, feeding of similar doses of retinol to bilaterally adrenalectomized rats failed to cause appreciable deposition of glycogen in the liver and the usual increase in the activity of glycogen synthetase a. Likewise, treatment of rats with actinomycin D blocked the deposition of glycogen in the liver and the increase in the activity of glycogen synthetase a. Adrenalectomy and actinomycin D, however, did not affect the accumulation of retinol in the liver. The adrenals appear to be, directly or indirectly, required for the manifestations of the effects of retinol on the hepatic glycogen metabolism.  相似文献   

4.
Sarcoplasmic vesicles and β-glycogen particles 30–40 mµ in diameter were isolated from perfused rabbit skeletal muscle by the differential precipitation-centrifugation method. This microsomal fraction was subjected to zonal centrifugation on buffered sucrose gradients, in a B XIV Anderson type rotor, for 15 hr at 45,000 rpm in order to separate the two cytoplasmic organelles. Zonal profiles of absorbance at 280 mµ, proteins, glycogen, and enzymatic activities (phosphorylase b kinase, phosphorylase b, and glycogen synthetase) were performed. Whereas the entire synthetase activity was found combined with the glycogen particles, 39% of phosphorylase and 53% of phosphorylase b kinase activities, present in the microsomal fraction, were recovered in the purified vesicular fraction (d = 1.175). This latter fraction consists of vesicles, derived from the sarcoplasmic reticulum, and of small particles 10–20 mµ in diameter attached to the outer surface of the membranes. These particles disappear after α-amylase treatment. Incubation of the sarcovesicular fraction with 14C-labeled glucose-1-phosphate confirms the localization of a polysaccharide synthesis at the level of the membranes. "Flash activation" of phosphorylase b, i.e. Ca "activation" of phosphorylase kinase followed by a conversion of phosphorylase b into a, was demonstrated in the purified sarcovesicular fraction. Moreover, the active enzymatic sites were detected on the membranes by electron microscopy. The presence of binding sites between the membranes of the sarcoplasmic vesicles and a glycogen-enzyme complex suggests that this association plays a role in the glycogenolysis during muscle contraction.  相似文献   

5.
The root exudate ofArachis hypogea (groundnut) and its seed lectin peanut agglutinin were found to stimulate the synthesis of exopolysaccharide and capsular polysaccharide of the microsymbiont cowpeaRhizobium strain JLn (c). The synthesis of capsular polysaccharide was enhanced 1.5-fold and 2-fold in the presence of peanut agglutinin and root exudate, respectively. The synthesis of capsular polysaccharide was suppressed in the presence of different forms of combined nitrogen. Quantitative differences were also detected between the exopolysaccharide of cells grown in the presence and absence of root exudate. Electron microscopic examination of negatively stained lectin-treated JLn (c) cells showed an increased deposition of capsular polysaccharide surrounding the cells. Hurthermore,ex planta nitrogenase activity of JLn(c) cells in the presence of lectin was found to be enhanced by 63% in correlation with the increased synthesis of polysaccharides. Part of this work was presented at the colloquium session of the 4th Hederation of Asian and Oceanian Biochemists Congress, held at Singapore, in November 1986.  相似文献   

6.
J.S. Tsay  W.L. Kuo  C.G. Kuo 《Phytochemistry》1983,22(7):1573-1576
The levels of free sugars, starch and enzymes involved in starch metabolism—sucrose synthetase, UDP and ADP glucose pyrophosphorylase, phosphorylase and starch synthetase—were assayed during seed development of three cultivars of mung bean (Vigna radiata). Free sugars and starch increased with increasing seed weight. Changes in levels of sucrose synthetase, UDP- and ADP-glucose pyrophosphorylases, and phosphorylase were paralleled by changes in starch accumulation. After the maximum activity levels of these enzymes had been reached, maximum activities of soluble starch synthetase and starch granule-bound starch synthetase occurred. There were high activities of sucrose synthetase and phosphorylase at maximum rates of starch accumulation. Thus, starch could be synthesized via the ADP glucose pathway in mung bean seeds. However, phosphorylase may account for the starch accumulation in the early stages of mung bean seed development.  相似文献   

7.
Active and total phosphorylase activity, using labelled C14-glucose-1-phosphate as the substrate, is demonstrated by histoautoradiographic method. This method can demonstrate the polysaccharide synthesizedin vitro by phosphorylase without intervention from the unlabelled pre-existing glycogen. C14-glucose can not replace C14-glucose-1-phosphate as substrate. The distribution of phosphorylase in tissue sections, except in cases of very low activity, is similar to that obtained by customary dilute Lugol's iodine staining method. The relative difference of intensity between active and total phosphorylase, as revealed by iodine staining, is also reflected by histoautoradiographic method. Histoautoradiographic method has several advantages over the iodine staining method. This method is more sensitive for demonstration of very low phosphorylase activity which may escape detection by iodine staining. Branching enzyme activity, especially when it favors synthesis of glycogen type of polysaccharide instead of amylopectin type, can be better detected by this method. Active phosphorylase substrate medium can be used to demonstrate this activity in plant tissues, where the presence of pre-existing starch often prohibits the use of iodine staining method. Stripping film method for autoradiography is recommended for the study of this enzyme activity.  相似文献   

