首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colonization of neutrophils by the bacterium Anaplasma phagocytophilum causes the disease human granulocytic ehrlichiosis. The pathogen also infects mice, its natural host. Like binding of P-selectin, binding of A. phagocytophilum to human neutrophils requires expression of P-selectin glycoprotein ligand-1 (PSGL-1) and alpha1-3-fucosyltransferases that construct the glycan determinant sialyl Lewis x (sLex). Binding of A. phagocytophilum to murine neutrophils, however, requires expression of alpha1-3-fucosyltransferases but not PSGL-1. To further characterize the molecular features that A. phagocytophilum recognizes, we measured bacterial binding to microspheres bearing specific glycoconjugates or to cells expressing human PSGL-1 and particular glycosyltransferases. Like P-selectin, A. phagocytophilum bound to purified human PSGL-1 and to glycopeptides modeled after the N terminus of human PSGL-1 that presented sLex on an O-glycan. Unlike P-selectin, A. phagocytophilum bound to glycopeptides that contained sLex but lacked tyrosine sulfation or a specific core-2 orientation of sLex on the O-glycan. A. phagocytophilum bound only to glycopeptides that contained a short amino acid sequence found in the N-terminal region of human but not murine PSGL-1. Unlike P-selectin, A. phagocytophilum bound to cells expressing PSGL-1 in cooperation with sLex on both N-and O-glycans. Moreover, bacteria bound to microspheres coupled independently with glycopeptide lacking sLex and with sLex lacking peptide. These results demonstrate that, unlike P-selectin, A. phagocytophilum binds cooperatively to a nonsulfated N-terminal peptide in human PSGL-1 and to sLex expressed on PSGL-1 or other glycoproteins. Distinct bacterial adhesins may mediate these cooperative interactions.  相似文献   

2.
Anaplasma phagocytophilum is an obligate intracellular bacterium that infects neutrophils to cause granulocytic anaplasmosis in humans and mammals. P-selectin glycoprotein ligand-1 (PSGL-1) and the tetrasaccharide sialyl Lewis x (sLex), which caps the PSGL-1 N-terminus, are confirmed A. phagocytophilum receptors. A. phagocytophilum is capable of sLex-modified PSGL-1-dependent and -independent infection. PSGL-1 N-terminus-mediated entry is dependent on spleen tyrosine kinase (Syk). Here, we determined that PSGL-1-independent entry does not alter bacterial replication and investigated whether it involves Syk using NCH-1A2, an enriched subpopulation of A. phagocytophilum NCH-1 obtained through cultivation in a sLex-deficient HL-60 cell line, HL-60 A2. Pharmacological inhibition of Syk nearly abolishes NCH-1 infection, but does not alter NCH-1A2 invasion and only marginally reduces NCH-1A2 propagation. This phenomenon was confirmed by a competitive infection assay using PSGL-1-dependent and -independent A. phagocytophilum organisms transformed to express mCherry or green fluorescent protein respectively. We also assayed for delivery and tyrosine phosphorylation of the A. phagocytophilum effector, AnkA, following NCH-1or NCH-1A2 incubation with HL-60 or HL-60 A2 cells in the presence of PSGL-1 blocking antibody. PSGL-1 N-terminus recognition promotes optimal AnkA delivery while binding to sLex or the unknown receptor is comparably less important for this process.  相似文献   

