首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of new multimeric erythropoietin receptor agonists   总被引:1,自引:0,他引:1  
Vadas O  Hartley O  Rose K 《Biopolymers》2008,90(4):496-502
In addition to its natural ligand, the receptor for erythropoietin can be activated by small peptides known as erythropoietin mimetic peptides (EMPs). Although EMPs are less potent than the natural ligand, EMP dimers, consisting of two EMPs joined via a linker, have been shown to exhibit significantly improved activity compared to the corresponding monomers, with potency approaching that of the native hormone. In this study, we used a panel of novel EMP dimers to explore the effects of linker length and EMP attachment site on potency. The EC50 values obtained in an EPO-dependent proliferation assay indicated that, as has been shown with similar molecules, EMP dimerization can lead to increases in potency of more than 2 orders of magnitude. We found that both C-terminal and N-terminal attachment of the linker to EMP was tolerated, and that, with the exception of the shortest linker, all of the linker lengths tested provided a similar increase in potency. In follow-up work devised to explore the potential benefit of contacting additional cell surface EPO receptors, we designed a tetrameric template consisting of lysine-based dimers joined via commercial PEG linkers of various molecular weights. Evaluation of the resulting molecules indicated a clear effect of PEG linker size on activity, while the "dimer of dimer" with the shortest linker exhibited 10-fold lower potency than the corresponding dimer, the longest tetramer increased potency by fivefold. We discuss the implications of these results for the further development of EMP multimers.  相似文献   

2.
Ferritin-conjugated specific antibodies have been used to localize beta-galactosidase and both the monomer and active dimer of alkaline phosphatase in frozen thin sections of cells of Escherichia coli O8 strain F515. The even distribution of the ferritin marker throughout cells that had been induced for beta-galactosidase synthesis, frozen, sectioned, and exposed to ferritin-anti-beta-galactosidase conjugate showed that this enzyme was present throughout the cytoplasm of these cells. Frozen thin sections of cells that had been derepressed for the synthesis of alkaline phosphatase were exposed to both ferritin-anti-alkaline phosphatase monomer and ferritin-anti-alkaline phosphatase dimer conjugates, and the ferritin markers showed a peripheral distribution of both the monomer and the dimer of this enzyme. This indicates that alkaline phosphatase is present only in the peripheral regions of the cell and argues against the existence of a cytoplasmic pool of inactive monomers of this enzyme. This peripheral location of both the monomers and dimers of alkaline phosphatase supports the developing concensus that this enzyme is, like other wall-associated enzymes, synthesized in association with the cytoplasmic membrane and vectorially transported to the periplasmic area, where it assumes its tertiary and quaternary structure and acquires its enzymatic activity.  相似文献   

3.
Chicken muscle triose phosphate isomerase was immobilised by attachment to Sepharose 4B. The immobilised dimeric enzyme was dissociated with guanidinium chloride to yield bound monomeric triose phosphate isomerase. This regained activity on removal of the denaturant, showing that isolated monomers possess activity; the apparent Km of the immobilished subunits was the same as that of the immobilised dimers. Under appropriate conditions, it was possible to rehybridise the immobilised monomers to native dimers, and also to form a hybrid dimer from the chicken muscle and rabbit muscle enzymes.  相似文献   

4.
Sedimentation equilibrium analysis demonstrated that preparations of bovine lipoprotein lipase contain a complex mixture of dimers and higher oligomers of enzyme protein. Enzyme activity profiles from sedimentation equilibrium as well as from gel filtration indicated that activity is associated almost exclusively with the dimer fraction. To explore if the enzyme could be dissociated into active monomers, 0.75 M guanidinium chloride was used. Sedimentation velocity measurements demonstrated that this treatment led to dissociation of the lipase protein into monomers. Concomitant with dissociation, there was an irreversible loss of catalytic activity and a moderate change in secondary structure as detected by circular dichroism. The rate of inactivation increased with decreasing concentrations of active lipase, but addition of inactive lipase protein did not slow down the inactivation. This indicates that reversible interactions between active species precede the irreversible loss of activity. The implication is that dissociation initially leads to a monomer form which is in reversible equilibrium with the active dimer, but which decays rapidly into an inactive form, and is therefore not detected as a stable component in the system.  相似文献   

