首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is generally assumed that the putative compound I (cpd I) in cytochrome P450 should contain the same electron and spin distribution as is observed for cpd I of peroxidases and catalases and many synthetic cpd I analogues. In these systems one oxidation equivalent resides on the Fe(IV)=O unit (d(4), S=1) and one is located on the porphyrin (S'=1/2), constituting a magnetically coupled ferryl iron-oxo porphyrin pi-cation radical system. However, this laboratory has recently reported detection of a ferryl iron (S=1) and a tyrosyl radical (S'=1/2), via M?ssbauer and EPR studies of 8 ms-reaction intermediates of substrate-free P450cam from Pseudomonas putida, prepared by a freeze-quench method using peroxyacetic acid as the oxidizing agent [Schünemann et al., FEBS Lett. 479 (2000) 149]. In the present study we show that under the same reaction conditions, but in the presence of the substrate camphor, only trace amounts of the tyrosine radical are formed and no Fe(IV) is detectable. We conclude that camphor restricts the access of the heme pocket by peroxyacetic acid. This conclusion is supported by the additional finding that binding of camphor and metyrapone inhibit heme bleaching at room temperature and longer reaction times, forming only trace amounts of 5-hydroxy-camphor, the hydroxylation product of camphor, during peroxyacetic acid oxidation. As a control we performed freeze-quench experiments with chloroperoxidase from Caldariomyces fumago using peroxyacetic acid under the identical conditions used for the substrate-free P450cam oxidations. We were able to confirm earlier findings [Rutter et al., Biochemistry 23 (1984) 6809], that an antiferromagnetically coupled Fe(IV)=O porphyrin pi-cation radical system is formed. We conclude that CPO and P450 behave differently when reacting with peracids during an 8-ms reaction time. In P450cam the formation of Fe(IV) is accompanied by the formation of a tyrosine radical, whereas in CPO Fe(IV) formation is accompanied by the formation of a porphyrin radical.  相似文献   

2.
By using pulsed and continuous wave laser irradiation in the 350-450-nm region, we have characterized Raman scattering from horseradish peroxidase (HRP) compounds I and II and from iron porphyrin pi-cation radical model compounds. For compound II we support the suggestion [Terner, J., Sitter, A. J., & Reczek, C. M. (1985) Biochim. Biophys. Acta 828, 73-80; Proniewicz, L. M., Bajdor, K., & Nakamoto, K. (1986) J. Phys. Chem. 90, 1760-1766] that resonance enhancement of the FeIV = O vibration proceeds by way of a charge-transfer state. Our excitation profile data locate this state at approximately 400 nm. Compound I was prepared at neutral pH by rapid mixing of the resting enzyme with hydrogen peroxide. Each sample aliquot was excited by a single, 10-ns laser pulse to generate the Raman spectrum; optical spectroscopy following the Raman measurement confirmed that HRP-I was the principal product during the time scale of the measurement. The Raman spectrum of this species, however, is not characteristic of that which we observe from metalloporphyrin pi-cation radicals [Oertling, W. A., Salehi, A., Chung, Y., Leroi, G. E., Chang, C. K., & Babcock, G. T. (1987) J. Phys. Chem. 91, 5887-5898], including the iron porphyrin cation radicals reported here. Instead, the spectrum recorded for HRP-I at neutral pH is suggestive of an oxoferryl heme with the same geometric and electronic structure as that of HRP-II at high pH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We have studied the reaction of reduced nitric-oxide synthase (NOS) with molecular oxygen at -30 degrees C. In the first reaction cycle (from L-Arg to hydroxy-L-Arg), an oxygen adduct complex formed rapidly. Experiments in the absence of the reductase domain demonstrated that this complex was then further reduced by one electron stemming from the cofactor tetrahydrobiopterin (BH4). Spectral evidence suggested an iron(IV) porphyrin pi-cation radical as an intermediate. The nature of the oxidized BH4 was identified by EPR as a BH3* radical. Within the second cycle (from hydroxy-L-Arg to citrulline and NO), an iron(III)-NO complex could be identified clearly by its spectral characteristics. The strict requirement of BH4 for its formation suggests that BH4 plays a redox role, although transient, also in the second reaction cycle.  相似文献   