3.
P-selectin glycoprotein ligand-1 (PSGL-1) is a large (240 kDa) glycoprotein found on the surface of nearly all leukocytes. The mature molecule is decorated with multiple N- and O-linked glycans and displays copies of the tetrasaccharide sialyl-Lewis(x) (sLe(X)), as well as a cluster of three tyrosine sulfate (tyr-SO(3)) groups near the N-terminus of the processed protein. Previous studies have suggested that PSGL-1 needs to be tyrosine-sulfated, in addition to glycosylated with sLe(X), to successfully interact with P-selectin. To better understand how biochemical features of the PSGL-1 ligand are related to its adhesion phenotype, we have measured the dynamics of adhesion under flow of a series of well-defined PSGL-1 variants that differ in their biochemical modification, to both P- and E-selectin-coated substrates. These variants are distinct PSGL-1 peptides: one that possesses sLe(X) in conjunction with three N-terminal tyr-SO(3) groups (SGP3), one that possesses sLe(X) without tyrosine sulfation (GP1), and one that lacks sLe(X) but has three N-terminal tyr-SO(3) groups (SP3). Although all peptides expressing sLe(X), tyr-SO(3), or both supported some form of rolling adhesion on P-selectin, only peptides expressing sLe(X) groups showed rolling adhesion on E-selectin. On P-selectin, the PSGL-1 peptides demonstrated a decreasing strength of adhesion in the following order: SGP3 > GP1 > SP3. Robust, rolling adhesion on P-selectin was mediated by the GP1 peptide, despite its lack of tyrosine sulfation. However, the addition of tyrosine sulfation to glycosylated peptides (SGP3) creates a super ligand for P-selectin that supports slower rolling adhesion at all shear rates and supports rolling adhesion at much higher shear rates. Tyrosine sulfation has no similar effect on PSGL-1 rolling on E-selectin. Such functional distinctions in rolling dynamics are uniquely realized with a cell-free system, which permits precise, unambiguous identification of the functional activity of adhesive ligands. These findings are consistent with structural and functional characterizations of the interactions between these peptides and E- and P-selectin published recently.  相似文献   

4.
Selectin-mediated cell adhesion is an essential component of the inflammatory response. In an attempt to unambiguously identify molecular features of ligands that are necessary to support rolling adhesion on P-selectin, we have used a reconstituted ("cell-free") system in which ligand-coated beads are perfused over soluble P-selectin surfaces. We find that beads coated with the saccharides sialyl Lewis(x) (sLe(x)), sialyl Lewis(a) (sLe(a)), and sulfated Lewis(x) (HSO(3)Le(x) support rolling adhesion on P-selectin surfaces. Although it has been suggested that glycosylation and sulfation of P-selectin glycoprotein ligand-1 (PSGL-1) is required for high-affinity binding and rolling on P-selectin, our findings indicate that sulfation of N-terminal tyrosine residues is not required for binding or rolling. However, beads coated with a tyrosine-sulfated, sLe(x)-modified, PSGL-1-Fc chimera support slower rolling on P-selectin than beads coated with sLe(x) alone, suggesting that sulfation improves rolling adhesion by modulating binding to P-selectin. In addition, we find it is not necessary that P-selectin carbohydrate ligands be multivalent for robust rolling to occur. Our results demonstrate that beads coated with monovalent sLe(x), exhibiting a more sparse distribution of carbohydrate than a similar amount of the multivalent form, are sufficient to yield rolling adhesion. The relative abilities of various ligands to support rolling on P-selectin are quantitatively examined among themselves and in comparison to human neutrophils. Using stop-time distributions, rolling dynamics at video frame rate resolution, and the average and variance of the rolling velocity, we find that P-selectin ligands display the following quantitative trend, in order of decreasing ability to support rolling adhesion on P-selectin: PSGL-1-Fc > sLe(a) approximately sLe(x) > HSO(3)Le(x).  相似文献   