5.
Cysteine-to-serine mutations were constructed to test the functional and structural significance of the three non-extracellular cysteine residues in ecto-nucleoside-triphosphate diphosphohydrolase 3 (eNTPDase3). None of these cysteines were found to be essential for enzyme activity. However, Cys(10), located on the short N-terminal cytoplasmic tail, was found to be responsible for dimer formation occurring via oxidation during membrane preparation as well as for dimer cross-linking resulting from exogenously added sulfhydryl-specific cross-linking agents. The resistance to further cross-linking of these dimers into higher order oligomers by lysine-specific cross-linkers suggests that this enzyme may form its native tetrameric structure as a "dimer of dimers" with nonequivalent interactions between subunits. Cys(501), located in the hydrophobic C-terminal membrane-spanning domain of eNTPDase3, was found to be the site of chemical modification by a sulfhydryl-specific reagent, p-chloromercuriphenylsulfonic acid (pCMPS), leading to inhibition of enzyme activity. The effect of pCMPS was negligible after dissociation of the enzyme into monomers by Triton X-100, suggesting that the mechanism of inhibition is dependent on the oligomeric structure. Because Cys(501) is accessible for modification by the membrane-impermeant reagent pCMPS, we hypothesize that eNTPDase3 (and possibly other eNTPDases) contains a water-filled crevice allowing access of water and hydrophilic compounds to at least part of the protein's C-terminal membrane-spanning helix.  相似文献   

6.
The binding ability of cross-linked thiazolated polyamides (containing the base sequence-reading elements thiazole(Th)-pyrrole(Py)-pyr-role(Py) and thiazole(Th)-imidazole(Im)-pyrrol(Py) to various DNA dodecamers has been investigated. CD titration experiments at high salt concentration demonstrate that the dimers with a heptanediyl linker (C7 dimer) show a significantly higher sequence specificity than their corresponding monomers. The dimer of Th-Py-Py primarily prefers binding to pure AT sequences and that of Th-Im-Py to the dodecamer sequences containing a GC pair within the central sequence (e.g. AACGTT). Surprisingly, the sequence binding ability is strongly influenced by the presence of a T-A step: e.g. Th-Py-Py has a similar affinity to the sequences TTTAAA and ATCGTA; likewise Th-Im-Py shows a preference for these sequences. The CD results correlate with footprinting data. Related biochemical studies on the effect of polyamides on DNA gyrase activity in vitro show that the C7 dimers most effectively inhibit the enzyme activity compared with the monomers and the natural reference minor groove binder distamycin. The highest inhibitory potency is observed for the Th-Py-Py-dimer. The role of the T-A step in binding of the cross-linked dimer to the minor groove is discussed in light of the sequence recognition of the TATA box binding protein.  相似文献   

7.
Unlike their bacterial and mammalian counterparts, the NADP(H)- and NAD(H)-binding components of proton-translocating transhydrogenase from the protozoan parasite Entamoeba histolytica (denoted ehdIII and ehdI, respectively) are tethered by a polypeptide linker. The recombinant tethered fragment, ehdIII-ehdI, was prepared without its membrane-spanning dII component. Dimers of ehdIII-ehdI catalyzed transhydrogenation, but monomers were inactive. The addition of ehdIII to ehdIII-ehdI monomers did not lead to an increase in the rate of transhydrogenation, showing that this inactivity is not the result of an unfavorable topology introduced by the linker. The addition of a bacterial dI to ehdIII-ehdI led to an increase in the rate of transhydrogenation, showing that the linker is flexible. A hybrid protein in which ehdIII is tethered to the bacterial dI (denoted ehdIII-rrdI) more readily formed active dimers. Data from small angle x-ray scattering by the hybrid dimers were fitted to models derived from the high-resolution crystal structure of the bacterial dI(2)dIII(1) complex (Cotton, N. P. J., White, S. A., Peake, S. J., McSweeney, S., and Jackson, J. B. (2001) Structure 9, 165-T176). The results show that the ehdIII-rrdI dimer is asymmetric; one dIII associates with dI, as in the bacterial complex, but the other is displaced. The results provide evidence for the alternating site, binding change model for proton translocation by intact transhydrogenase.  相似文献   

