首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Microsporidia are obligate intracellular parasites that cause opportunistic infections in immunocompromised patients. The role of two main T cell subsets in anti-microsporidial immunity has been studied using an Encephalitozoon cuniculi-severe combined immunodeficient (SCID) mouse model. Whereas SCID mice reconstituted with CD4+ T lymphocyte-depleted naive BALB/c splenocytes resolved the infection, adoptive transfer of CD8+ T cell-depleted splenocytes failed to protect the animals against a lethal E. cuniculi infection. Splenocytes from E. cuniculi-immune mice specifically killed syngeneic infected macrophages in a short-term 51Cr-release assay. These results suggest the crucial role of cytotoxic T lymphocytes in the protection against E. cuniculi infection.  相似文献   

2.
The role of T lymphocyte subpopulations in the protection against intraperitoneal (i.p.) and peroral Encephalitozoon cuniculi infections was compared in adoptive-transfer experiments using severe combined immunodeficient mice. Whereas CD8+ T cell-depleted, but not CD4+ T cell-depleted, BALB/c splenocytes failed to protect the mice against i.p. infection, only SCID mice reconstituted with both CD4+ T lymphocyte- and CD8+ T lymphocyte-depleted splenocytes succumbed to peroral infection. The results indicate that whereas CD8+ T cells are critical for the protection against an i.p. E. cuniculi infection, both CD4+ and CD8+ T lymphocyte subpopulations play a substantive protective role in a peroral infection, i.e., natural route of infection.  相似文献   

3.
Successful immune reconstitution would enhance resistance of beige/scid mice to chronic infection with Mycobacterium avium subspecies paratuberculosis, but may cause damage to intestinal tissue. Therefore, we investigated the effect of adoptive transfer of BALB/c mouse splenocytes on lesion severity and intestinal physiology in beige/scid mice infected with M. paratuberculosis. Mice were inoculated intraperitoneally (i.p.) with M. paratuberculosis, and two weeks later were inoculated i.p. with viable spleen cells from immune-competent BALB/c mice. Mice were necropsied 12 weeks after infection when engraftment of lymphocytes, clinical disease, pathologic lesions, and intestinal electrophysiologic parameters were evaluated. Lymphocytes were rare in control beige/scid mice not inoculated with spleen cells. In contrast, high numbers of CD4+, CD8+, and B220+ lymphocytes were detected in the spleen of all beige/scid mice (n = 24) inoculated with spleen cells, indicating that adoptive transfer resulted in successful engraftment of donor lymphocytes (immune reconstitution). Immune reconstitution of M. paratuberculosis-infected beige/ scid mice significantly reduced the severity of clinical disease and pathologic lesions, and numbers of bacteria in the liver. However, intestinal electrophysiologic parameters studied in vitro indicated that intestinal tissues from reconstituted beige/scid mice had reduced short-circuit current responses (due to reduced ion secretion) following electrical, glucose, and forskolin stimulation. These abnormal responses suggested that neural or epithelial cells in the intestine were damaged. We conclude that successful immune reconstitution of beige/scid mice enhance their resistance to M. paratuberculosis infection, but may cause pathophysiologic changes associated with intestinal inflammation.  相似文献   

4.
To evaluate vaccine efficacy in protecting against coxsackievirus A16 (CA16), which causes human hand, foot, and mouth disease (HFMD), we established the first neonatal mouse model. In this article, we report data concerning CA16-induced pathological changes, and we demonstrate that anti-CA16 antibody can protect mice against lethal challenge and that the neonatal mouse model could be used to evaluate vaccine efficacy. To establish a mouse model, a BJCA08/CA16 strain (at 260 50% lethal doses [LD50]) was isolated from a patient and used to intracerebrally (i.c.) inoculate neonatal mice. The infection resulted in wasting, hind-limb paralysis, and even death. Pathological examination and immunohistochemistry (IHC) staining indicated that BJCA08 had a strong tropism to muscle and caused severe necrosis in skeletal and cardiac muscles. We then found that BJCA08 pretreated with goat anti-G10/CA16 serum could significantly lose its lethal effect in neonatal mice. When the anti-G10 serum was intraperitoneally (i.p.) injected into the neonatal mice and, within 1 h, the same mice were intracerebrally inoculated with BJCA08, there was significant passive immunization protection. In a separate experiment, female mice were immunized with formaldehyde-inactivated G10/CA16 and BJCA08/CA16 and then allowed to mate 1 h after the first immunization. We found that there was significant protection against BJCA08 for neonatal mice born to the immunized dams. These data demonstrated that anti-CA16 antibody may block virus invasion and protect mice against lethal challenge, and that the neonatal mouse model was a viable tool for evaluating vaccine efficacy.  相似文献   

