首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single cell cytotoxicity assays reveal that a large percentage of lymphocytes are unable to kill attached targets in a 4- to 18-hr assay. Additional signals (in the form of lectin or anti-target antibody) delivered to target-bound lymphocytes enable these previously non-lytic lymphocytes to kill attached target cells. This finding was obtained by using a modification of the single cell assay, in which lectin or target cell antibody is incorporated into agarose with preformed lymphocyte-target conjugates. Human peripheral blood lymphocytes (PBL) or Percoll density gradient-enriched large granular lymphocytes (LGL) were used as effector cells in natural killer (NK), antibody-dependent cellular cytotoxicity (LDCC) assay systems. The targets used were NK-sensitive K562 and Molt-4 and NK-insensitive Raji. Several findings were made in the modified single cell assay, namely a) the frequency of cytotoxic NK or ADCC effector cells was not augmented, suggesting that the initial trigger was sufficient for lytic expression in these instances. Furthermore, these results showed that the NK-sensitive targets used do not bind nonspecifically to the LDCC effector cells. K562 coated with Con A, however, serve as LDCC targets. b) The frequency of two target conjugate lysis by NK/K effectors was not augmented by Con A. These results suggest that Con A does not potentiate the killing of multiple targets bound to a single cytotoxic lymphocyte. c) Although conjugates formed between LGL or PBL and NK-insensitive Raji are non-lethal, significant lysis was observed when these conjugates were suspended in Con A or antibody agarose. These results demonstrate that Raji bind to cytotoxic NK, K, and LDCC effector cells, but are lysed only when the appropriate trigger is provided. d) The cytotoxic potential of non-lytic conjugates appears to lie within the low density Percoll fraction, although the high density lymphocytes are able to nonlethally bind to targets. Altogether the results demonstrate that target recognition and/or binding by the effector cells is a distinct event from the trigger or lytic process. The implications of these findings are discussed.  相似文献   

2.
Recent evidence has implicated natural killer cytotoxic factors (NKCF) as the lytic mediators of NK cell-mediated cytotoxicity reactions. The objective of this study was to examine and compare some of the biochemical and functional characteristics of human, rat, and murine NKCF. Supernatants containing NKCF were generated by stimulating effector cells with Con A or U937 (for human PBL) or YAC-1 (for rodent spleen cells) and tested for cytotoxic activity in a 20-hour (rodent) or 24-hour (human) 51Cr release assay. NKCF activity was inactivated by heating to 63 degrees C, 8 M urea, pH 2, and reduction and alkylation. These factors were highly sensitive to trypsin, moderately sensitive to papain and resistant to neuraminidase. Adsorption of human NKCF to U937 cells is inhibited by mannose-6-phosphate and adsorption of rodent NKCF to YAC-1 cells is inhibited by alpha-methyl-D-mannoside and fructose-6-phosphate. Oxidation of NKCF with sodium periodate abolished lytic activity. Pretreatment of NKCF with Con A but not pretreatment of target cells inhibited lytic activity. NKCF activity eluted in a single broad band of apparent MW of 15,000-40,000 after fractionation by HPLC gel permeating chromatography. Pooled fractions containing NKCF activity were subjected to some of the same tests performed on whole supernatants. Test result with semipurified NKCF confirmed that these factors are inactivated by trypsin or sodium periodate and that mannose-6-phosphate inhibits their binding to target cells. There were no major differences observed in NKCF produced by the three different species whether stimulated by Con A or NK-sensitive tumor cells. The evidence indicates that NKCF are glycoproteins in which disulfide bonding is essential for lytic activity. Furthermore, it appears that carbohydrate residues expressed on NKCF molecules are involved in the binding of these factors to the target cell membrane.  相似文献   