4.
J E Erman  L B Vitello  J M Mauro  J Kraut 《Biochemistry》1989,28(20):7992-7995
Peroxide oxidation of a mutant cytochrome c peroxidase, in which Trp-191 has been replaced by Phe through site-directed mutagenesis, produces an oxidized intermediate whose stable UV/visible absorption spectrum is very similar to that of compound I of the native yeast enzyme. This spectrum is characteristic of an oxyferryl, Fe(IV), heme. Stopped-flow studies reveal that the reaction between the mutant enzyme and hydrogen peroxide is biphasic with the transient formation of an intermediate whose absorption spectrum is quite distinct from that of either the native ferric enzyme or the final product. Rapid spectral scanning of the intermediate provides a spectrum characteristic of an oxyferryl porphyrin pi-cation-radical species. At pH 6, 100 mM ionic strength, and 25 degrees C, the rate constant for formation of the oxyferryl pi-cation radical has a lower limit of 6 X 10(7) M-1 s-1 and the rate of conversion of the transient intermediate to the final oxidized product is 51 +/- 4 s-1. Evidence is presented indicating that Trp-191 either is the site of the radical in CcP compound I or is intimately involved in formation of the radical.  相似文献   

5.
Peroxide compounds of manganese protoporphyrin IX and its complexes with apo-horseradish peroxidase and apocytochrome-c peroxidase were characterized by electronic absorption and electron paramagnetic resonance spectroscopies. An intermediate formed upon titration of Mn(III)-horseradish peroxidase with hydrogen peroxide exhibited a new electron paramagnetic resonance absorption at g = 5.23 with a definite six-lined 55Mn hyperfine (AMn = 8.2 mT). Neither a porphyrin pi-cation radical nor any other radical in the apoprotein moiety could be observed. The reduced form of Mn-horseradish peroxidase, Mn(II)-horseradish peroxidase, reacted with a stoichiometric amount of hydrogen peroxide to form a peroxide compound whose electronic absorption spectrum was identical with that formed from Mn(III)-horseradish peroxidase. The electronic state of the peroxide compound of manganese horseradish peroxidase was thus concluded to be Mn(IV), S = 3/2. Mn(III)-cytochrome-c peroxidase reacted with stoichiometry quantities of hydrogen peroxide to form a catalytically active intermediate. The electronic absorption spectrum was very similar to that of a higher oxidation state of manganese porphyrin, Mn(V). Since the peroxide compound of manganese cytochrome-c peroxidase retained two oxidizing equivalents per mol of the enzyme (Yonetani, T. and Asakura, T. (1969) J. Biol. Chem. 244, 4580-4588), this peroxide compound might contain an Mn(V) center.  相似文献   

6.
The push effect of anionic axial ligands of high-valent iron(IV)-oxo porphyrin pi-cation radicals, (Porp)(+.)Fe(IV)(O)(X) (X=OH(-), AcO(-), Cl(-), and CF(3)SO(3)(-)), in alkane hydroxylation is investigated by B3LYP DFT calculations. The electron-donating ability of anionic axial ligands influences the activation energy for the alkane hydroxylation by the iron(IV)-oxo intermediates and the Fe-O bond distance of the iron-oxo species in transition state.  相似文献   