5.
In our ongoing efforts to develop a vaccine against Streptococcus suis infection, we tested the potential of S. suis enolase (SsEno), a recently described S. suis adhesin with fibronectin-binding activity, as a vaccine candidate in a mouse model of S. suis -induced septicemia and meningitis. Here, we show that SsEno is highly recognized by sera from convalescent pigs and is highly immunogenic in mice. Subcutaneous immunization of mice with SsEno elicited strong immunoglobulin G (IgG) antibody responses. All four IgG subclasses were induced, with IgG1, IgG2a and IgG2b representing the highest titers followed by IgG3. However, SsEno-vaccinated and nonvaccinated control groups showed similar mortality rates after challenge infection with the highly virulent S. suis strain 166'. Similar results were obtained upon passive immunization of mice with hyperimmunized rabbit IgG anti-SsEno. We also showed that anti-SsEno antibodies did not increase the ability of mouse phagocytes to kill S. suis in vitro . In conclusion, these data demonstrate that although recombinant SsEno formulated with Quil A triggers a strong antibody response, it does not confer effective protection against infection with S. suis serotype 2 in mice.  相似文献   

6.
M L Barkon  B L Haller    H W Virgin  th 《Journal of virology》1996,70(2):1109-1116
Reoviruses are encapsidated double-stranded RNA viruses that cause systemic disease in mice after peroral (p.o.) inoculation and primary replication in the intestine. In this study, we define components of the immune system involved in the clearing of reovirus from the proximal small intestine. The intestines of immunocompetent adult CB17, 129, and C57BL/6 mice were cleared of reovirus serotype 3 clone 9 (T3C9) within 7 days of p.o. inoculation. Antigen-specific lymphocytes were important for the clearance of intestinal infection, since severe combined immunodeficient (SCID) mice failed to clear T3C9 infection. To define specific immune components required for intestinal clearance, reovirus infection of mice with null mutations in the immunoglobulin M (IgM) transmembrane exon (MuMT; B cell and antibody deficient) or beta 2 microglobulin gene (beta 2-/-; CD8 deficient) was evaluated. beta 2-/- mice cleared reovirus infection with normal kinetics, while MuMT mice showed delayed clearance of T3C9 7 to 11 days after p.o. inoculation. Adoptive transfer of splenic lymphocytes from reovirus-immune CB17 mice inhibited growth of T3C9 in CB17 SCID mouse intestine 11 days after p.o. inoculation. The efficiency of viral clearance by adoptively transferred cells was significantly diminished by depletion of B cells prior to adoptive transfer. Results in SCID and MuMT mice demonstrate an important role for B cells or IgG in clearance of reovirus from the intestines. Polyclonal reovirus-immune rabbit serum, protein A-purified immune IgG, and murine monoclonal IgG2a antibody specific for reovirus outer capsid protein sigma 3 administered intraperitoneally all normalized clearance of reovirus from intestinal tissue in MuMT mice. This result demonstrates an IgA-independent role for IgG in the clearance of intestinal virus infection. Polyclonal reovirus-immune serum also significantly decreased reovirus titers in the intestines of SCID mice, demonstrating a T-cell-independent role for antibody in the clearance of intestinal reovirus infection. B cells and circulating IgG play an important role in the clearance of reovirus from intestines, suggesting that IgG may play a more prominent functional role at mucosal sites of primary viral replication than was previously supposed.  相似文献   

7.
Athymic nude mice injected intramuscularly with a street strain of rabies virus were not protected against rabies by postexposure administration of beta-propiolactone-inactivated rabies vaccine. In contrast, their normal littermates were completely protected from death by the same vaccination regimens. Nude mice did not produce IgG antibody as a result of the vaccine during the test period of 15 days, whereas normal littermates produced IgG antibody from day 5 after vaccination. However, passive immunization with antirabies hyperimmune mouse ascites showed that antibody was completely ineffective in protecting either nude mice or their normal littermates against rabies when given later than 2 days after infection. No significant difference in the induction of circulating interferon by the vaccination was noted in these mice. Passive transfer of immune spleen cells to nude mice immediately after infection resulted in 30 to 37.5% protection of the mice. Passively transferred spleen cells did not produce detectable amounts of neutralizing antibody in the recipient mice except on day 2 after the transfer, when a low level of antibody was detected. These observations demonstrate the essential role of T cells in the postexposure prophylaxis of rabies in mice. The mechanisms of the failure of postexposure vaccination in nude mice are discussed.  相似文献   