3.
Summary This study investigated the relation between the production of natural killer cytotoxic factors (NKCF) and the phenomenon of natural killing (NK) activity against target K562 cells. Two different models of defective NK cell activity were employed. In the first instance, cytotoxic activity of mononuclear cells (MN) derived from patients with hepatocellular carcinoma was compared to the ability of these cells to produce NKCF. Although direct cytotoxicity was considerably impaired in these patients, the ability of their MN to produce NKCF when stimulated with K562 cells was found to be normal. In the second model, MN treated with the lysosomotropic drug monensin showed considerably reduced direct cytotoxic activity, although they were capable of producing normal amounts of NKCF when activated by K562 cells. These results therefore indicate that there is no correlation between NK activity and corresponding NKCF release, and suggest that NKCF production and activity is independent of direct NK cytotoxic activity.  相似文献   

4.
Previous studies in our laboratory on the natural killer (NK) lytic mechanism demonstrated that following interaction of target cell with effector cell, the effector cell releases NK cytotoxic factors (NKCF) that can then bind to and lyse the target cell. This study investigates the mechanism by which the target cell signals the effector cell to release NKCF. Studies on other cell systems with secretory functions have indicated that receptor-induced transmembrane signaling leads to the metabolism of phosphatidylinositol and activation of protein kinase C (PKC) by increased cytosolic Ca++ and diacylglycerol (DAG). We tested the hypothesis that a similar sequence of activation events occurs in human NK cells by examining the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), and the calcium ionophores A23187 and ionomycin in their ability to induce release of NKCF. The amount of NKCF released was determined in a 20-hr 51Cr release assay against an NK-sensitive target cell. A23187, ionomycin, or TPA alone did not induce release of NKCF. However, ionophores (200 mM) in conjunction with TPA (20 ng/ml) induced release of NKCF. Several properties of the induced NKCF by TPA and ionophores were concordant with those of the NK cell-mediated cytotoxicity (CMC) reaction. The kinetics of release were faster (less than 1 hr) than when either Con A or target cells were used to stimulate NKCF. Only NK-sensitive target cells were killed by NKCF. Pretreatment of effector cells with interferon enhanced release of NKCF from effector cells. Several lines of evidence suggested that the pathway of activation takes place through phosphatidyl inositol metabolism. Activation of PKC was indicated because TPA and A23187 enhanced protein phosphorylation in the LGL-enriched fraction. Experiments that made use of oleoyl acetyl glycerol, a synthetic DAG, showed release of NKCF in the absence of A23187 but was augmented by the ionophore. The above studies suggest that NKCF is released from NK effector cells within a period of time consistent with NK CMC, and the release of NKCF results either directly or indirectly from protein phosphorylation by PKC.  相似文献   

5.
We have proposed that lysis of target cells by NK cells is mediated by NK cytotoxic factors (NKCF). According to our model, for a target cell to be NK-sensitive, it must be recognized by the NK cell, it must stimulate the release of NKCF, and it must be sensitive to lysis by these factors. This report examines whether the ability to stimulate release of NKCF is a characteristic restricted to NK-sensitive tumor cells or whether it is also a property of NK-resistant target cells. Many different types of cell lines were tested for their ability to stimulate release of NKCF in the human, rat, and murine systems. It was found that mycoplasma-free NK-sensitive cell lines, resistant cell lines, and Con A could stimulate the release of NKCF. Many different types of cell lines grown in suspension or in monolayers were found to be effective stimulators, including T or B lymphoid, myeloid, and those of histiocytic origin. Cells cultured in the absence of serum stimulated NKCF release, thus ruling out the possible involvement of serum components in stimulation. NKCF was also produced by xenogeneic combinations of effector and stimulator cells, demonstrating lack of species specificity in NKCF production. Factors stimulated by NK-resistant cell lines or by Con A exhibited the same NK target specificity as supernatants stimulated by NK-sensitive tumor cells. The finding that many different NK-resistant cell lines can stimulate the release of NKCF indicates that there is no apparent NK specificity at the level of induction of NKCF release from human, rat, or murine effector cells. Therefore, the NK specificity of a target cell is determined ultimately by its sensitivity to lysis by NKCF.  相似文献   