5.
Staphylococcus aureus is a major pathogen that produces a family of 14 staphylococcal superantigen-like (SSL) proteins, which are structurally similar to superantigens but do not stimulate T cells. SSL11 is one member of the family that is found in all staphylococcal strains. Recombinant SSL11 bound to granulocytes and monocytes through a sialic acid-dependent mechanism and was rapidly internalized. SSL11 also bound to sialic acid-containing glycoproteins, such as the Fc receptor for IgA (FcalphaRI) and P-selectin glycoprotein ligand-1 (PSGL-1), and inhibited neutrophil attachment to a P-selectin-coated surface. Biosensor analysis of two SSL11 alleles binding to sialyl Lewis X [sLe(x)- Neu5Acalpha2-3Galbeta1-4(Fuc1-3)GlcNAc] coupled to bovine serum albumin gave dissociation constants of 0.7 and 7 mum respectively. Binding of SSL11 to a glycan array revealed specificity for glycans containing the trisaccharide sialyllactosamine (sLacNac - Neu5Acalpha2-3Galbeta1-4GlcNAc). A 1.6 A resolution crystal structure of SSL11 complexed with sLe(x) revealed a discrete binding site in the C-terminal beta-grasp domain, with predominant interactions with the sialic acid and galactose residues. A single amino acid mutation in the carbohydrate binding site abolished all SSL11 binding. Thus, SSL11 is a staphylococcal protein that targets myeloid cells by binding sialyllactosamine-containing glycoproteins.  相似文献   

6.
《The Journal of cell biology》1993,120(5):1227-1235
The selectins are a family of three calcium-dependent lectins that mediate adhesive interactions between leukocytes and the endothelium during normal and abnormal inflammatory episodes. Previous work has implicated the carbohydrate sialyl Lewis(x) (sLe(x); sialic acid alpha 2-3 galactose beta 1-4 [Fucose alpha 1-3] N-acetyl glucosamine) as a component of the ligand recognized by E- and P-selectin. In the case of P-selectin, other components of the cell surface, including 2'6-linked sialic acid and sulfatide (galactose-4-sulfate ceramide), have also been proposed for adhesion mediated by this selectin. We have recently defined a region of the E-selectin lectin domain that appears to be directly involved with carbohydrate recognition and cell adhesion (Erbe, D. V., B. A. Wolitzky, L. G. Presta, C. R. Norton, R. J. Ramos, D. K. Burns, R. M. Rumberger, B. N. N. Rao, C. Foxall, B. K. Brandley, and L. A. Lasky. 1992. J. Cell Biol. 119:215-227). Here we describe a similar analysis of the P-selectin lectin domain which demonstrates that a homologous region of this glycoprotein's lectin motif is involved with carbohydrate recognition and cell binding. In addition, we present evidence that is inconsistent with a biological role for either 2'6-linked sialic acid or sulfatide in P-selectin-mediated adhesion. These results suggest that a common region of the E- and P- selectin lectin domains appears to mediate carbohydrate recognition and cell adhesion.  相似文献   

7.
P-selectin glycoprotein ligand-1 (PSGL-1) is a mucin on leukocytes that binds to selectins. P-selectin binds to an N-terminal region of PSGL-1 that requires sulfation of at least one of three clustered tyrosines (TyrSO(3)) and an adjacent core-2-based O-glycan expressing sialyl Lewis x (C2-O-sLe(x)). We synthesized glycosulfopeptides (GSPs) modeled after this region of PSGL-1 to explore the roles of individual TyrSO(3) residues, the placement of C2-O-sLe(x) relative to TyrSO(3), the relative contributions of fucose and sialic acid on C2-O-sLe(x), and the function of the peptide sequence for binding to P-selectin. Binding of GSPs to P-selectin was measured by affinity chromatography and equilibrium gel filtration. 2-GSP-6, which has C2-O-sLe(x) at Thr-57 and TyrSO(3) at residues 46, 48, and 51, bound to P-selectin with high affinity (K(d) approximately 650 nm), whereas an isomeric trisulfated GSP containing C2-O-sLe(x) at Thr-44 bound much less well. Non-sulfated glycopeptide (2-GP-6) containing C2-O-sLe(x) at Thr-57 bound to P-selectin with approximately 40-fold lower affinity (K(d) approximately 25 microm). Proteolysis of 2-GP-6 abolished detectable binding of the residual C2-O-sLe(x)-Thr to P-selectin, demonstrating that the peptide backbone contributes to binding. Monosulfated and disulfated GSPs bound significantly better than non-sulfated 2-GP-6, but sulfation of Tyr-48 enhanced affinity (K(d) approximately 6 microm) more than sulfation of Tyr-46 or Tyr-51. 2-GSP-6 lacking sialic acid bound to P-selectin at approximately 10% that of the level of the parent 2-GSP-6, whereas 2-GSP-6 lacking fucose did not detectably bind; thus, fucose contributes more than sialic acid to binding. Reducing NaCl from 150 to 50 mm markedly enhanced binding of 2-GSP-6 to P-selectin (K(d) approximately 75 nm), demonstrating the charge dependence of the interaction. These results reveal a stereospecific interaction of P-selectin with PSGL-1 that includes distinct contributions of each of the three TyrSO(3) residues, adjacent peptide determinants, and fucose/sialic acid on an optimally positioned core-2 O-glycan.  相似文献   