7.
The catalytic cycle intermediates of heme peroxidases, known as compounds I and II, have been of long standing interest as models for intermediates of heme proteins, such as the terminal oxidases and cytochrome P450 enzymes, and for non-heme iron enzymes as well. Reports of resonance Raman signals for compound I intermediates of the oxo-iron(IV) porphyrin pi-cation radical type have been sometimes contradictory due to complications arising from photolability, causing compound I signals to appear similar to those of compound II or other forms. However, studies of synthetic systems indicated that protein based compound I intermediates of the oxoiron(IV) porphyrin pi-cation radical type should exhibit vibrational signatures that are different from the non-radical forms. The compound I intermediates of horseradish peroxidase (HRP), and chloroperoxidase (CPO) from Caldariomyces fumago do in fact exhibit unique and characteristic vibrational spectra. The nature of the putative oxoiron(IV) bond in peroxidase intermediates has been under discussion in the recent literature, with suggestions that the Fe(IV)O unit might be better described as Fe(IV)-OH. The generally low Fe(IV)O stretching frequencies observed for proteins have been difficult to mimic in synthetic ferryl porphyrins via electron donation from trans axial ligands alone. Resonance Raman studies of iron-oxygen vibrations within protein species that are sensitive to pH, deuteration, and solvent oxygen exchange, indicate that hydrogen bonding to the oxoiron(IV) group within the protein environment contributes to substantial lowering of Fe(IV)O frequencies relative to those of synthetic model compounds.  相似文献   

8.
For the first time, the enzymatic one-electron oxidation of several naturally occurring and synthetic water-soluble porphyrins by peroxidases was investigated by ESR and optical spectroscopy. The ESR spectra of the free radical metabolites of the porphyrins were singlets (g = 2.0024, delta H = 2-3 G), which we assigned to their respective porphyrin pi-cation free radicals. Several porphyrins were investigated and ranked by the intensity of their ESR spectra (coproporphyrin III greater than coproporphyrin I greater than deuteroporphyrin IX greater than mesoporphyrin IX greater than Photofrin II greater than protoporphyrin IX greater than uroporphyrin I greater than uroporphyrin III greater than hematoporphyrin IX). The porphyrins were oxidized by several peroxidases (horseradish peroxidase, lactoperoxidase, and myeloperoxidase), yielding the same type of ESR spectra. From these results, we conclude that porphyrins are substrates for peroxidases. The changes in the visible absorbance spectra of the porphyrins during enzymatic oxidation were monitored. The two-electron oxidation product, which was assigned to the dihydroxyporphyrin, was detected as an intermediate of the oxidation process. The optical spectrum of the porphyrin pi-cation free radical was not detected, probably due to its low steady-state concentration.  相似文献   