6.
We report herein that defective natural killer (NK) cell cytotoxicity, NK cytotoxic factor (NKCF) production and NK target binding ability of patients with chronic myelogenous leukemia (CML) are functionally restorable after short-term culture (less than 1 week) with recombinant interleukin-2 (rIL-2). We have previously reported that, despite normal to increased numbers of CD16+ large granular lymphocytes, fluorescence-activated-cell-sorted NK cells from CML patients are profoundly defective in NK cell activity and are unable to lyse the CML blast-crisis-derived, NK-sensitive target K562. Since we and others have also previously shown that the defective NK cytotoxicity from CML patients is restorable after 1-4 weeks of incubation with rIL-2, we therefore deemed it important to study the kinetics of IL-2-mediated NK restoration at earlier time intervals (less than 1 week). In the present report, we have demonstrated a significant restoration of NK cell cytotoxicity in CML patients against K562 after 5 days of short-term culture with rIL-2. In addition, recovery of NKCF production and restoration of target-binding capacity to normal levels by NK cells from CML patients were also observed after short-term (less than 1 week) rIL-2 treatment. Finally, we have demonstrated in the present report that adherent cells and peripheral-blood lymphoid cells from CML patients, as compared to normal controls, are unable to produce IL-1 beta and interferon-gamma, respectively, after stimulation with phorbol myristate acetate (IL-1 beta) and phytohemagglutinin-M (interferon-gamma).  相似文献   

7.
We have shown recently that alteration of the membrane fluidity of either effector or target cells results in significant and selective inhibition of NK cell-mediated cytotoxicity (NK CMC). However, the localization of the defective stage in the NK lytic pathway is not known. In the present study, we show that rigidification of the NK-sensitive U937 target cell membrane by lipid modulation reduces its sensitivity to lysis by NK cytotoxic factor (NKCF). This resistance was not due to loss of NKCF binding sites on the target cell because target cells with rigid membranes absorbed more NKCF than control cells. The enhanced ability to absorb NKCF by membrane modification was supported by data showing that NK-resistant Raji cells lacking NKCF-binding sites absorb NKCF after lipid modification. Furthermore, consistent with the lipophilic nature of NKCF, synthetic lipid vesicles absorb NKCF. In contrast to membrane rigidification, membrane fluidization of the target cell did not change the target cell properties. Rigidification of the NK effector cell membrane abrogates it ability to secrete active NKCF when stimulated by target cells or by mitogens. Membrane fluidization of the NK effector cells did not inhibit their ability to release NKCF. The results of these studies demonstrate that inhibition of NK CMC by rigidification of the target cell membrane results in cells that are inhibited in processing bound NKCF to lysis. Inhibition of NK CMC by rigidification of the NK effector cell results in defective trigger for activation of the NKCF release mechanism.  相似文献   

8.
Cord blood lymphocytes (CBL) were compared with adult peripheral blood lymphocytes (a-PBL) for their: (i) natural killer (NK) and antibody-dependent cellular cytotoxic (ADCC) activities, (ii) target-binding capacity, (iii) ability to induce soluble natural killer cytotoxic factor (NKCF), (iv) interferon (IFN)-, interleukin 2 (IL-2)-, and lectin-induced augmentation of NK activity, and (v) ability to produce IFN against tumor targets in vitro. CBL depleted of adherent cells and Percoll-separated, NK-enriched subpopulations demonstrated significantly lower NK, ADCC, and target-binding activities compared to a-PBL. CBL produced significantly lower levels of NKCF directed against K562 tumor targets in comparison with a-PBL. Although the NK activity of CBL was not stimulated by either IFN or IL-2 to the same levels shown by a-PBL, the percentage enhancement of cytotoxicity of CBL by IFN and IL-2 was greater than that of a-PBL. Lectin-induced enhancement of cytotoxicity was significantly greater for CBL in comparison with a-PBL. Further, the ability of CBL lymphocytes to produce IFN-gamma in vitro against K562 target cells was significantly lower than that of adult PBL. These studies suggest an association between decreased NK, ADCC, and target-binding activities, induction of NKCF and IFN production by CBL, and increased susceptibility of neonates to infection.  相似文献   