8.
We present here an extensive study of differential gene expression in the initiation, acute and chronic phases of murine autoimmune arthritis with the use of high-density oligonucleotide arrays interrogating the entire mouse genome. Arthritis was induced in severe combined immunodeficient mice by using adoptive transfer of lymphocytes from proteoglycan-immunized arthritic BALB/c mice. In this unique system only proteoglycan-specific lymphocytes are transferred from arthritic mice into syngeneic immunodeficient recipients that lack adaptive immunity but have intact innate immunity on an identical (BALB/c) genetic background.  相似文献   

9.
The susceptibility of congenitally immunodeficient mice to a nonencapsulated strain of Cryptococcus neoformans (strain M7) was evaluated. Gnotobiotic mice with defined congenital defects in innate immunity (beige) or cell-mediated immunity (athymic) or with combined defects in innate and cellular immunity (beige athymic) were i.v. challenged with C. neoformans M7. The nonencapsulated strain of C. neoformans produced a persistent low-grade infection in the brains of all immunodeficient and immunocompetent mice used in this study. Immunocompetent mice (nu/+;bg/+) and immunodeficient bg/bg mice readily cleared nonencapsulated cryptococci from their kidneys, liver, lungs, and spleen. In contrast to nu/+ mice, nu/nu mice had a reduced capacity to clear nonencapsulated cryptococci from their kidneys and liver after i.v. challenge. Both bg/bg-nu/nu and bg/bg-nu/+ mice developed a low-grade infection in their kidneys, liver, lungs, and spleen, which was maintained throughout the 21-day study. Persistent infections were not due to reversion to an encapsulated state. These data indicate that a capsule may not always be necessary for C. neoformans to survive, in vivo, in tissues of immunodeficient and immunocompetent mice.  相似文献   

10.
Gao  Ying  Li  Lan  Zheng  Yan  Zhang  Weihua  Niu  Ben  Li  Yu 《Molecular and cellular biochemistry》2022,477(8):2015-2024

Daratumumab (DAR) is novel human anti-CD38 IgG1, high-affinity human monoclonal antibody having broad-spectrum killing activity. The antibody is recommended to treat multiple myeloma. Recently Antibody-dependent cellular phagocytosis (ADCP) have been identified as the potential mechanism of DAR in addition to complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC). In the present study we evaluated the effect of Daratumumab on other effector cells of multiple myeloma. Luciferase+ MM.1R GFP cells were selected for the study. For immune-compromised multiple myeloma tumour xenograft mouse model we used severe combined immunodeficient beige (SCID-beige), NOD SCID gamma (NSG) and C57Bl/6j mice. Bioluminescence imaging was carried by injecting luciferin, and in vivo confocal microscopy was done for tracing bone marrow niches. Spleen and tumours were submitted to immunophenotypic analysis. MTT assay was done for cell proliferation studies. We established tumour xenograft mouse model. It was found that DAR showed significant anti-tumour effect in tumour xenograft multiple myeloma mice. We found that DAR showed anti-tumour activity via Fc–FcγR interaction with macrophages. DAR induced phenotypic activation of macrophages in mice and resulted in ADCP of cancerous cells via interacting Fc-FcγR in vitro. The study suggested that DAR exerted anti-tumour activity in multiple myeloma by interacting with Fc-FcγR.

  相似文献   

11.
Three distinct isolates of Candida albicans were used to establish systemic and oral infections in inbred mice that are genetically resistant or susceptible to tissue damage. Patterns of infection differed significantly between both yeasts and mouse strains. Systemic infection conferred significant protection against re-challenge with the homologous, but not the heterologous yeast; however, the protective effect was more evident in the tissue-susceptible CBA/CaH mice than in the resistant BALB/c strain. In contrast, oral infection induced protection against both homologous and heterologous oral challenge, although this was significant only in the CBA/CaH mice. CBA/CaH mice produced antibodies of both IgG1 and IgG2a subclasses, whereas BALB/c mice produced predominantly IgG1. Western blotting demonstrated considerable differences between epitopes recognised by serum antibodies from mice of both strains after immunisation with each of the three yeasts. Thus, different strains of yeast show considerable specificity in antibody responses elicited by either systemic or oral infection.  相似文献   