8.
The pectin isolated from the juice of the inflorescence stalk of plantain (Musa sapientum) has been found to show significant hypoglycemic effect both in normoglycemic and alloxan diabetic rats. After its administration at a dose of 20mg/100g body weight, there was increase in the concentration of hepatic glycogen, increased glycogenesis as evident from the increased activity of glycogen synthetase and in normoglycemic rats increased incorporation of labelled glucose into hepatic glycogen. Glycogenolysis and glyconeogenesis were lower as was evident from the decreased activity of glycogen phosphorylase and gluconeogenic enzymes.  相似文献   

9.
An apparent enigma during platelet aggregation is that increased glycogenolysis occurs despite a fall in cyclic AMP levels. Activation by a classical cascade is therefore unlikely, and an alternative stimulus for phosphorylase a formation was sought. It was found that low levels of Ca2+ markedly activate phosphorylase b kinase from human platelets, with a Ka of 0.89 μM Ca2+, which is similar to that for the skeletal muscle enzyme. The kinase activity is unstable, and on enzyme ageing there is a 50% loss in activity with the Ka decreasing to 0.33 μM Ca2+.In unstimulated platelets, phosphorylase a was 13.3% of total measured activity, and glycogen synthetase I was 32.3%. Aggregation induced by ADP did not change the percentage of I synthetase, while increasing that for phosphorylase a. Dibutyryl cyclic AMP did, as expected, increase the percentage of both phosphorylated enzymes.These findings suggest that the natural activator of platelet glycogenolysis during aggregation is Ca2+, which directly stimulates phosphorylase b kinase without altering glycogen synthetase activity. The cyclic AMP-dependent protein kinase does not appear to be involved.  相似文献   

10.
Changes induced in liver and striated muscle glycogen and glycogen enzymes (glycogen synthetase, glycogen phosphorylase and alpha-amylase) by hypothyroidism and hyperthyroidism in rats have been determined. There were no changes in liver glycogen synthetase, phosphorylase and amylase activities in the hypothyroid group. Hyperthyroid rats showed lower liver glycogen synthetase, phosphorylase a and amylase activities. In muscle, hypothyroid rats had lower phosphorylase activity. In the hyperthyroid group glycogen synthetase was increased.--The results presented do not completely agree with the glycogen levels found in both tissues studied, and they are obviously more related to other factors such as glucose availability. It can be concluded that under the conditions studied, the glycogen enzyme levels could not alone explain the variations of glycogen levels.  相似文献   

11.
12.
During starvation, muscle glycogen in Boleophthalmus boddaerti was utilized preferentially over liver glycogen. In the first 10 days of fasting, the ratio of the active‘a’form of glycogen phosphorylase to total phosphorylase present in the liver was small. During this period, the active‘I’form of glycogen synthetase increased in the same tissue. In the muscle, the phosphorylase‘a’activity declined during the first 7 days and increased thereafter while the total glycogen synthetase activity showed a drastic decline during the first 13 days of fasting. The glycogen level in the liver and muscle of mudskippers starved for 21 days increased after refeeding. After 6 and 12 h refeeding, liver glycogen level was 8·5 ± 2·3 and 6·9 ± 4·5 mg·g wet wt 1, respectively, as compared to 5·8 ± l·6mg·g wet wt 1 in unfed fish. Muscle glycogen level after 6 and 12 h refeeding was 0·96±0·76 and 0·82 ± 0·50 mg·g wet wt 1, respectively, as opposed to 0·21 ± 0·12 mg·g wet wt 1 in the 21-days fasted fish. At the same time, activities of glycogen phosphorylase in the muscle and liver increased while the active‘I’form of glycogen synthetase showed higher activity in the liver. Since glycogen was resynthesized upon refeeding, this eliminated the possibility that glycogen depletion during starvation was due to stress or physical exhaustion after handling by the investigator. Throughout the experimental starvation period, the body weight of the mudskipper decreased, with a maximum of 12% weight loss after 21 days. Liver lipid reserves were utilized at the onset of fasting but were thereafter resynthesized. Muscle proteins were also metabolized as the fish were visibly thinner. However, no apparent change in protein content expressed as per gram wet weight was detected as the tissue hydration state was maintained constant. The increased degradation of liver and muscle reserves was coupled to an increase in the activities of key gluconeogenic enzymes in the liver (G6Pase, FDPase, PEPCK, MDH and PC). The increase in glucose synthesis was possibly necessary to counteract hypoglycemia brought about by starvation in B. boddaerti.  相似文献   