8.
Cytoplasmic serine hydroxymethyltransferase (cSHMT) is a tetrameric, pyridoxal phosphate (PLP)-dependent enzyme that catalyzes the reversible interconversion of serine and tetrahydrofolate to glycine and methylenetetrahydrofolate. The enzyme has four active sites and is best described as a dimer of obligate dimers. Each monomeric subunit within the obligate dimer contributes catalytically important amino acid residues to both active sites. To investigate the interchange of subunits among cSHMT tetramers, a dominant-negative human cSHMT enzyme (DNcSHMT) was engineered by making three amino acid substitutions: K257Q, Y82A, and Y83F. Purified recombinant DNcSHMT protein was catalytically inactive and did not bind 5-formyltetrahydrofolate. Coexpression of the cSHMT and DNcSHMT proteins in bacteria resulted in the formation of heterotetramers with a cSHMT/DNcSHMT subunit ratio of 1. Characterization of the cSHMT/DNcSHMT heterotetramers indicates that DNcSHMT and cSHMT monomers randomly associate to form tetramers and that cSHMT/DNcSHMT obligate dimers are catalytically inactive. Incubation of recombinant cSHMT protein with recombinant DNcSHMT protein did not result in the formation of hetero-oligomers, indicating that cSHMT subunits do not exchange once the tetramer is assembled. However, removal of the active site PLP cofactor does permit exchange of obligate dimers among preformed cSHMT and DNcSHMT tetramers, and the formation of heterotetramers from cSHMT and DNcSHMT homodimers does not affect the activity of the cSHMT homodimers. The results of these studies demonstrate that PLP inhibits dimer exchange among cSHMT tetramers and suggests that cellular PLP concentrations may influence the stability of cSHMT protein in vivo.  相似文献   

9.
We recently reported that two artemisinin-derived dimers (dimer primary alcohol 606 and dimer sulfone 4-carbamate 832-4) are significantly more potent in inhibiting human cytomegalovirus (CMV) replication than artemisinin-derived monomers. In our continued evaluation of the activities of artemisinins in CMV inhibition, twelve artemisinin-derived dimers and five artemisinin-derived monomers were used. Dimers as a group were found to be potent inhibitors of CMV replication. Comparison of CMV inhibition and the slope parameter of dimers and monomers suggest that dimers are distinct in their anti-CMV activities. A deoxy dimer (574), lacking the endoperoxide bridge, did not have any effect on CMV replication, suggesting a role for the endoperoxide bridge in CMV inhibition. Differences in anti-CMV activity were observed among three structural analogs of dimer sulfone 4-carbamate 832-4 indicating that the exact placement and oxidation state of the sulfur atom may contribute to its anti-CMV activity. Of all tested dimers, artemisinin-derived diphenyl phosphate dimer 838 proved to be the most potent inhibitor of CMV replication, with a selectivity index of approximately 1500, compared to our previously reported dimer sulfone 4-carbamate 832-4 with a selectivity index of about 900. Diphenyl phosphate dimer 838 was highly active against a Ganciclovir-resistant CMV strain and was also the most active dimer in inhibition of cancer cell growth. Thus, diphenyl phosphate dimer 838 may represent a lead for development of a highly potent and safe anti-CMV compound.  相似文献   

10.
Hershey circles and linear tandem aggregated forms of DNA have been obtained in vitro and treated with polynucleotide ligase to form phosphodiester bond. Using zone centrifugation in glycerol gradient covalently closed circles and linear dimers have been purified and their biological activity investigated. It was found that closed circular molecules lost most, if not all, of their activity in CaCl2-dependent system. In order to investigate the biological activity of tandem dimer molecules, hybrid dimers consisting of DNA's from lambda C1857 and lambda 1434 have been obtained. In plaque assay with the appropriate non-permissive strains of E. coli the efficiency of infectivity of hybrid dimers was measured. Biological activity of dimer molecules sealed with ligase was about 5% of the activity of linear monomers. Ig has been suggested that tandem dimers of lambda DNA joined by phosphodiester bond are able to penetrate into the CaCl2-treated host cells and both components of dimers are active during subsequent multiplication.  相似文献   