9.
Previous results that were obtained by using supernatants from the co-culture of human peripheral blood lymphocytes and the natural killer susceptible cell line K562 strongly inhibited the growth of various tumor cell lines. No correlation was observed between the susceptibility of the target cell lines to growth inhibition and to lysis by natural killer cells. Rather the spectrum of cytostatic activity and the characteristics of the soluble factor were similar to those of leukoregulin (LRG), a recently described lymphokine. Because of the recent availability of recombinant tumor necrosis factor (TNF) and lymphotoxin (LT), we compare the target selectivity and mechanism of action of these (TNF, LT, LRG) factors with natural killer cytotoxic factor (NKCF). The pattern of target cell susceptibility to growth inhibition or cytolysis by the factors were quite distinct from the pattern observed when cells were exposed to NKCF. Furthermore, antibodies to rLT or rTNF had no effect on LRG cytostasis or NKCF lysis, arguing against a requirement for or synergistic interaction with low levels of LT or TNF. Some of the targets susceptible to LRG were growth inhibited but were not lysed, thereby distinguishing it from NKCF. Furthermore, LRG cytostasis was not inhibited by mannose-6-PO4 or rabbit antibodies to granule cytolysin, both of which block natural killer cytotoxic factor. Therefore, LRG appears to be a cytostatic factor produced by large granular lymphocytes in response to K562 that is distinct from NKCF, TNF, and LT. In addition, NKCF, rLT, rTNF, and LRG, although having cytotoxic/cytostatic activity, are distinct functional factors and may represent a family of lytic factors.  相似文献   

10.
Peripheral blood from patients with acquired immunodeficiency syndrome (AIDS) or AIDS-related complex (ARC) exhibits poor NK activity in the 51Cr-release assay. The present studies were undertaken to investigate the mechanism underlying the observed defective NK cytotoxic activity. On the basis of our studies on the mechanism of natural killer cell-mediated cytotoxicity (NKCMC), a defective NK cell can result from lack or decreased frequency of effector cells, inability to recognize and bind the target cell, failure to be activated for the release of NK cytotoxic factors (NKCF), and/or failure to synthesize or secrete NKCF. Each of these various possibilities was examined. Single cell analysis revealed that the frequency of NK cells was comparable to controls, and although the NK cells bind to the NK-sensitive target, the bound target is not lysed. These results suggested that the defect in NK cells was not due to depletion of NK cells or to a defect in recognition structures, but that it was located at the postrecognition event. We previously demonstrated that after binding to target, the NK cell is stimulated to release NKCF in the supernatants and NKCF lyse specifically NK-sensitive targets. Accordingly, we investigated the activation of NK cells from AIDS and ARC patients for release of NKCF. After coculture with the stimulator cell, the patients' NK cells failed to release active NKCF in the supernatant. However, the cells released NKCF after stimulation with the lectin Con A or a mixture of TPA and ionophore, albeit to a lesser extent than controls. These results suggested that AIDS and ARC NK cells are defective in the trigger involved in release of NKCF. Further studies were done to investigate whether the immunomodulator IL 2 can restore the functional activity of the defective NK cells. Treatment with IL 2 resulted in augmented NK cytolytic activity, but did not reach control levels of activated cells from normal controls. Furthermore, the patients' IL 2-treated cells recover partially the ability to be stimulated by NK cells and to release NKCF. These results suggest that the trigger for NKCF production and the cytolytic function of the patients' NK cells are regulated by IL 2. By delineating the stage at which the AIDS and ARC NK cells are defective, it is now possible to monitor their recovery and to investigate the effect of various biologic response modifiers in restoring NK activity.  相似文献   