13.
Mesophyll and bundle sheath cells of maize leaves were separated and enzymes of starch and sucrose metabolism assayed. The starch content and activities of ADPglucose (ADPG) starch synthetase and phosphorylase expressed both on a chlorophyll and a protein basis were much lower in mesophyll cells compared to bundle sheath preparations. Exposure of the leaves to continuous illumination for 2·5 days caused the starch content of mesophyll cells to rise greatly and led to considerable increases in ADPG starch synthetase and phosphorylase activity. In glasshouse grown leaves the bulk of invertase, sucrose phosphate synthetase, sucrose phosphatase, UDPglucose pyrophosphorylase and amylase was situated in the mesophyll layer. Sucrose synthetase, ADPG starch synthetase and phosphorylase were largely confined to the bundle sheath. No enzyme could be completely assigned to one particular cell layer. Upon continuous illumination both ADPG starch synthetase and phosphorylase increased in the mesophyll bythe same relative amount. The mesophyll is likely to be a major site for sucrose synthesis in maize leaves.  相似文献   

14.
The changes in the activities of three important glycogen metabolising enzymes, viz. glycogen synthetase, glycogen phosphorylase and alpha-D-glucosidase, along with glycogen content have been measured in adult human heart and human fetal heart collected at 13-36 weeks of gestation. At an early period, particularly 13-16 weeks of gestational age, the activity of glycogen synthetase and glycogen content were found to be maximum. However the activity of glycogen phosphorylase remained constant throughout the gestation and that of alpha-D-glucosidase showed a peak at 25-28 weeks of gestation, thereby indicating that fetal heart tissue has the capacity to utilise glycogen for energy.  相似文献   

15.
1. Hydrocortisone increases in vivo incorporation of [14C] glucose into fetal liver glycogen in the last days of gestation, whereas in glucagon-treated fetuses, a slight decrease in the incorporation rate was found. 2. Hydrocortisone increases total synthetase activity as that of synthetase a but was without effect on fetal liver glycogen phosphorylase. 3. Glucagon causes a slight increase in phosphorylase a activity on days 19-21, and was without effect on the activities of synthetase a and total synthetase. 4. Dibutyryl cyclic AMP had no effect on the key enzymes of glycogen metabolism 1 h after injection in utero, whereas after 6 h an increase in phosphorylase a activity was found without any change in synthetase a activity.  相似文献   

16.
Summary In connection with the problem of the well-known stability of statolith starch, some enzymes of starch metabolism have been investigated qualitatively in the root cap cells of Zea mays L. No activity of granule-bound UDPG- and ADPG-transglucosylase (EC 2.4.1.21) could be found. In the soluble enzyme fraction of the root cap cells, on the other hand, activities of phosphorylase (EC 2.4.1.1), sucrose synthetase (EC 2.4.1.13), UDPG-pyrophosphorylase (EC 2.7.7.9), -Amylase (EC 3.2.11), Maltase (EC 3.2.1.20), and D-enzyme (EC 2.4.1.25) were clearly shown to be present. However, no measurable activities of ADPG-pyrophosphorylase, sucrose-6-phosphate-synthetase (EC 2.4.1.14) and UDPG-dehydrogenase (EC 1.1.1.22) could be found. It is concluded that the stability of statolith starch in the root cap cells is not caused by the lack of enzymes of starch metabolism, but perhaps by a dynamic equilibrium between the degradation and the synthesis of starch. The later could proceed by the activity of phosphorylase working in the direction of starch synthesis because of removal of the inorganic phosphate by phosphorylating mitochondria accumulating in the neighbourhood of the statolith amyloplasts.  相似文献   

17.
An apparent enigma during platelet aggregation is that increased glycogenolysis occurs despite a fall in cyclic AMP levels; Activation by a classical cascade is therefore unlikely, and an alternative stimulus for phosphorylase a formation was sought. It was found that low levels of Ca-2+ markedly activate phosphorylase b kinase from human platelets, with a Ka of 0i muM Ca-2+, which is similar to that for the skeletal muscle enzyme; The kinase activity is unstable, and on enzyme ageing is a 50% loss in activity with the Ka decreasing to 0.33 muM Ca-2+. In unstilulated platelets, phosphorylase a was 13.3% of toal measured activity, and glycogen synthetase I was 32.3%. Aggregation induced by ADP did not change the percentage of I synthetase, while increasing that for phosphorylase a. Dibutyryl cyclic AMP did, as expected, increase the percentage of both phosphorylated enzymes; These findings suggest that the natural activator of platelet glycogenolysis during aggregation is Ca-2+, which directly stimulates phosphorylase b kinase without altering glycogen synthetase activity. The cyclic AMP-dependent protein kinase does not appear to be involved;  相似文献   