11.
δ-Crystallin is the major structural protein in avian eye lenses and is homologous to the urea cycle enzyme argininosuccinate lyase. This protein is structurally assembled as double dimers. Lys-315 is the only residue which is arranged symmetrically at the diagonal subunit interfaces to interact with each other. This study found that wild-type protein had both dimers and monomers present in 2–4 M urea whilst only monomers of the K315A mutant were observed under the same conditions, as judged by sedimentation velocity analysis. The assembly of monomeric K315A mutant was reversible in contrast to wild-type protein. Molecular dynamics simulations showed that the dissociation of primary dimers is prior to the diagonal dimers in wild-type protein. These results suggest the critical role of Lys-315 in stabilization of the diagonal dimer structure. Guanidinium hydrochloride (GdmCl) denatured wild-type or K315A mutant protein did not fold into functional protein. However, the urea dissociated monomers of K315A mutant protein in GdmCl were reversible folding through a multiple steps mechanism as measured by tryptophan and ANS fluorescence. Two partly unfolded intermediates were detected in the pathway. Refolding of the intermediates resulted in a conformation with greater amounts of hydrophobic regions exposed which was prone to the formation of protein aggregates. The formation of aggregates was not prevented by the addition of α-crystallin. These results highlight that the conformational status of the monomers is critical for determining whether reversible oligomerization or aggregate formation occurs.  相似文献   

12.
The apparent target sizes of the basal and calmodulin-dependent activities of calmodulin-activated phosphodiesterase from bovine brain were estimated using target theory analysis of data from radiation inactivation experiments. Whether crude or highly purified samples were irradiated, the following results were obtained. Low doses of radiation caused a 10 to 15% increase in basal activity, which, with further irradiation, decayed with an apparent target size of approximately 60,000 daltons. Calmodulin-dependent activity decayed with an apparent target size of approximately 105,000 daltons. The percentage stimulation of enzyme activity by calmodulin decreased markedly as a function of radiation dosage. These observations are consistent with results predicted by computer-assisted modeling based on the assumptions that: 1) the calmodulin-activated phosphodiesterase exists as a mixture of monomers which are fully active in the absence of calmodulin and dimers which are inactive in the absence of calmodulin; 2) in the presence of calmodulin, a dimer exhibits activity equal to that of two monomers; 3) on radiations destruction of a dimer, an active monomer is generated. This monomer-dimer hypothesis provides a plausible explanation for and definition of basal and calmodulin-dependent phosphodiesterase activity.  相似文献   

13.
Cold-adaptation of enzymes involves improvements in catalytic efficiency. This paper describes studies on the conformational stability of a cold-active alkaline phosphatase (AP) from Atlantic cod, with the aim of understanding more clearly its structural stability in terms of subunit dissociation and unfolding of monomers. AP is a homodimeric enzyme that is only active in the dimeric state. Tryptophan fluorescence, size-exclusion chromatography and enzyme activity were used to monitor alterations in conformational state induced by guanidinium chloride or urea. In cod AP, a clear distinction could be made between dissociation of dimers into monomers and subsequent unfolding of monomers (fits a three-state model). In contrast, dimer dissociation of calf AP coincided with the monophasic unfolding curve observed by tryptophan fluorescence (fits a two-state model). The DeltaG for dimer dissociation of cod AP was 8.3 kcal.mol-1, and the monomer stabilization free energy was 2.2 kcal.mol-1, giving a total of 12.7 kcal.mol-1, whereas the total free energy of calf intestinal AP was 17.3 kcal.mol-1. Thus, dimer formation provided a major contribution to the overall stability of the cod enzyme. Phosphate, the reaction product, had the effect of promoting dimer dissociation and stabilizing the monomers. Cod AP has reduced affinity for inorganic phosphate, the release of which is the rate-limiting step of the reaction mechanism. More flexible links at the interface between the dimer subunits may ease structural rearrangements that facilitate more rapid release of phosphate, and thus catalytic turnover.  相似文献   