11.
mAb have been derived against NK cell-sensitive target cells in an effort to identify the target cell structure involved in Ag recognition by NK cells. Several mAb were selected for further study based on their preliminary target cell binding characteristics. Flow cytometry demonstrated that each of these mAb bound to a series of NK-sensitive target cells of various origins (e.g., K562 and Molt-4) while having little or no reactivity with several NK-resistant target cell lines (e.g., SB and Daudi). Functional studies revealed that two of the mAb were able to inhibit the lysis of NK-sensitive K562 target cells by freshly isolated, endogenous NK cells in a dose-dependent fashion. Further, these mAb also could inhibit the killing of K562 target cells by both activated NK cells and cultured lymphokine-activated killer cells, as well as the cytolysis of other NK-sensitive target cells by each of these effector cell populations. Control experiments with another mAb which bound to the target cells but did not inhibit lysis implied that the effects of these mAb on NK cell function was not the result of steric hindrance. Single cell conjugate assays demonstrated that the mAb inhibited NK cell lysis via the inhibition of binding (recognition). Biochemical analysis of this target cell structure revealed that it was a molecule of approximately 42 kDa which may exist as a homodimer in its native state. Thus, it appears that the mAbs identify an unique Ag on the surface of NK cell-sensitive target cells which is involved in NK cell Ag recognition.  相似文献   

12.
Various parameters of the cytolytic reaction mechanisms of the human natural killer (NK) lymphocyte were studied to characterize the lytic cycle. NK cytolysis was determined to occur in three definable steps. 1) Binding of PBL to the NK-sensitive targets Molt-4 or K562 was rapid (less than 1 min), occurred at temperatures below 37 degrees C, was Mg++3-dependent, Ca++3-independent, and was prevented by dispersion of the cells into 10% dextran. 2) Subsequent to binding, programming for lysis as determined by a Ca++ pulse method was more protracted, requiring up to 2 hr to occur and was strictly dependent on Ca++ for cytolysis to proceed. In standard cytotoxicity assays, however, programming for lysis was more rapid occurring in 10 to 30 min. Programming was inhibited by EDTA, EGTA/Mg++ and by temperatures below 37 degrees C. Furthermore, after binding but in the absence of initiation of programming for lysis, the frequency of target binding cells did not change and the NK cell did not lose its lytic potential. 3) Killer cell-independent cytolysis (KCIL) was determined by the addition of EDTA to "programmed" targets and dispersion of these cells into dextran-containing medium, which resulted in virtually 100% dissociation of conjugated cells. KCIL was Ca++ and Mg++-independent and was blocked at reduced temperatures only if the dextran was prechilled to 4 degrees C before addition. The kinetics of 51Cr release during KCIL was rapid and complete 30 min after dispersion. Interferon-activated NK cells expressed an increased rate of cytolysis in Ca++ pulse experiments. This was due to an increased rate of the Ca++-dependent step(s) during the programming events. The rate of the Ca++-independent steps, however, were similar with control and IFN-activated cells.  相似文献   