12.
BACKGROUND AND OBJECTIVES: Two serotypes of autonomously replicating parvoviruses infect laboratory mice. Genome regions coding for the nonstructural proteins of minute virus of mice [MVM] and mouse parvovirus [MPV] are almost identical, whereas capsid-coding sequences are divergent. We addressed these questions: Does humoral immunity confer protection from acute infection after challenge with homotypic or heterotypic parvovirus, and if it confers protection against acute MPV infection, does it also protect against persistent MPV infection? METHODS: Infant mice without maternal antibody or antibody to MVM or MPV and young adult mice given normal mouse serum or antibody to MVM or MPV were challenged with homotypic or heterotypic virus. In situ hybridization with target tissues was the indicator of infection. RESULTS: Humoral immunity failed to confer protection against acute heterotypic parvovirus infection. In passive transfer studies, MPV DNA was observed occasionally in lymph nodes, intestine, or the spleen of MPV-challenged mice given homotypic antibody and kept for 6 or 28 days. Variable proportions of mice given MPV antibody and homotypic challenge had viral DNA in lymphoid tissues 56 days after virus inoculation. CONCLUSION: A mouse or colony that has sustained infection with MVM or MPV is probably fully susceptible to infection with the heterotypic virus.  相似文献   

13.
We used a live attenuated murine cytomegalovirus (MCMV) mutant to analyze mechanisms of vaccination against acute and latent CMV infection. We selected MCMV mutant RV7 as a vaccine candidate since this virus grows well in tissue culture but is profoundly attenuated for growth in normal and severe combined immunodeficient (SCID) mice (V. J. Cavanaugh et al., J. Virol. 70:1365–1374, 1996). BALB/c mice were immunized twice (0 and 14 days) subcutaneously (s.c.) with tissue culture-passaged RV7 and then challenged with salivary gland-passaged wild-type MCMV (sgMCMV) intraperitoneally (i.p.) on day 28. RV7 vaccination protected mice against challenge with 105 PFU of sgMCMV, a dose that killed 100% of mock-vaccinated mice. RV7 vaccination reduced MCMV replication 100- to 500-fold in the spleen between 1 and 8 days after challenge. We used the capacity to control replication of MCMV in the spleen 4 days after challenge as a surrogate for protection. Protection was antigen specific and required both live RV7 and antigen-specific lymphocytes. Interestingly, RV7 was effective when administered s.c., i.p., perorally, intranasally, and intragastrically, demonstrating that attenuated CMV applied to mucosal surfaces can elicit protection against parenteral virus challenge. B cells and immunoglobulin G were not essential for RV7-induced immunity since B-cell-deficient mice were effectively vaccinated by RV7. CD8 T cells, but not CD4 T cells, were critical for RV7-induced protection. Depletion of CD8 T cells by passive transfer of monoclonal anti-CD8 (but not anti-CD4) antibody abrogated RV7-mediated protection, and RV7 vaccination was less efficient in CD8 T-cell-deficient mice with a targeted mutation in the β2-microglobulin gene. Although gamma interferon is important for innate resistance to MCMV, it was not essential for RV7 vaccination since gamma interferon receptor-deficient mice were protected by RV7 vaccination. Establishment of and/or reactivation from latency by sgMCMV was decreased by RV7 vaccination, as measured by diminished reactivation of MCMV from splenic explants. We found no evidence for establishment of splenic latency by RV7 after s.c. vaccination. We conclude that RV7 administered through both systemic and mucosal routes is an effective vaccine against MCMV infection. It may be possible to design human CMV vaccines with similar properties.  相似文献   