9.
The green primary compound of chloroperoxidase was prepared by freeze-quenching the enzyme after rapid mixing with a 5-fold excess of peracetic acid. The electron paramagnetic resonance (EPR) spectra of these preparations consisted of at least three distinct signals that could be assigned to native enzyme, a free radical, and the green compound I as reported earlier. The absorption spectrum of compound I was obtained through subtraction of EPR signals measured under passage conditions. The signal is well approximated by an effective spin Seff = 1/2 model with g = 1.64, 1.73, 2.00 and a highly anisotropic line width. M?ssbauer difference spectra of compound I samples minus native enzyme showed well-resolved magnetic splitting at 4.2 K, an isomer shift delta Fe = 0.15 mm/s, and quadrupole splitting delta EQ = 1.02 mm/s. All data are consistent with the model of an exchange-coupled spin S = 1 ferryl iron and a spin S' = 1/2 porphyrin radical. As a result of the large zero field splitting, D, of the ferryl iron and of intermediate antiferromagnetic exchange, S.J.S'.J approximately 1.02 D, the system consists of three Kramers doublets that are widely separated in energy. The model relates the EPR and M?ssbauer spectra of the ground doublet to the intrinsic parameters of the ferryl iron, D/k = 52 K, E/D congruent to 0.035, and A perpendicular (gn beta n) = 20 T, and the porphyrin radical.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Iron(IV)-oxo porphyrin radical cations are observed intermediates in peroxidase and catalase enzymes, where they are known as Compound I species, and the putative oxidizing species in cytochrome P450 enzymes. In this work, we report kinetic studies of reactions of iron(IV)-oxo porphyrin radical cations that can be compared to reactions of other metal-oxo species. The iron(IV)-oxo radical cations studied were those produced from 5,10,15,20-tetramesitylporphryinato-iron(III) perchlorate (1), 5,10,15,20-tetramesitylporphryinato-iron(III) chloride (2), both in CH(3)CN solvent, and that from 5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato-iron(III) perchlorate (3) in CH(2)Cl(2) solvent. The substrates studied were alkenes and activated hydrocarbons diphenylmethane and ethylbenzene. For a given organic reductant, various iron(IV)-oxo porphyrin radical cations react in a relatively narrow kinetic range; typically the second-order rate constants vary by less than 1 order of magnitude for the oxidants studied here and the related oxidant 5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato-iron(IV)-oxo porphyrin radical cation in CH(3)CN solvent. Charge transfer in the transition states for epoxidation reactions of substituted styrenes by oxidants 1 and 2, rho(+) values of -1.9 and -0.9, respectively, mirrors results found previously for related species. Competition kinetic reactions with a catalytic amount of porphyrin iron(III) species and a terminal oxidant give relative rate constants for oxidations of competing substrates that are somewhat smaller than the ratios of absolute rate constants. Water in CH(3)CN solutions has an apparent modest stabilizing effect on oxidant 1 as indicated in slightly reduced rate constants for oxidation reactions. The iron(IV)-oxo porphyrin radical cations are orders of magnitude less reactive than porphyrin-manganese(V)-oxo cations and a corrole-iron(V)-oxo species. The small environment effects found here suggest that high energy demanding hydrocarbon oxidation reactions catalyzed by cytochrome P450 enzymes might require highly reactive iron(V)-oxo transients as oxidants instead of the more stable, isomeric iron(IV)-oxo porphyrin radical cations.  相似文献   

11.
This review discusses the structural changes that occur when the porphyrin ring of metalloporphyrin complexes is oxidized to form a pi-cation radical species. Although various differences in core conformation between the pi-cation derivative and the unoxidized homologue have been observed, there does not appear to be a general pattern of change. A frequently observed feature in pi-cation derivatives is the appearance of an alternating bond distance pattern in the inner ring of the porphyrin consistent with a localized structure rather the delocalized structure usually seen. The pattern, first seen in cofacial dimeric structures, has now been seen in monomeric systems as well. The nature and frequency of the observation and possible explanation are given.  相似文献   

12.
During the enzymatic cycle of the cytochromes P450, dioxygen binds to the ferrous haemprotein when the resting ferric haemprotein has undergone a one-electron oxidation after substrate binding. A further one-electron reduction generates an intermediate that is isoelectronic with a peroxide dianion coordinated to a ferric iron. Heterolytic cleavage of the omicron--omicron bond generates water and a species which is formally an oxene (oxygen atom) coordinated by iron(III). However, on the basis of model reactions and by analogy to the catalases and peroxidases, this active oxidizing intermediate is formulated as an oxo-FeIV porphyrin pi-cation radical. The radical is stabilized by delocalization on the porphyrin macrocycle and the high oxidation state is achieved by oxidizing both the metal and the porphyrin ring of the haemprotein. Hydrogen atom abstraction from a saturated hydrocarbon substrate generates a substrate free radical, constrained by the protein binding site, and the equivalent of a hydroxyl radical bound to iron(III). Coupling of the 'hydroxy' and substrate radicals generates hydroxylated product and resting protein. For olefins an initial electron transfer to oxidized haemprotein gives a substrate cation radical. Further reaction of this radical can give the epoxide, the principal product; an aldehyde or ketone by rearrangement; or an alkylated haemprotein resulting in suicide inhibition.  相似文献   