14.
Protein kinase CK2 (formerly called: casein kinase 2) is a heterotetrameric enzyme composed of two separate catalytic chains (CK2alpha) and a stable dimer of two non-catalytic subunits (CK2beta). CK2alpha is a highly conserved member of the superfamily of eukaryotic protein kinases. The crystal structure of a C-terminal deletion mutant of human CK2alpha was solved and refined to 2.5A resolution. In the crystal the CK2alpha mutant exists as a monomer in agreement with the organization of the subunits in the CK2 holoenzyme. The refined structure shows the helix alphaC and the activation segment, two main regions of conformational plasticity and regulatory importance in eukaryotic protein kinases, in active conformations stabilized by extensive contacts to the N-terminal segment. This arrangement is in accordance with the constitutive activity of the enzyme. By structural superimposition of human CK2alpha in isolated form and embedded in the human CK2 holoenzyme the loop connecting the strands beta4 and beta5 and the ATP-binding loop were identified as elements of structural variability. This structural comparison suggests that the ATP-binding loop may be the key region by which the non-catalytic CK2beta dimer modulates the activity of CK2alpha. The beta4/beta5 loop was found in a closed conformation in contrast to the open conformation observed for the CK2alpha subunits of the CK2 holoenzyme. CK2alpha monomers with this closed beta4/beta5 loop conformation are unable to bind CK2beta dimers in the common way for sterical reasons, suggesting a mechanism to protect CK2alpha from integration into CK2 holoenzyme complexes. This observation is consistent with the growing evidence that CK2alpha monomers and CK2beta dimers can exist in vivo independently from the CK2 holoenzyme and may possess physiological roles of their own.  相似文献   

15.
Amphotericin B (AmB) is a widely used antifungal antibiotic with high specificity for fungi. We previously synthesized several covalently conjugated AmB dimers to clarify the AmB channel structure. Among these dimers, that with an aminoalkyl linker was found to exhibit potent hemolytic activity. We continue this work by investigating the channel activity of the dimer, finding that all channels comprised of AmB dimers show rectification. The direction of the dimer channel in the membrane depended on the electric potential at which the dimer channel was formed. On the other hand, only about half the monomer channels showed rectification. In addition, these channels were easily switched from a rectified to a nonrectified state following voltage stimulation, indicating instability. We propose a model to describe the AmB channel structure that explains why AmB dimer channels necessarily show rectification.  相似文献   

16.
(1) Sucrose gradient centrifugation of cytochrome oxidase in the presence of Triton X-100 gave one slowly sedimenting green band. After cross-linking with dithiobis(succinimidylpropionate) (DSP), two green bands were observed, one sedimenting like the control and the other one more rapidly. Only the slowly sedimenting band was observed if the cross-linker was cleaved by dithiothreitol before centrifugation. (2) The rapidly sedimenting band in the Triton-containing sucrose gradient is probably the internally cross-linked dimer of cytochrome oxidase; the one sedimenting slowly is the monomeric enzyme. (3) Cross-linking with DSP after monomerization yields a small fraction of internally cross-linked dimers in addition to the internally cross-linked monomers. Under similar conditions, but using the shorter cross-linker disuccinimidyl tartarate (DST), no dimers are detected. (4) Both DSP and DST cross-link the dimeric enzyme so that it could no longer be monomerized by centrifugation in Triton, unless the cross-link is cleaved. (5) Polypeptide analysis using two-dimensional gel electrophoresis of cross-linked dimers and monomers suggest that subunit VIb is involved in intermonomeric cross-linking of dimeric enzyme by DSP.  相似文献   