14.
One of the primary strategies for malaria vaccine development has been to design subunit vaccines that induce protective levels of antibodies against the circumsporozoite (CS) protein of malaria sporozoites. In the Plasmodium yoelii mouse model system such vaccines have been uniformly unsuccessful in protecting against sporozoite-induced malaria. To demonstrate that antibodies to P. yoelii CS protein could provide protection we established a passive transfer model. Passive transfer of Navy yoelii sporozoite 1 (NYS1), an IgG3 mAb against the P. yoelii CS protein, protected 100% of mice against challenge with 5000 P. yoelii sporozoites. Binding of NYS1 to sporozoites was inhibited by incubation with (QGPGAP)2, a synthetic peptide derived from the repeat region of the P. yoelii CS protein, indicating that the epitope on sporozoites recognized by this mAb was included within this peptide. The levels of antibodies to (QGPGAP)2 by ELISA, and to sporozoites by indirect fluorescent antibody test and CS precipitation reaction were similar in sera from mice that received NYS1 in passive transfer and were protected against challenge with 5000 sporozoites, and from mice that had been immunized with subunit vaccines containing (QGPGAP)2 but were not protected against challenge with 40-200 sporozoites. To determine if antibody avidity, not absolute concentration could explain the striking differences in protection, we established a thiocyanate elution assay. The results suggest that NYS1, the protective mAb, has a lower avidity for (QGPGAP)2 and for sporozoites than do the vaccine-induced antibodies. Although the results of the conventional antibody assays did not correlate with protection, sera from the protected animals inhibited sporozoite development in mouse hepatocyte cultures significantly more than did the sera from the unprotected, subunit vaccine-immunized animals, correlating with protection. The data clearly demonstrate that antibodies to the CS protein can protect against intense sporozoite infection. Improved understanding of the differences between protective mAb and nonprotective polyclonal antibodies will be important in the further development of malaria vaccines.  相似文献   

15.
Natural killer (NK) cells have been implicated in the recognition and killing of a variety of virus infected target cells in vitro, yet their role in vivo remains uncertain. In these experiments, the role of NK cells in the regulation of resistance to herpes simplex virus-1 (HSV-1) was studied. Adult C57BL/6 mice are resistant to HSV-1 (HFEM strain), but are rendered highly susceptible by treatment with cyclophosphamide 24 hr prior to infection. In this model, passive transfer of 10(8) normal spleen cells or 10(7) poly I:C-treated spleen cells provided protection for 72% of the recipients. Spleen cells from NK cell-deficient beige mice similarly treated failed to engender passive protection. The phenotype of the cells responsible for transferring protection was NK1.1+, and asialo GM1+. Transfer of NK cells resulted in marked reduction of HSV titers in the livers and brains of recipients. These experiments provide direct evidence for a role for NK cells in protection against development of fatal HSV infection in mice.  相似文献   

16.
Yersinia pestis is the etiologic agent of plague that has killed more than 200 million people throughout the recorded history of mankind. Antibiotics may provide little immediate relief to patients who have a high bacteremia or to patients infected with an antibiotic resistant strain of plague. Two virulent factors of Y. pestis are the capsid F1 protein and the low-calcium response (Lcr) V-protein or V-antigen that have been proven to be the targets for both active and passive immunization. There are mouse monoclonal antibodies (mAbs) against the F1- and V-antigens that can passively protect mice in a murine model of plague; however, there are no anti-Yersinia pestis monoclonal antibodies available for prophylactic or therapeutic treatment in humans. We identified one anti-F1-specific human mAb (m252) and two anti-V-specific human mAb (m253, m254) by panning a naïve phage-displayed Fab library against the F1- and V-antigens. The Fabs were converted to IgG1s and their binding and protective activities were evaluated. M252 bound weakly to peptides located at the F1 N-terminus where a protective mouse anti-F1 mAb also binds. M253 bound strongly to a V-antigen peptide indicating a linear epitope; m254 did not bind to any peptide from a panel of 53 peptides suggesting that its epitope may be conformational. M252 showed better protection than m253 and m254 against a Y, pestis challenge in a plague mouse model. A synergistic effect was observed when the three antibodies were combined. Incomplete to complete protection was achieved when m252 was given at different times post-challenge. These antibodies can be further studied to determine their potential as therapeutics or prophylactics in Y. pestis infection in humans.  相似文献   

17.
Secretory IgA is presumed to be the mediator of mucosal immunity based on many studies that show a correlation between protection and secretory IgA titers; however, a causal relationship has not yet been established. Classically, passive transfer of antibody has been used to demonstrate causality, but the passive transfer of local immunity with physiologically transported IgA has not been previously reported. In this study mice were injected intravenously with polymeric IgA (pIgA), monomeric IgA (mIgA), or IgG1 mAb specific for the H1 hemaglutinin of PR8 influenza virus. pIgA was shown to be specifically transported into nasal secretions relative to the mIg. The transported pIgA was functional, as evidenced by its ability to bind to virus in an ELISA assay and to protect nonimmune mice against intranasal infection with H1N1 but not H3N2 influenza virus. Intravenous injection of similar virus-neutralizing doses of anti-influenza IgG1 mAb did not protect against nasal viral challenge. IgA-mediated protection could be abrogated by the intranasal administration of antiserum against the alpha chain of IgA. These data demonstrate the passive transfer of local immunity by the i.v. administration of pIgA antibody and show that the IgA in secretions can protect against influenza virus infection. This general approach could provide a model for the evaluation of the role of local IgA in host defense against other pathogens.  相似文献   

