首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amino acid incorporation experiments show that epithelial cells from lactating mouse mammary glands and from collagen gel culture both synthesize and secrete four principal phosphocaseins (p45, p40, p27, and p23 kD). In both cases, however, the casein production is largely dominated by the p27 species. The average percentage distribution of the above casein species in medium from cultured epithelia is approximately 13%, 6%, 68%, and 14%, respectively; for milk the distribution is approximately 23%, 7%, 54%, and 16%. The predominance of the p27 species is not a consequence of extensive extracellular differential degradation of the secreted caseins since no significant casein degradation was observed in culture medium, either in contact or isolated from epithelial cell monolayers. Synthesis and secretion of all the caseins by cultured epithelia is dependent upon insulin, prolactin, and hydrocortisone. Presumably some intracellular events result in the secretion of p27 as the principal casein in mouse milk. Apparently, some selection factor(s) operate to make p27 a major nitrogenous nutritional component for a newborn mouse. In addition, on a quantitative basis, the relative levels of various caseins secreted by epithelia from lactating mammary glands is essentially duplicated by epithelia in collagen gel culture.  相似文献   

2.
We recently showed that mammary glands contain a novel class of calcium-binding proteins (CBPs) that bind to membranes in a calcium-dependent manner. We have also established that these mammary CBPs are equivalent to the calelectrins and calpactin I/p36. Since it has been suggested that these proteins might be involved in exocytosis, we examined mammary glands for these CBPs during secretory differentiation. Immunohistochemical examination showed glands from virgin animals to be rich in calelectrins and calpactin I/p36, while glands from lactating animals contained little immunoreactive material. In addition, silver-staining and immunoblot estimation of the CBPs in lysates from collagenase harvested secretory epithelia showed these proteins to be significantly reduced compared to nonsecretory epithelia. Close examination of the CBP immunoreactive cells of the mammary gland shows that ductal cells are prominent in their staining and that the immunoreactive material is associated with the cell surface. Also, in juvenile glands the myoepithelial stem cells (cap cells) of the elongating end bud are devoid of the CBPs. In contrast to the in vivo data, epithelia cultivated on collagen gels demonstrate comparable levels of the CBPs in both nonsecretory and secretory monolayers. The in vivo data indicate that the CBPs are developmentally regulated during mammary gland differentiation such that secretory epithelia are essentially devoid of these novel proteins. Furthermore, a role for calelectrin and calpactin I/p36 in exocytotic casein secretion is questioned.  相似文献   

3.
4.
It has been shown previously that cultures of mouse mammary epithelial cells retain their characteristic morphology and their ability to produce gamma-casein, a member of the casein gene family, only if they are maintained on floating collagen gels (Emerman, J.T., and D.R. Pitelka, 1977, In Vitro, 13:316-328). In this paper we show: (a) Cells on floating collagen gels secrete not only gamma-casein but also alpha 1-, alpha 2-, and beta-caseins. These are not secreted by cells on plastic and are secreted to only a very limited extent by cells on attached collagen gels. (b) The floating collagen gel regulates at the level of synthesis and/or stabilization of the caseins rather than at the level of secretion alone. Contraction of the floating gel is important in that cells cultured on floating glutaraldehyde cross- linked gels do not secrete any of the caseins. (c) The secretion of an 80,000-mol-wt protein, most probably transferrin, and a 67,000-mol-wt protein, probably butyrophilin, a major protein of the milk fat globule membrane are partially modulated by substrata. However, in contrast to the caseins, these are always detectable in media from cells cultured on plastic and attached gels. (d) Whey acidic protein, a major whey protein, is actively secreted by freshly isolated cells but is secreted in extremely limited quantities in cultured cells regardless of the nature of the substratum used. alpha-Lactalbumin secretion is also decreased significantly in cultured cells. (e) A previously unreported set of proteins, which may be minor milk proteins, are prominently secreted by the mammary cells on all substrata tested. We conclude that while the substratum profoundly influences the secretion of the caseins, it does not regulate the expression of every milk-specific protein in the same way. The mechanistic implications of these findings are discussed.  相似文献   