8.
Soluble oligosaccharide mimetics of natural selectin ligands act as competitive inhibitors of leukocyte adhesion in models of inflammation. We quantified the binding of simple oligosaccharides based on sialyl Lewis-X (sLe(X)) and complex molecules with the core-2 structure to L- and P-selectin, under both static and fluid flow conditions. Isolated human neutrophils were employed to mimic the physiological valency of selectins and selectin ligands. Surface plasmon resonance studies quantified binding kinetics. We observed the following: (i) The functional group at the anomeric position of carbohydrates plays an important role during selectin recognition, since sLe(X) and sialyl Lewis-a (sLe(a)) were approximately 5-7-fold poorer inhibitors of L-selectin mediated cell adhesion compared to their methyl glycosides. (ii) Despite their homology to physiological glycans, the putative carbohydrate epitopes of GlyCAM-1 and PSGL-1 bound selectins with low affinity comparable to that of sLe(X)-selectin interactions. Thus, besides the carbohydrate portion, the protein core of GlyCAM-1 or the presentation of carbohydrates in clusters on this glycoprotein may contribute to selectin recognition. (iii) A compound Galbeta1,4(Fucalpha1,3)GlcNAcbeta1,6(GalNAcbeta1,3)GalNAcalpha-OMe was identified which blocked L- and P-selectin binding at 30-100-fold lower doses than sLe(X). (iv) Surface plasmon resonance experiments determined that an sLe(X) analogue (TBC1269) competitively inhibited, via steric/allosteric mechanisms, the binding of two anti-P-selectin function blocking antibodies that recognized different epitopes of P-selectin. (v) TBC1269 bound P-selectin via both calcium-dependent and -independent mechanisms, with K(D) of approximately 111.4 microM. The measured on- and off-rates were high (k(off) > 3 s(-)(1), k(on) > 27,000 M(-)(1) s(-)(1)). Similar binding kinetics are expected for sLe(X)-selectin interactions. Taken together, our study provides new insight into the kinetics and mechanisms of carbohydrate interaction with selectins.  相似文献   

9.
P-selectin glycoprotein ligand-1 (PSGL-1) is a dimeric membrane mucin on leukocytes that binds selectins. The molecular features of PSGL-1 that determine this high affinity binding are unclear. Here we demonstrate the in vitro synthesis of a novel glycosulfopeptide (GSP-6) modeled after the extreme N terminus of PSGL-1, which has been predicted to be important for P-selectin binding. GSP-6 contains three tyrosine sulfate (TyrSO(3)) residues and a monosialylated, core 2-based O-glycan with a sialyl Lewis x (C2-O-sLe(x)) motif at a specific Thr residue. GSP-6 binds tightly to immobilized P-selectin, whereas glycopeptides lacking either TyrSO(3) or C2-O-sLe(x) do not detectably bind. Remarkably, an isomeric glycosulfopeptide to GSP-6, termed GSP-6', which contains sLe(x) on an extended core 1-based O-glycan, does not bind immobilized P-selectin. Equilibrium gel filtration analysis revealed that GSP-6 binds to soluble P-selectin with a K(d) of approximately 350 nM. GSP-6 (<5 microM) substantially inhibits neutrophil adhesion to P-selectin in vitro, whereas free sLe(x) (5 mM) only slightly inhibits adhesion. In contrast to the inherent heterogeneity of post-translational modifications of recombinant proteins, glycosulfopeptides permit the placement of sulfate groups and glycans of precise structure at defined positions on a polypeptide. This approach should expedite the probing of structure-function relationships in sulfated and glycosylated proteins, and may facilitate development of novel drugs to treat inflammatory diseases involving P-selectin-mediated leukocyte adhesion.  相似文献   