18.
The role of innate, alpha/beta interferon (IFN-alpha/beta)-dependent protection versus specific antibody-mediated protection against vesicular stomatitis virus (VSV) was evaluated in IFN-alpha/beta receptor-deficient mice (IFN-alpha/beta R0/0 mice). VSV is a close relative to rabies virus that causes neurological disease in mice. In contrast to normal mice, IFN-alpha/beta R0/0 mice were highly susceptible to infection with VSV because of ubiquitous high viral replication. Adoptive transfer experiments showed that neutralizing antibodies against the glycoprotein of VSV (VSV-G) protected these mice efficiently against systemic infection and against peripheral subcutaneous infection but protected only to a limited degree against intranasal infection with VSV. In contrast, VSV-specific T cells or antibodies specific for the nucleoprotein of VSV (VSV-N) were unable to protect IFN-alpha/beta R0/0 mice against VSV. These results demonstrate that mice are extremely sensitive to VSV if IFN-alpha/beta is not functional and that under these conditions, neutralizing antibody responses mediate efficient protection, but apparently only against extraneuronal infection.  相似文献   

19.
We have previously shown that a plasmid (pE) encoding the Japanese encephalitis virus (JEV) envelope (E) protein conferred a high level of protection against a lethal viral challenge. In the present study, we used adoptive transfer experiments and gene knockout mice to demonstrate that the DNA-induced E-specific antibody alone can confer protection in the absence of cytotoxic T-lymphocyte (CTL) functions. Plasmid pE administered by either intramuscular or gene gun injection produced significant E-specific antibodies, helper T (Th)-cell proliferative responses, and CTL activities. Animals receiving suboptimal DNA vaccination produced low titers of anti-E antibodies and were only partially or not protected from viral challenge, indicating a strong correlation between anti-E antibodies and the protective capacity. This observation was confirmed by adoptive transfer experiments. Intravenous transfer of E-specific antisera but not crude or T-cell-enriched immune splenocytes to sublethally irradiated hosts conferred protection against a lethal JEV challenge. Furthermore, experiments with gene knockout mice showed that DNA vaccination did not induce anti-E titers and protective immunity in Igmu(-/-) and I-Abeta(-/-) mice, whereas in CD8alpha(-/-) mice the pE-induced antibody titers and protective rate were comparable to those produced in the wild-type mice. Taken together, these results demonstrate that the anti-E antibody is the most critical protective component in this JEV challenge model and that production of anti-E antibody by pE DNA vaccine is dependent on the presence of CD4(+) T cells but independent of CD8(+) T cells.  相似文献   

20.
Small-animal models are needed to test human immunodeficiency virus (HIV) vaccine efficacy following viral challenge. To this end, we examined HIV-1-specific immune responses following immunization of nonobese diabetic-severe combined immunodeficient mice that were repopulated with human peripheral blood lymphocytes (hu-PBL-NOD/SCID mice). Autologous dendritic cells (DC) were transduced ex vivo with replication-defective, helper virus-free, herpes simplex virus type 1 (HSV-1) amplicons that expressed HIV-1 gp120 and were then injected into the hu-PBL-NOD/SCID mice. This resulted in primary HIV-1-specific humoral and cellular immune responses. Serum samples from vaccinated animals contained human immunoglobulin G that reacted with HIV-1 Env proteins by enzyme-linked immunosorbent assay and neutralized the infectivity of HIV-1 LAI and ADA strains. T cells isolated from the mice responded to viral antigens by producing gamma interferon when analyzed by enzyme-linked immunospot assay. Importantly, exposure of the vaccinated animals to infectious HIV-1 demonstrated partial protection against infectious HIV-1 challenge. This was reflected by a reduction in HIV-1(ADA) and by protection of the engrafted human CD4(+) T lymphocytes against HIV-1(LAI)-induced cytotoxicity. These data demonstrate that transduction of DC by HSV amplicon vectors expressing HIV-1 gp120 induce virus-specific immune responses in hu-PBL-NOD/SCID mice. This mouse model may be a useful tool to evaluate human immune responses and protection against viral infection following vaccination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号