13.
In this study, we examined the functional status of human natural killer (NK) cells after their direct interaction with the NK-sensitive tumor target cell (TC), K562. Human peripheral blood lymphocytes depleted of adherent cells were incubated for 4 hr with unlabeled K562 cells at an effector cell (EC) to TC ratio of 2:1. After incubation, the EC were separated from the TC via centrifugation over a single-step Percoll gradient. K562-treated and separated EC were subsequently shown to be unable to lyse fresh K562 TC when retested in the standard chromium-release assay. Kinetic studies revealed that greater than 90% inactivation of NK cell-mediated cytotoxicity (CMC) could be achieved within 2 hr. Inactivation of NK-CMC by K562 was not caused by a specific loss of NK cells, as detected by changes in the expression of two NK cell-associated markers, Leu-7 and Leu-11, or to alterations in EC viability and target binding cell capacity. Interestingly, NK inactivation also occurred in medium devoid of extracellular calcium, although parallel testing of NK-CMC in the same medium resulted in no chromium release. NK inactivation, however, was significantly prevented when the EC and TC were co-incubated at 4 degrees C, or in medium without magnesium. Additional studies revealed that inactivation of NK-CMC could be achieved with another NK-sensitive, but not with an NK-resistant TC. Overall, we demonstrated that NK cells rapidly lost their lytic potential after direct interaction with a sensitive TC, although the cells remained viable, expressed the same percentage of Leu-7 and Leu-11, and could still bind the TC; and NK inactivation occurred in the absence of extracellular calcium, but not when EC and TC were incubated in medium without magnesium. These latter results provide evidence for an early event in the activation of human NK cells that is binding dependent, temperature sensitive, and independent of extracellular calcium.  相似文献   

14.
The present study was undertaken to evaluate the possible contribution of other cytokines to the lytic activity of NKCF-containing supernatants. We compared some of the functional properties of human NKCF and purified recombinant human rLT and rTNF. It was found that the target cell specificity of rLT was quite different from NKCF in that rLT was neither species specific nor NK specific. Furthermore, antibodies against rLT did not affect the lytic activity of NKCF. These results demonstrate that LT does not significantly contribute to the lytic activity mediated by NKCF. The target specificity of rTNF was found to be related to that of NKCF with the exception of one NK-resistant cell line that was lysed by rTNF in a 20-hr 51Cr-release assay. However, rTNF was not toxic to any of the target cells tested as assessed by trypan blue exclusion in a 20-hr assay unless the targets were labeled with 51Cr. In contrast, NKCF did kill target cells as detected by trypan blue exclusion that were not labeled with 51Cr. Further analysis of this mechanistic difference in the lytic activity of rTNF and NKCF revealed that rTNF in combination with either cycloheximide or mitomycin C but not IFN-gamma could lyse unlabeled U937 target cells. In addition, pretreatment of U937 target cells with nonradioactive Na2CrO4 at concentrations equivalent to that used to 51Cr-labeled cells resulted in their susceptibility to lysis by rTNF as assessed by trypan blue exclusion. These findings suggest that lysis of several susceptible target cells in 20 hr by rTNF requires the presence of additional agents that may be sublethally toxic and/or inhibitory to macromolecular synthesis. Antibody inhibition studies revealed that anti-TNF mediated from partial to complete inhibition of lysis of U937 by unfractionated supernatants containing NKCF. However, fractionation of such supernatants on chromatofocusing columns yielded two distinct peaks of activity eluting in the pH range of 5 to 6 and 7 to 8. Anti-TNF could inhibit the acidic form of NKCF but not the neutral form. It is concluded that NKCF activity is mediated in part by TNF or an antigenically related molecule as well as some other distinct factor(s). The lack of consistent inhibition of NK CMC by anti-TNF suggests that TNF alone is not sufficient to mediate NK activity, or else it is inaccessible to the added antibody.  相似文献   

15.
Human tumor cell lines were treated with interferon-gamma (IFN-gamma) and then used as target cells in NK assays to measure their ability to form conjugates and stimulate the production of NK cytotoxic factors (NKCF) and to determine their susceptibility to NKCF lysis. K562 and cell lines RS1, RS3, RS7, CAC, and CAP2, obtained from solid brain tumors, were used as targets, and peripheral blood lymphocytes (PBL) from normal donors were used as effector cells. IFN-gamma-treated cell lines had a decreased susceptibility to NKCF lysis and a decreased ability to induce the release of these factors without affecting target-effector cell binding. These results were not due to changes in HLA class I antigen expression, given that the level of HLA class I antigens on the tumor cell lines was not affected, the only exception being K562. In an attempt to further clarify the possible influence of HLA class I expression on K562, IFN-gamma-pretreated K562 cells were separated into HLA class I positive and HLA class I negative subsets for the NK assays. The results showed that both populations behaved similarly upon target-effector conjugate formation, whereas the HLA class I positive population showed a reduced susceptibility to lysis by NK cells and NKCF. Thus, these results establish that NK resistance induced by IFN-gamma is mediated by blocking the target cell's ability to activate NK cell triggering and release of NKCF and by blocking its susceptibility to lysis by these factors. This analysis helps to clarify not only the NK process but also the controversial regulatory effect of IFN in NK lysis.  相似文献   