10.
P-selectin glycoprotein ligand-1 (PSGL-1) interactions with selectins regulate leukocyte migration in inflammatory lesions. In mice, selectin ligand activity regulating leukocyte recruitment and lymphocyte homing into lymph nodes results from the sum of unequal contributions of fucosyltransferase (FucT)-IV and FucT-VII, with FucT-VII playing a predominant role. Here we have examined the role of human FucT-IV and -VII in conferring L-selectin, P-selectin, and E-selectin binding activities to PSGL-1. Lewis x (Le(x)) carbohydrate was generated at the CHO(dhfr)(-) cell surface by FucT-IV expression, whereas sialyl Le(x) (sLe(x)) was synthesized by FucT-VII. Both human FucT-IV and -VII had the ability to generate carbohydrate ligands that support L-selectin-, P-selectin-, and E-selectin-dependent rolling on PSGL-1, with FucT-VII playing a major role. Cooperation was observed between FucT-IV and -VII in recruiting L-, P-, or E-selectin-expressing cells on PSGL-1 and in regulating cell rolling velocity and stability. Additional rolling adhesion assays were performed to assess the role of Thr-57-linked core-2 O-glycans in supporting L-selectin-, P-selectin-, and E-selectin-dependent rolling on PSGL-1. These studies confirmed that core-2 O-glycans attached to Thr-57 play a critical role in supporting L- and P-selectin-dependent rolling and revealed that additional binding sites support >75% of E-selectin-mediated rolling. The observations presented here indicate that human FucT-IV and -VII both contribute and cooperate in regulating L-selectin-, P-selectin-, and E-selectin-dependent rolling on PSGL-1, with FucT-VII playing a predominant role in conferring selectin binding activity to PSGL-1.  相似文献   

11.
The microaerophilic bacterium Helicobacter pylori is well established for its role in development of different gastric diseases. Bacterial adhesins and corresponding binding sites on the epithelial surface allow H. pylori to colonize the gastric tissue. In this investigation, the adhesion of H. pylori to dot blot arrays of natural glycoproteins and neoglycoproteins was studied. Adhesion was detected by overlay with fluorescence-labeled bacteria on immobilized (neo)glycoproteins. The results confirmed the interaction between the adhesin BabA and the H-1-, Lewis b-, and related fucose-containing antigens. In addition, H. pylori bound to terminal alpha2-3-linked sialic acids as previously described. The use of a sabA mutant and sialidase treatment of glycoconjugate arrays showed that the adherence of H. pylori to laminin is mediated by the sialic acid-binding adhesin, SabA. The adhesion to salivary mucin MUC5B is mainly associated with the BabA adhesin and to a lesser extent with the SabA adhesin. This agrees with reports, that MUC5B carries both fucosylated blood group antigens and alpha2-3-linked sialic acids. The adhesion of H. pylori to fibronectin and lactoferrin persisted in the babA/sabA double mutant. Because binding to these molecules was abolished by denaturation rather than by deglycosylation, it was suggested to depend on the recognition of unknown receptor moieties by an additional unknown bacterial surface component. The results demonstrate that the bacterial overlay method on glycoconjugate arrays is a useful tool for exploration and the characterization of unknown adhesin specificities of H. pylori and other bacteria.  相似文献   