17.
Catalases, although synthesized from single genes and built up from only one type of subunit, exist in heterogeneous form with respect to their conformations and association states in biological systems. This heterogeneity is not of genetic origin, but rather reflects the instability of this oligomeric heme enzyme. To understand better the factors that stabilize the various association states of catalase, we performed studies on the multimeric intermediates that are stabilized during guanidine-hydrochloride- and urea-induced unfolding of bovine liver catalase (BLC). For the first time, we have observed an enzymatically active, folded dimer of native BLC. This dimer has slightly higher enzymatic activity and altered structural properties compared to the native tetramer. Comparative studies of the effect of NaCl, GdmCl, and urea on BLC show that cation binding to negatively charged groups present in amino acid side chains of the enzyme leads to stabilization of an enzymatically active, folded dimer of BLC. Besides the folded dimer, an enzymatically active expanded tetramer and a partially unfolded, enzymatically inactive dimer of BLC were also observed. A complete recovery of native enzyme was observed on refolding of expanded tetramers and folded dimers; however, a very low recovery (maximum of approximately 5%) of native enzyme was observed on refolding of partially unfolded dimers and fully unfolded monomers.  相似文献   

18.
The ResT telomere resolvase is responsible for maintaining the hairpin telomeres that cap the linear chromosome and minichromosomes of Borrelia burgdorferi. This enzyme acts at the tandem telomere junctions present within circular dimers resulting from DNA replication. ResT mediates the transesterification steps of resolution using a constellation of active site residues similar to that found in tyrosine recombinases and type IB topoisomerases. By combining this reaction mechanism with a hairpin binding module in its N-terminal domain, ResT reduces a fused telomere dimer into two hairpin monomers. ResT displays a split DNA binding specificity, with the N- and C-terminal domains targeting distinct regions of the telomere. This bi-specificity in binding is likely to be important in protein delivery, substrate selection and regulation of enzyme activity.  相似文献   

19.
Phosphofructokinase (PFK) is a major regulatory glycolytic enzyme and is considered to be the pacemaker of glycolysis. This enzyme presents a puzzling regulatory mechanism that is modulated by a large variety of metabolites, drugs, and intracellular proteins. To date, the mammalian enzyme structure has not yet been resolved. However, it is known that PFK undergoes an intricate oligomerization process, shifting among monomers, dimers, tetramers, and more complex oligomeric structures. The equilibrium between PFK dimers and tetramers is directly correlated with the enzyme regulation, because the dimer exhibits very low catalytic activity, whereas the tetramer is fully active. Several PFK ligands modulate the enzyme, favoring the formation of its dimers or tetramers. The present review integrates recent findings regarding the regulatory aspects of muscle type PFK and discusses their relation to the control of metabolism.  相似文献   

20.
The crystal structure of dimeric D-amino acid transaminase shows that the two Trp-139 sites are located in a hydrophobic pocket at the interface between the subunits and that the two indole side chains face one another and are within 10 A of coenzyme. This enzyme prefers an aromatic character at position 139, as previously demonstrated by the finding that Phe-139 but no other substitution tested provides the maximum degree of thermostability and catalytic efficiency. Here we show that an equilibrium between active dimers and inactive monomers can be demonstrated with the W139F mutant enzyme, whereas with the wild-type enzyme the subunit interface is so tight that a study of this equilibrium is precluded. We show how the processes of dimerization of monomers and dissociation of dimers to monomers are controlled. Lower pH (5.0) favors monomer formation from dimers. Gel filtration and activity analysis show that at higher pH (7.0) the monomers combine to form active dimers with a K(d) of 0.17 microM. This assembly process is relatively slow and takes several hours for completion, thereby permitting accurate measurement of kinetics and equilibrium parameters. Absorption and circular dichroism spectra of dimers and monomers are significantly different, indicating that the environment around the cofactor is very likely altered between them. The circular dichroism peak of the W139F dimer at 418 nm is less negative than that of the wild-type enzyme in accordance with its lower visible absorbance; the circular dichroism peak of the W139F monomer at 418 nm is more negative than that of the wild-type enzyme. The dissociation of dimers to monomers has also been studied by taking advantage of these spectral differences, thus permitting the rates of the dissociation and the reassociation to be calculated and compared. 2-Mercaptoethanol assists in the conversion of monomers to dimers. The results here describe dissociation/reassociation in the dimeric enzyme under native conditions without denaturants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号