16.
The mechanism by which interferon (IFN) pretreatment of effector cells augments natural killer (NK) cell-mediated cytotoxicity (CMC) was examined by determining whether IFN has any effect on the production of natural killer cytotoxic factors (NKCF). NKCF are released into the supernatant of co-cultures of murine spleen cells and YAC-1 stimulator cells, and their lytic activity is measured against YAC-1 target cells. It was demonstrated that pretreatment of effector cells with murine fibroblast IFN or polyinosinic-polycytidylic acid (pIC) resulted in the release of NKCF with augmented lytic activity. Evidence indicated that the IFN-induced augmentation of NKCF activity required protein synthesis during the IFN pretreatment period, because concurrent pretreatment with both IFN and cycloheximide abrogated the IFN effect. Protein synthesis, however, is not required for the production of base levels of NKCF because emetine pretreatment of normal spleen cells did not result in a decrease in NKCF production. Furthermore, substantial levels of NKCF activity could be detected in freeze-thaw lysates of freshly isolated spleen cells. Cell populations enriched for NK effector cells, such as nylon wool-nonadherent nude mouse spleen cells, produced lysates with high levels of NKCF activity, whereas lysates of CBA thymocytes were devoid of NKCF activity. Pretreatment of spleen cells with either IFN or pIC resulted in an augmentation of the NKCF activity present in their cell lysates. Taken altogether, these findings suggest that freshly isolated NK cells contain preformed pools of NKCF. Pretreatment of these cells with IFN causes de novo synthesis of additional NKCF and/or activation of preexisting NKCF. According to our model for the mechanism of NK CMC, target cell lysis is ultimately the result of transfer of NKCF from the effector cell to the target cell. The evidence presented here suggests that the IFN-induced augmentation of NK activity could be accounted for by an increase in the synthesis, activation, and/or release of NKCF.  相似文献   

17.
Supernatants from the coculture of peripheral blood lymphocytes and the NK-susceptible cell line K562 were highly growth inhibitory for a variety of tumor cell lines. No correlation was observed between the susceptibility of the target cell lines to growth inhibition and to lysis by NK cells. Rather, the spectrum of cytostatic activity and the characteristics of the soluble factor were similar to those of leukoregulin, a recently described lymphokine. The supernatants of tumor-lymphocyte cultures contained only low levels of IFN-alpha and IFN-gamma, and antibodies to interferons did not affect the observed growth inhibition. The pattern of target cell susceptibility to growth inhibition by this factor was also quite distinct from that seen with purified recombinant LT or TNF. Furthermore, monoclonal antibodies to these cytokines also had no effect on the cytostasis, arguing against a requirement for, or synergistic interaction with, low levels of these cytokines. Some of the targets susceptible to the factor were only growth inhibited but not lysed, thereby distinguishing it from NKCF. Furthermore, the cytostasis was not inhibited by mannose-6-PO4 or rabbit antibodies to granule cytolysin, both of which have been reported to block NKCF. Therefore, the results show that a cytostatic factor is released in tumor-lymphocyte incubation that is quite distinct from interferons, LT, and TNF but has characteristics that resemble those of leukoregulin.  相似文献   