12.
To specifically eliminate recipient anti-blood group ABO antibodies prior to ABO-incompatible organ or bone marrow transplantation, an efficient absorber of ABO antibodies has been developed in which blood group determinants may be carried at high density and by different core saccharide chains on a mucin-type protein backbone. The absorber was made by transfecting different host cells with cDNAs encoding a P-selectin glycoprotein ligand-1/mouse immunoglobulin G(2b) chimera (PSGL-1/mIgG(2b)), the H- or Se-gene encoded alpha1,2-fucosyltransferases (FUT1 or FUT2) and the blood group A gene encoded alpha1,3 N-acetylgalactosaminyltransferase (alpha1,3 GalNAcT). Western blot analysis of affinity-purified recombinant PSGL-1/mIgG(2b) revealed that different precursor chains were produced in 293T, COS-7m6, and Chinese hamster ovary (CHO)-K1 host cells coexpressing FUT1 or FUT2. FUT1 directed expression of H type 2 structures mainly, whereas FUT2 preferentially made H type 3 structures. None of the host cells expressing either FUT1 or FUT2 supported expression of H type 1 structures. Furthermore, the highest A epitope density was on PSGL-1/mIgG2(2b) made in CHO-K1 cells coexpressing FUT2 and the alpha1,3 GalNAcT. This PSGL-1/mIgG(2b) was used for absorption of anti-blood group A antibodies in human blood group O serum. At least 80 times less A trisaccharides on PSGL-1/mIgG(2b) in comparison to A trisaccharides covalently linked to macroporous glass beads were needed for the same level of antibody absorption. In conclusion, PSGL-1/mIgG(2b), if substituted with A epitopes, was shown to be an efficient absorber of anti-blood group A antibodies and a suitable model protein for studies on protein glycosylation.  相似文献   

13.
Modification of cell surface oligosaccharides by reactive oxygen species (ROS) and the biological effect of such modifications on cell adhesion were investigated. Treatment of HL60, a human promyelocyte leukemia cell line, with ROS, generated by a combination of hypoxanthine and xanthine oxidase (HX/XO), decreased the sialic acid content on the cell surface, as indicated by a flow cytometric analysis involving sialic acid-specific lectins, and a concomitant increase of free sialic acid was observed in the supernatant. A cell adhesion assay showed that the HX/XO treatment of HL60 cells decreases their capability of binding to human umbilical vein endothelial cells (HUVEC), probably because of an impairment of the interaction involving E-selectin, whereas the decrease in the binding was canceled by the addition of superoxide dismutase (SOD) and catalase. In fact, cell surface sialyl lewis x (sLe x), but not lewis x (Le x), was decreased by HX/XO treatment. Thus, it is more likely that the impaired interaction is based on diminished levels of the selectin ligand. Cleavage of sialic acid by ROS was further verified by the degradation of 4MU-Neu5Ac by HX/XO in the presence of hydrogen peroxide and iron ion. These results indicate that glycosidic linkage of sialic acid is a potential target for superoxide and other related ROS. It is well known that ROS cause cellular damages such as lipid peroxidation and protein oxidation, but, as suggested by the findings reported in the literature, ROS may also regulate cell adhesion via the structural alteration of sialylated oligosaccharides on the cell surface.  相似文献   

14.
Monomeric sialyl Lewis(X) (sLe(x)) and sLe(x)-like oligosaccharides are minimal structures capable of supporting selectin binding in vitro. However, their weak binding interactions do not correlate with the high-affinity binding interactions witnessed in vivo. The polyvalent display of carbohydrate groups found on cell surface glycoprotein structures may contribute to the enhanced binding strength of selectin-mediated adhesion. Detailed biochemical analyses of physiological selectin ligands have revealed a complicated composition of molecules that bind to the selectins in vivo and suggest that there are other requirements for tight binding beyond simple carbohydrate multimerization. In an effort to mimic the high-affinity binding, polyvalent scaffolds that contain multicomponent displays of selectin-binding ligands have been synthesized. Here, we demonstrate that the presentation of additional anionic functional groups in the form of sulfate esters, on a polymerized liposome surface containing a multimeric array of sLe(x)-like oligosaccharides, generates a highly potent, bifunctional macromolecular assembly. This assembly inhibits L-, E-, and P-selectin binding to GlyCAM-1, a physiological ligand better than sLe(x)-like liposomes without additional anionic charge. These multivalent arrays are 4 orders of magnitude better than the monovalent carbohydrate. Liposomes displaying 3'-sulfo Lewis(X)-like oligosaccharides, on the other hand, show slight loss of binding with introduction of additional anionic functional groups for E- and P-selectin and negligible change for L-selectin. The ability to rapidly and systematically vary the composition of these assemblies is a distinguishing feature of this methodology and may be applied to the study of other systems where composite binding determinants are important for high-affinity binding.  相似文献   