18.
Abstract— The effects of amphetamine sulphate (5 mg/kg intraperitoneally) on the incorporation of radioactive carbon from [U-14C]glucose into the glycogen of mouse cerebral cortex, midbrain and hind-brain have been investigated. In all brain regions studied amphetamine induced a rapid decrease in glycogen followed by a slower return to control values. No significant alterations were observed in the steady state concentration of cerebral glucose. The initial fall in glycogen was associated with a fall in its specific radioactivity relative to that of cerebral glucose, whereas the resynthesis of the polysaccharide was associated with a marked increase in the relative specific radioactivity of glycogen. Other experiments demonstrated that amphetamine initially stimulates the breakdown of prelabelled glycogen and that the resulting molecule has fewer 1,4 linked glucose side chains.
Studies of the relative forms of the enzymes glycogen phosphorylase and glycogen synthetase suggested that rapid post mortem changes were less likely to occur if cerebral tissue was fixed by means of a freeze-blowing technique. Amphetamine administration resulted in a rapid though transient elevation of phosphorylase a activity in mouse forebrain. The level of glycogen synthetase I activity was unchanged initially but was markedly elevated during the period when there was a large increase in the rate of incorporation of glucose into glycogen. It is suggested that cerebral glycogen metabolism is controlled, at least in part, by the interconversion of the 'active' and 'inactive' forms of glycogen phosphorylase and synthetase.  相似文献   

19.
Recently, oleanolic acid was found to be an inhibitor of glycogen phosphorylase. For further structural modification, we have synthesized several dimers of oleanolic acid by using amide, ester, or triazole linkage with click chemistry. The click chemistry was shown to be the most efficient method for the dimer synthesis. Nearly quantitative yield of triazole‐linked dimers was obtained. Biological evaluation of the synthesized dimers as inhibitors of glycogen phosphorylase has been described. Four of six dimers exhibited inhibitory activity against rabbit muscle glycogen phosphorylase a (RMGPa), with compounds 2 and 7 as the most potent inhibitors, which displayed an IC50 value (ca. 3 μM ) lower than that of oleanolic acid (IC50=14 μM ).  相似文献   

20.
The effect of insulin on glycogen synthesis and key enzymes of glycogen metabolism, glycogen phosphorylase and glycogen synthase, was studied in HepG2 cells. Insulin stimulated glycogen synthesis 1.83-3.30 fold depending on insulin concentration in the medium. Insulin caused a maximum of 65% decrease in glycogen phosphorylase 'a' and 110% increase in glycogen synthase activities in 5 min. Although significant changes in enzyme activities were observed with as low as 0.5 nM insulin level, the maximum effects were observed with 100 nM insulin. There was a significant inverse correlation between activities of glycogen phosphorylase 'a' and glycogen synthase 'a' (R2 = 0.66, p < 0.001). Addition of 30 mM glucose caused a decrease in phosphorylase 'a' activity in the absence of insulin and this effect was additive with insulin up to 10 nM concentration. The inactivation of phosphorylase 'a' by insulin was prevented by wortmannin and rapamycin but not by PD98059. The activation of glycogen synthase by insulin was prevented by wortmannin but not by PD98059 or rapamycin. In fact, PD98059 slightly stimulated glycogen synthase activation by insulin. Under these experimental conditions, insulin decreased glycogen synthase kinase-3 activity by 30-50% and activated more than 4-fold particulate protein phosphatase-1 activity and 1.9-fold protein kinase B activity; changes in all of these enzyme activities were abolished by wortmannin. The inactivation of GSK-3 and activation of PKB by insulin were associated with their phosphorylation and this was also reversed by wortmannin. The addition of protein phosphatase-1 inhibitors, okadaic acid and calyculin A, completely abolished the effects of insulin on both enzymes. These data suggest that stimulation of glycogen synthase by insulin in HepG2 cells is mediated through the PI-3 kinase pathway by activating PKB and PP-1G and inactivating GSK-3. On the other hand, inactivation of phosphorylase by insulin is mediated through the PI-3 kinase pathway involving a rapamycin-sensitive p70s6k and PP-1G. These experiments demonstrate that insulin regulates glycogen phosphorylase and glycogen synthase through (i) a common signaling pathway at least up to PI-3 kinase and bifurcates downstream and (ii) that PP-1 activity is essential for the effect of insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号