18.
There is a large body of evidence that supports the notion that NK cells exert important immune surveillance functions in vivo, against a variety of virus-infected and neoplastic cells. However, certain targets are not susceptible to lysis by NK cells. The exact mechanism by which resistance or sensitivity is conferred on target cells is not known. We investigated whether the selectivity to NK lysis is a property of the membrane of the target cell. This was examined by the application of a recently developed method which is aimed at changing the membrane structure of the target cell by cell-liposome fusion. Our studies demonstrate that NK-resistant tumor cells acquired sensitivity to lysis by NK cells after fusion with reconstituted vesicles which contained membrane components derived from NK-sensitive target cells. The fusion required the presence of Sendai virus envelope glycoproteins and exogenous lipids (soybean lecithin and cholesterol) for maximal efficiency. This finding was demonstrated in both the human system (with U937 and Raji as NK-sensitive and -resistant cell lines, respectively) and the rat/murine system (with YAC-1 as NK-sensitive target and P815 and YAC-asc as NK-resistant targets). Both the 51Cr-release assay and the single cell assay showed lysis of the modified target cells in a 3-hr incubation period. The magnitude of the cytotoxic activity was found to depend on the concentration of reconstituted vesicles used in the fusion step. The effect seen was specific because target cells were not lysed when fused with vesicles which contained membrane constituents derived from either NK-resistant targets or NK-sensitive targets from another species (human vs mouse). The resistance of modified target cells to lysis by xenogeneic NK cells was not due to failure of membrane fusion, as detected by immunofluorescence, or to failure to form conjugates. These results demonstrate the feasibility of converting a resistant NK target to a sensitive target by cell-liposome fusion. Furthermore, the data indicate that susceptibility to lysis by NK cells is a property of the membrane composition of the target cell. The significance of these findings is discussed.  相似文献   

19.
Mechanism of cell contact-mediated inhibition of natural killer activity   总被引:1,自引:0,他引:1  
Natural killer cell activity is inhibited by primary cultures of monolayer cells. In this study, we analyzed the mechanism of the inhibition. Inhibited NK cells showed unaltered binding capacity to NK sensitive K562 cells. The orientation of the effector cells' actin-containing microfilaments, an event known to occur during the programming for the lysis stage in lytic conjugates, was unaffected by the inhibition. In single cell cytotoxicity experiments, the number of killer cells among conjugate-forming cells was reduced. The capacity of the inactivated NK cells to secrete cytotoxic factors upon stimulation with Con A was also impaired. Both NK-resistant inactivating target cells and NK-sensitive K562 cells were sensitive to the toxic factors secreted by NK cells. Thus, the results indicate that the target cell-mediated inactivation of NK cell is based on a block in the lethal hit stage, possibly due to reduced release of toxic factor(s) from the effector cells. The capacity of inactivated effector cells to mediate antibody-dependent cellular cytotoxicity was unimpaired, suggesting that the contact-mediated inhibition of cytotoxicity selectively affects NK cells.  相似文献   

20.
Supernatants obtained from lectin-restimulated, preactivated, human peripheral blood lymphocytes rapidly released (5–24 hr) high levels of lymphotoxin (LT) activity in vitro. Peripheral blood lymphocytes were preactivated by coculturing with either fetal calf serum or with allogeneic continuous B-cell lines (LCCL) which were treated with mitomycin C. These Supernatants contained a population of L-929 cell-lytic LT forms which also selectively bind to the NK-sensitive K-562 cell. However, lytic LT forms for L-929 cells from cPBL and LCCL cultures did not bind to the NK-sensitive MOLT-4 or NK-resistant Raji cells. Additional studies reveal these supernatants contain a second set of LT forms which have cell-binding and cell-lytic activity detectable on MOLT-4 and K-562 cells in a 12 to 18 hr 51Cr-release assay. Cell-lytic form(s) for the MOLT-4 and K-562 cells were not stable for more than a week at ?20°C. These findings indicate that materials with LT activity are heterogeneous with respect to their capacity to recognize common and discrete cell-surface components on different types of target cells in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号