13.
The influence of high pressure on the heme protein conformation of myoglobin in different ligation states is studied using Raman spectroscopy over the temperature range from 30 to 295 K. Photostationary experiments monitoring the oxidation state marker bands demonstrate the change of rebinding rate with pressure. While frequency changes of vibrational modes associated with rigid bonds of the porphyrin ring are <1 cm(-1), we investigate a significant shift of the iron-histidine mode to higher frequency with increasing pressure (approximately 3 cm(-1) for deltaP = 190 MPa in Mb). The observed frequency shift is interpreted structurally as a conformational change affecting the tilt angle between the heme plane and the proximal histidine and the out-of-plane iron position. Independent evidence for iron motion comes from measurements of the redshift of band III in the near-infrared with pressure. This suggests that at high pressure the proximal heme pocket and the protein are altered toward the bound state conformation, which contributes to the rate increase for CO binding. Raman spectra of Mb and photodissociated MbCO measured at low temperature and variable pressure further support changes in protein conformation and are consistent with glasslike properties of myoglobin below 160 K.  相似文献   

14.
We have measured the VFe-His Raman band of horse heart deoxymyoglobin dissolved in an aqueous solution as a function of temperature between 10 and 300 K. The minimal model to which these data can be fitted in a statistically significant and physically meaningful way comprises four different Lorentzian bands with frequencies at 197, 209, 218, and 226 cm-1, and a Gaussian band at 240 cm-1, which exhibit halfwidths between 10 and 12.5 cm-1. All these parameters were assumed to be independent of temperature. The temperature dependence of the apparent total band shape's frequency is attributed to an intensity redistribution of the subbands at omega 1 = 209 cm-1, omega 2 = 218 cm-1, and omega 3 = 226 cm-1, which are assigned to Fe-N epsilon (HisF8) stretching modes in different conformational substrates of the Fe-HisF8 linkage. They comprise different out-of-plane displacements of the heme iron. The two remaining bands at 197 and 240 cm-1 result from porphyrin modes. Their intensity ratio is nearly temperature independent. The intensity ratio I3/I2 of the vFe-His subbands exhibits a van't Hoff behavior between 150 and 300 K, bending over in a region between 150 and 80 K, and remains constant between 80 and 10 K, whereas I2/I1 shows a maximum at 170 K and approaches a constant value at 80 K. These data can be fitted by a modified van't Hoff expression, which accounts for the freezing into a non-equilibrium distribution of substates below a distinct temperature Tf and also for the linear temperature dependence of the specific heat of proteins. The latter leads to a temperature dependence of the entropic and enthalpic differences between conformational substates. The fits to the intensity ratios of the vFe-His subbands yield a freezing temperature of Tf = 117 K and a transition region of delta T = 55 K. In comparison we have utilized the above thermodynamic model to reanalyze earlier data on the temperature dependence of the ratio Ao/A1 of two subbands underlying the infrared absorption band of the CO stretching vibration in CO-ligated myoglobin (A. Ansari, J. Berendzen, D. Braunstein, B. R. Cowen, H. Frauenfelder, M. K. Kong, I. E. T. Iben, J. Johnson, P. Ormos, T. B. Sauke, R. Scholl, A. Schulte, P. J. Steinbach, R. D. Vittitow, and R. D. Young, 1987, Biophys. Chem. 26:237-335).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Iron and manganese hemes are "high-valent" when the valence state of the metal exceeds III. Redox chemistry of the high valent metal complexes involves redistribution of holes and electrons over the metal ion and the porphyrin and axial ligands, defined as valence tautomerism. Thus, catalytic pathways of heme-containing biomolecules such as peroxidases, catalases and cytochromes P450 involve valence tautomerism, as do pathways of biomimetic oxygen transfer catalysis by manganese porphyrins, robust catalysts with potential commercial value. Determinants of the site of electron abstraction are key to understanding valence tautomerism. In model systems, metal-centered oxidation is supported by hard anionic axial ligands that are also strongly pi-donating, such as oxo, aryl, bix-methoxy and bis-fluoro groups. Manganese(IV) is more stable than iron(IV) and metal-centered one-electron oxidations occur with weaker pi-donating axial ligands such as bisazido, -isocyanato, -hypochlorito and bis chloro groups. Virtually all known high-valent iron porphyrin complexes oxidized by two-electrons above the ferric state are coordinated by the strongly pi-donating oxo or nitrido ligands. In all well-characterized oxo complexes, iron is in the ferryl state and the second oxidizing equivalent resides on the porphyrin. Complexes with iron(V) have not been definitively characterized. One-electron oxidation of oxomanganese(IV) porphyrin complexes gives the oxomanganese(IV) porphyrin pi-cation redicals. In aqueous solution, oxidation of Mn(III) complexes of tetra cationic N-methylpyridiniumylporphyrin isomers by monooxygen donors yields a transient oxomanganese(V) species.  相似文献   