5.
The preparation, cryopreservation, and culture on type I collagen gels of lactating bovine mammary cells with prolonged milk protein synthesis and secretion in vitro is described. Cryopreserved cells prepared as acinar fragments from either lactating or developing mammary glands attached to the collagen substratum within 24-48 hr after plating in serum and hormone supplemented medium. During continued culture in hormone-supplemented (insulin, cortisol, and prolactin) serum-free medium outgrowth of cells from the attached acinar fragments was observed beginning on day 2, with continued outgrowth to near confluence by day 6. Two morphologically distinct cell types were evident; initial outgrowth was by large polygonal cells that were subsequently overlain by spindle-shaped cells. Cells from both lactating and developing mammary glands sustained substantial milk protein secretion for at least 14 days in culture. Alpha S1-casein synthesis and secretion in cultures of lactating mammary cells was dependent on a critical minimum cell population density, below which alpha S1-casein was not secreted. In contrast, lactoferrin (LF) secretion into the medium increased linearly with the increase in cell population density. Cells cryopreserved up to 16 months secreted LF at levels comparable to fresh cultures of the same cells.  相似文献   

6.
Elevated levels of xanthine oxidase were found in (1) lactating mouse mammary glands, compared with virgin and midpregnant glands; and (2) primary mouse mammary cells cultured on floating collagen gels, compared with non-secretory cells on attached gels. In primary culture, increase in xanthine oxidase activity above a basal level coincided with secretory activity as measured by casein production; intracellular levels of casein and xanthine oxidase showed a high degree of correspondence. It is suggested that xanthine oxidase levels can be used as an indicator of in vivo and in vitro secretory differentiation in mammary epithelial cells.  相似文献   

7.
Distribution and synthesis of type V collagen in the rat mammary gland   总被引:2,自引:0,他引:2  
In the 100-day-old virgin and lactating rat mammary glands, type V collagen is mainly present in the interstitial connective tissue and in association with blood vessels. It is not present in the basement membrane region surrounding the ducts in mature virgin glands but is present in this region in neonatal and lactating glands. Ultrastructural localization of type V collagen reveals that it is mainly located on the basal surface (i.e., the surface in contact with the basement membrane) of epithelial but not myoepithelial cells. In addition, type V collagen is located on some interstitial collagen fibers and on a large number of granules that are in close proximity to the basal surface of both epithelial and myoepithelial cells. Immunofluorescence and biochemical studies indicate that several clonal mammary fibroblastic cell lines synthesize type V collagen in vitro. In some cell lines, type V collagen is secreted as an extensive fibrillar meshwork on the surface of the cells, whereas in other cell lines, it is secreted beneath the cells around their periphery. A number of mammary epithelial and myoepithelial-like cells, however, do not synthesize type V collagen in vitro.  相似文献   

8.
Several previous studies have demonstrated that mammary epithelial cells from pregnant mice retain their differentiated characteristics and their secretory potential in culture only when maintained on stromal collagen gels floated in the culture medium. The cellular basis for these culture requirements was investigated by the monitoring of milk protein synthesis and polarized secretion from the mouse mammary epithelial cell line, COMMA-1-D. Experiments were directed towards gaining an understanding of the possible roles of cell-extracellular matrix interactions and the requirements for meeting polarity needs of the epithelium. When cells are cultured on floating collagen gels they assemble a basal lamina-like structure composed of laminin, collagen (IV), and heparan sulfate proteoglycan at the interface of the cells with the stromal collagen. To assess the role of these components, an exogenous basement membrane containing these molecules was generated using the mouse endodermal cell line, PFHR-9. This matrix was isolated as a thin sheet attached to the culture dish, and mammary cells were then plated onto it. It was found that cultures on attached PFHR-9 matrices expressed slightly higher levels of beta-casein than did cells on plastic tissue culture dishes, and also accumulated a large number of fat droplets. However, the level of beta-casein was approximately fourfold lower than that in cultures on floating collagen gels. Moreover, the beta-casein made in cells on attached matrices was not secreted but was instead rapidly degraded intracellularly. If, however, the PFHR-9 matrices with attached cells were floated in the culture medium, beta-casein expression became equivalent to that in cells cultured on floating stromal collagen gels, and the casein was also secreted into the medium. The possibility that floatation of the cultures was necessary to allow access to the basolateral surface of cells was tested by culturing cells on nitrocellulose filters in Millicell (Millipore Corp., Bedford, MA) chambers. These chambers permit the monolayers to interact with the medium and its complement of hormones and growth factors through the basal cell surface. Significantly, under these conditions alpha 1-, alpha 2-, and beta-casein synthesis was equivalent to that in cells on floating gels and matrices, and, additionally, the caseins were actively secreted. Similar results were obtained independently of whether or not the filters were coated with matrices.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
In the mammary gland of non-ruminant animals, glucose is utilized in a characteristic and unique way during lactation [11]. By measuring the incorporation of glucose carbon from [U-14C]glucose into intermediary metabolites and metabolic products in mammary epithelial cells from virgin, pregnant, and lactating mice, we demonstrate that glucose metabolite patterns can be used to recognize stages of differentiated function. For these cells, the rates of synthesis of glycogen and lactose, the ratio of lactate to alanine, and the ratio of citrate to malate are important parameters in identifying the degree of expression of differentiation. We further show that these patterns can be used as markers to determine the differentiated state of cultured mammary epithelial cells. Cells maintained on plastic substrates lose their distinctive glucose metabolite patterns while those on floating collagen gels do not. Cells isolated from pregnant mice and cultured on collagen gels have a pattern similar to that of their freshly isolated counterparts. When isolated from lactating mice, the metabolite patterns of cells cultured on collagen gels are different from that of the cells of origin, and resembles that of freshly isolated cells from pregnant mice. Our findings suggest that the floating collagen gels under the culture conditions used in these experiments provide an environment for the functional expression of the pregnant state, while additional factors are needed for the expression of the lactating state.  相似文献   