15.
Anaplasma phagocytophilum 44-kDa major surface protein-2 (Msp2) mediates partial neutrophil adhesion and interactions. Since A. phagocytophilum 44-kDa monoclonal antibodies also react with 160- and 100-kDa bands, a putative adhesin complex was studied. After separate excision/immunoprecipitation of these three bands, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) resolved each into three bands again with increased 44-kDa protein under reducing conditions suggesting oligomerization of Msp2 44-kDa monomers. With 9 M urea, each separately excised band was resolved only into 44-kDa monomers with three different pIs. With protein cross-linking, immunoblots showed four additional bands and increased high molecular mass band intensity, suggesting homo- and hetero-polymerization with other A. phagocytophilum proteins. Recognition of Msp2 complexes facilitates understanding of A. phagocytophilum-neutrophil adhesion.  相似文献   

16.
Among influenza A viruses, subtype H3N2 is the major cause of human influenza morbidity and is associated with seasonal epidemics causing annually half million deaths worldwide. Influenza A virus infection is initiated via hemagglutinin that binds to terminally sialylated glycoconjugates exposed on the surface of target cells. Gangliosides from human granulocytes were probed using thin-layer chromatography overlay assays for their binding potential to H3N2 virus strains A/Victoria/3/75 and A/Hiroshima/52/2005. Highly polar gangliosides with poly-N-acetyllactosaminyl chains showing low chromatographic mobility exhibited strong virus adhesion which was entirely abolished by sialidase treatment. Auxiliary overlay assays using anti-sialyl Lewis(x) (sLe(x)) monoclonal antibodies showed identical binding patterns compared with those performed with the viruses. A comprehensive structural analysis of fractionated gangliosides by electrospray ionization quadrupole time-of-flight mass spectrometry revealed sLe(x) gangliosides with terminal Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAc epitope and extended neolacto (nLc)-series core structures as the preferential virus binding gangliosides. More precisely, sLe(x) gangliosides with nLc8, nLc10 and nLc12Cer cores, carrying sphingosine (d18:1) and a fatty acid with variable chain length (mostly C24:0, C24:1 or C16:0) in the ceramide moiety and one or two additional internal fucose residues in the oligosaccharide portion, were identified as the preferred receptors recognized by H3N2 virus strains A/Victoria/3/75 and A/Hiroshima/52/2005. This study describes glycan-binding requirements of hemagglutinin beyond binding to glycans with a specific sialic acid linkage of as yet undefined neutrophil receptors acting as ligands for H3N2 viruses. In addition, our results pose new questions on the biological and clinical relevance of this unexpected specificity of a subtype of influenza A viruses.  相似文献   