16.
Kinetic parameters for each reaction step of the peroxidase-catalyzed reaction were determined by the stopped-flow technique on three distinct isoenzymes: acidic A2, neutral C1, and basic E5. The pH dependence of the reaction for the formation of compound I with hydrogen peroxide was examined. The three isoenzymes had a common ionizing group at about pK 4 which affects the rate constant for the formation of compound I. The heat of ionization determined from the temperature dependence of the dissociation constant of the group strongly suggested that it is of carboxyl nature. The rate constant for isoenzyme A2 was a tenth of those for the other two isoenzymes over the whole range of pH. Furthermore, the thermodynamic parameters of isoenzyme A2 were found to be different from those for the other two isoenzymes. These difference as well as the different behavior in alkaline transition of the isoenzymes are discussed in relation to the sixth ligand of the heme. The rate constant of the reduction of compound I and compound II by ferrocyanide were also determined. In both reduction steps, the pH profiles of the apparent rate constant for isoenzyme A2 and E5 were similar, but they were different from that of C1. The ionization with pK 5.29, which was detected only in isoenzyme C1, may be attributed to a group near the porphyrin ring as a stabilizer for the pi-cation radical.  相似文献   

17.
The nature of the porphyrin pi-cation radicals in the horseradish peroxidase and bovine liver catalase (BLC) compound I species have been investigated by studying their resonance Raman spectra. A variety of laser excitation and sample interrogation procedures have been employed in order to minimize previously documented problems arising from photoinduced conversions. With Soret band excitation, the spectra obtained for both species resemble that of a compound II-like photoproduct unless the samples are excited with residence times in the microsecond regime with very low (approximately 1 milliwatt) powers. When these precautions are taken, spectra attributable to the compound I species themselves are obtained. The spectrum for horseradish peroxidase compound I is similar to that reported by Paeng and Kincaid (Paeng, K.-J., and Kincaid, J. R. (1988) Am. Chem. Soc. 110, 7913-7915) using a similar approach. Both horseradish peroxidase and BLC compound I exhibit frequency shifts relative to their compound II species that are in the direction observed for model pi-cation radicals with predominant 2A2u character. The magnitudes of these shifts are smaller than those observed for heme models that lack aromatic axial ligands, but agree well with those observed on formation of the compound I analog of N alpha-acetyl microperoxidase-8 that has His as a proximal ligand. This observation is consistent with partial delocalization of the radical density onto the proximal His-170 and Tyr-357 ligands in horseradish peroxidase and BLC, respectively. The strong ligand field provided by these ligands on the proximal side and oxo ligand on the distal side of the heme group is apparently sufficient to reverse the 2A1u radical ground state preference observed for heme-like porphyrin species (e.g. octaethylporphyrins) with weak axial fields. Enhancement of several bands assigned to the Tyr-357 ligand has also been observed for BLC compound I with 406.7-nm excitation. This is attributed either to resonance with a tyrosinate----Fe(IV) charge transfer band or to the coupling provided by radical spin delocalization onto the tyrosinate ligand.  相似文献   