10.
Synthesis of basement membrane proteins by rat mammary epithelial cells   总被引:1,自引:0,他引:1  
A mammary epithelial cell line, Rama 25, growing on plastic, deposits fibronectin, type IV collagen, and laminin in punctate structures located beneath the basal surface of the cells. When grown on the surface of collagen gels, Rama 25 cells deposit these basement membrane proteins in a continuous layer between the basal surface of the cells and the surface of the collagen matrix. Rama 25 cells also penetrate the collagen matrix forming rudimentary duct-like structures. These structures are surrounded by a discontinuous layer of basement membrane proteins. The ducts of fetal and neonatal rat mammary glands contain few mature myoepithelial cells and our results suggest that some mammary epithelial cells, in contact with a collagenous stroma, are capable of synthesizing a basal lamina-like structure.  相似文献   

11.
Mammary epithelial cells dissociated from lactating mouse mammary glands form confluent monolayer cultures on collagen gel substrates. For these cultures, the substrate is more significant than the presence of lactogenic hormones in the maintenance of cell differentiation, as indicated by both morphological and biochemical criteria. Only cells cultured on floating collagen gels are able to maintain their lactose pool over several days in culture, although their ability to synthesize and secrete lactose becomes impaired. These cells are cuboidal in shape. In contrast, cells cultured on attached gels, which are constrained from changing shape and whose basolateral surfaces are inaccessible, lose their differentiation with time in culture. These flattened, dedifferentiated cells respond to the same hormonal environment by showing a mild proliferative response. Therefore, the response of cells to their hormonal milieu may be correlated with their shape: the squamous cells dedifferentiate and proliferate; the cuboidal cells maintain their differentiation and do not proliferate.  相似文献   

12.
The whey protein, alpha-lactalbumin, was purified from lactating mammary glands of mice at high yields. It exists as two major charge forms (pI values of 6.2 and 5.8) with similar molecular weights (approx. 14600). Antibodies prepared against these peptides precipitate newly synthesized and secreted alpha-lactalbumin from organ cultures of mid-pregnancy mammary glands. The antibody is specific for mouse alpha-lactalbumin as it does not react with mouse casein, mouse serum or purified bovine alpha-lactalbumin or galactosyl transferase. In addition, it blocks enzymatic activity of alpha-lactalbumin in mouse milk but has no effect on guinea pig or human milk. A very sensitive radioimmunoassay has been developed with this antibody which can detect alpha-lactalbumin levels as low as 0.25 ng.  相似文献   