17.
Sialic acid binding is required for infectious cell surface receptor recognition by parvovirus minute virus of mice (MVM). We have utilized a glycan array consisting of approximately 180 different carbohydrate structures to identify the specific sialosides recognized by the prototype (MVMp) and immunosuppressive (MVMi) strains of MVM plus three virulent mutants of MVMp, MVMp-I362S, MVMp-K368R, and MVMp-I362S/K368R. All of the MVM capsids specifically bound to three structures with a terminal sialic acid-linked alpha2-3 to a common Galbeta1-4GlcNAc motif: Neu5Acalpha2-3Galbeta1-4GlcNAcbeta1-4Galbeta1-4GlcNAc (3'SiaLN-LN), Neu5Acalpha2-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc (3'SiaLN-LN-LN), and Neu5Acalpha2-3Galbeta1-4(Fucalpha1-3)-GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3)GlcNAc (sLe(x)-Le(x)-Le(x)). In addition, MVMi also recognized four multisialylated glycans with terminal alpha2-8 linkages: Neu5Acalpha2-8Neu5Acalpha2-8Neu5Acalpha ((Sia)(3)), Neu5Acalpha2-8Neu5Acalpha2-3Galbeta1-4Glc (GD3), Neu5Acalpha2-8Neu5Acalpha2-8Neu5Acalpha2-3Galbeta1-4Glc (GT3), and Neu5Acalpha2-8Neu5Acalpha2-3(GalNAcbeta1-4)Galbeta1-4Glc (GD2). Interestingly, the virulent MVMp-K368R mutant also recognized GT3. Analysis of the relative binding affinities using a surface plasmon resonance biospecific interaction (BIAcore) assay showed the wild-type MVMp and MVMi capsids binding with higher affinity to selected glycans compared with the virulent MVMp mutants. The reduced affinity of the virulent MVMp mutants are consistent with previous in vitro cell binding assays that had shown weaker binding to permissive cells compared with wild-type MVMp. This study identifies the sialic acid structures recognized by MVM. It also provides rationale for the tropism of MVM for malignant transformed cells that contain sLe(x) motifs and the neurotropism of MVMi, which is likely mediated via interactions with multisialylated glycans known to be tumor cell markers. Finally, the observations further implicate a decreased binding affinity for sialic acid in the in vivo adaptation of MVMp to a virulent phenotype.  相似文献   

18.
Adhesion of circulating leukocytes to the vascular endothelium during inflammation is mediated in part by their interaction with the endothelial-leukocyte adhesion molecule ELAM-1. ELAM-1, a member of the LEC-CAM family of cell adhesion molecules, expresses an N-terminal carbohydrate recognition domain (CRD) homologous to various calcium-dependent mammalian lectins. However, the contribution of the CRD to cell adhesion and its carbohydrate binding specificity have not been elucidated. This study demonstrates that transfection of a human fucosyltransferase cDNA into nonmyeloid cell lines confers ELAM-1--dependent endothelial adhesion. Binding activity correlates with de novo cell surface expression of the sialylated Lewis x tetrasaccharide, whose biosynthesis is determined by the transfected fucosyltransferase cDNA. We propose that specific alpha(1,3)fucosyltransferases regulate cell adhesion to ELAM-1 by modulating cell surface expression of one or more alpha(2,3)sialylated, alpha(1,3)fucosylated lactosaminoglycans represented by the sialyl Lewis x carbohydrate determinant.  相似文献   

19.
The normal PrP(C) (cellular prion protein) contains sLe(X) [sialyl-Le(X) (Lewis X)] and Le(X). sLe(X) is a ligand of selectins. To examine whether PrP(C) is a ligand of selectins, we generated three human PrP(C)-Ig fusion proteins: one with Le(X), one with sLe(X), and the other with neither Le(X) nor sLe(X). Only Le(X)-PrP(C)-Ig binds E-, L- and P-selectins. Binding is Ca(2+)-dependent and occurs with nanomolar affinity. Removal of sialic acid on sLe(X)-PrP(C)-Ig enables the fusion protein to bind all selectins. These findings were confirmed with brain-derived PrP(C). The selectins precipitated PrP(C) in human brain in a Ca(2+)-dependent manner. Treatment of brain homogenates with neuraminidase increased the amounts of PrP(C) precipitated. Therefore the presence of sialic acid prevents the binding of PrP(C) in human brain to selectins. Hence, human brain PrP(C) interacts with selectins in a manner that is distinct from interactions in peripheral tissues. Alternations in these interactions may have pathological consequences.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号