18.
Barrows TP  Poulos TL 《Biochemistry》2005,44(43):14062-14068
Cytochrome c (CcP) and ascorbate peroxidase (APX) are heme peroxidases which have very similar active site structures yet differ substantially in the properties of compound I, the intermediate formed upon reaction with peroxides. Although both peroxidases have a tryptophan in the proximal heme pocket, Trp191 in CcP and Trp179 in APX, only Trp191 in CcP forms a stable cation radical while APX forms the more traditional porphyrin pi-cation radical. Previous work [Barrows, T. P., et al. (2004)Biochemistry 43, 8826-8834] has shown that converting three methionine residues in the cytochrome c peroxidase (CcP) proximal heme pocket to the corresponding residues in APX dramatically decreased the stability of the Trp191 radical in CcP compound I. On the basis of these results, we reasoned that replacing the analogous residues at positions 160, 203, and 204 in APX with methionine should stabilize a Trp179 radical in APX compound I. Steady- and transient-state kinetics of this mutant (designated APX3M) show a significant destabilization of the native porphyrin pi-radical, while electron paramagnetic resonance (EPR) studies show an increase in the intensity of the signal at g = 2.006 with characteristics consistent with formation of a Trp radical. This hypothesis was tested by replacing Trp179 with Phe in the APX3M background. The EPR spectrum of this mutant was very similar to that of the CcP W191G mutant which is known to form a tyrosine radical. Previously published theoretical studies [Guallar, V., et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 6998-7002] suggest that electrostatic shielding of the heme propionates also plays a role in the stability of the porphyrin radical. Arg172 in APX hydrogen bonds with one of the heme propionates. Replacing Arg172 with an asparagine residue in the APX3M background generates a mutant which no longer forms the full complement of the compound I porphyrin pi-radical. These results suggest that the electrostatics of the proximal pocket and the shielding of propionate groups by salt bridges are critical factors controlling the location of a stable compound I radical in heme peroxidases.  相似文献   

19.
Horseradish peroxidase (HRP) compound I is photolabile at all temperatures between room temperature and 4 K. The photoredox reaction has been studied in frozen glassy solutions by using optical absorption and magnetic circular dichroism spectra following photolysis of HRP compound I with visible-wavelength light at 4.2 and 77 K. The photochemical process is characterized as a concerted two-electron transfer reaction which results in the conversion of the Fe(IV) heme pi-cation radical species of HRP compound I into a low-spin Fe(III) heme species. This reaction occurs even when photolysis is carried out at 4.2 K. Spectra recorded between 4.2 and 80 K for the low-spin ferric hydroxide complex of HRP closely resemble the data measured for the photochemical product. The proposed mechanism for the photoreaction is (formula; see text) No evidence is found for the formation of an Fe(II) heme at these temperatures.  相似文献   

20.
(1) Using the pulse-radiolysis and stopped-flow techniques, the reactions of iron-free (porphyrin) cytochrome c and native cytochrome c with cytochrome aa3 were investigated. The porphyrin cytochrome c anion radical (generated by reduction of porphyrin cytochrome c by the hydrated electron) can transfer its electron to cytochrome aa3. The bimolecular rate constant for this reaction is 2 x 10(7) M-1 . s-1 (5 mM potassium phosphate, 0.5% Tween 20, pH 7.0, 20 degrees C). (2) The ionic strength dependence of the cytochrome c-cytochrome aa3 interaction was measured in the ionic strength range between 40 and 120 mM. At ionic strengths below 30 mM, a cytochrome c-cytochrome aa3 complex is formed in which cytochrome c is no longer reducible by the hydrated electron. A method is described by which the contributions of electrostatic forces to the reaction rate can be determined. (3) Using the stopped-flow technique, the effect of the dielectric constant (epsilon) of the reaction medium on the reaction of cytochrome C with cytochrome aa3 was investigated. With increasing epsilon the second-order rate constant decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号