13.
14.
Summary Mammary epithelial cells from lactating mice synthesize and secrete lactose in culture and retain many features of their in vivo morphology if mammary glands are only partially dissociated to alveoli, rather than completely dissociated to single cells. After 5 d in culture lactose synthesis by alveoli cultured on floating collagen gels is 10 to 20 times higher than in cultures of single cells on floating collagen gels. Moreover, mammary alveoli in culture retain sensitivity to lactogenic hormones; the synthesis of lactose by alveoli depends on the continued presence of insulin and either hydrocortisone or prolactin. In addition, within alveoli the original juxtaposition of constituent epithelial cells is retained, and cells are cuboidal and have many microvilli and fat droplets. In contrast, alveoli on attached gels flatten and lose their secretory morphology. These results indicate that the shape of the cells, presence of lactogenic hormones, and maintenance of epithelial:epithelial cell contacts are required for maintenance of mammary epithelial cell differentiation in culture. This research was supported by Grants CA-16392 and AG-02909 from the National Institutes of Health and Institutional Grant IN 119 from the American Cancer Society.  相似文献   

15.
The whey protein, α-lactalbumin, was purified from lactating mammary glands of mice at high yields. It exists as two major charge forms (pI values of 6.2 and 5.8) with similar molecular weights (approx. 14 00). Antibodies prepared against these peptides precipitate newly synthesized and secreted α-lactalbumin from organ cultures of mid-pregnancy mammary glands. The antibody is specific for mouse α-lactalbumin as it does not react with mouse casein, mouse serum or purified bovine α-lactalbumin or galactosyl transferase. In addition, it blocks enzymatic activity of α-lactalbumin in mouse milk but has no effect on guinea pig or human milk. A very sensitive radioimmunoassay has been developed with this antibody which can detect α-lactalbumin levels as low as 0.25 ng.  相似文献   

16.
 In some species, including man and mouse, bile salt-stimulated lipase (BSSL) in milk catalyzes the hydrolysis of triacylglycerides into glycerol and free fatty acids, a reaction that is of particular importance during suckling. The enzyme is also secreted by the pancreas (referred to as carboxyl-ester hydrolase, CEH). We wished to localize sources and storage sites for BSSL/CEH in rats, in wild-type mice, and in transgenic mice producing recombinant human BSSL in milk. Immunoreactivity against several BSSL fragments was strong in the pancreatic acinar cells and moderate in the absorptive cells of the small intestine and in salivary duct cells of the mice, as well as in rats. Sections from lactating mammary glands of mouse, but not rat, also showed immunoreactivity for BSSL; the signal was strongest in the transgenic mice. Radioactive riboprobes for BSSL mRNA hybridized on sections of rat and mouse pancreatic acinar cells, and mouse mammary glands (both wild-type and transgenic). Using RT-PCR, it was possible to amplify BSSL mRNA from wild-type mouse pancreas and mammary gland, from rat submandibular glands, and, in a few cases, from rat liver. In transgenic mice, the BSSL mRNA was highly expressed only in lactating mammary gland, but could be detected in a few other organs as well. Accepted: 31 March 1998  相似文献   

17.
Cryopreserved bovine mammary epithelial cells prepared from lactating mammary tissue synthesize and secrete the milk proteins alphas1-casein, lactoferrin (Lf), and alpha-lactalhumin during in vitro culture on collagen gels in serum-free medium. Each milk protein is differently regulated by detachment and thickness of the collagen substratum, fetal calf scrum, and prolactin in the medium. Collagen detachment did not modulate lactoferrin secretion but strongly induced casein secretion, with detachment on day 6 (after formation of cell sheets) inducing casein secretion to 3 μg/ml medium, which was 2–3-fold higher than for cells on collagen detached on day 2 (prior to cell spreading to form sheets), and ten-fold higher than for cells grown on collagen not detached. Alpha-lactalbumin secretion was also induced, but only to low levels, in cells grown on detached but not on attached collagen. Cells grown on thin collagen gels secreted lower levels of lactoferrin and casein compared to cells on thick collagen. Lactoferrin but not casein secretion was increased in cells grown in the presence of fetal calf serum. Casein but not lactoferrin secretion was completely dependent on prolactin. Cells grown serum-free on collagen gels detached on day 6 of culture showed a polarized epithelial cell layer with high differentiation evidenced by the apical microvilli, tight junctions, and fat droplets surrounded by casein-containing secretory vesicles. An underlying layer of myoepithelial-like cells was also evident. These studies show for eryopreserved primary bovine mammary cells prepared from lactating mammary tissue the induction of highly differentiated and polarized cell morphology and ultrastructure with concomitant induction of the secretion of casein, lactoferrin. and alpha-lactalbumin in vitro, and that the non-coordinate regulation of milk protein secretion by substratum, prolactin, and serum likely involves alternate routing and control of secretion pathways for casein and lactoferrin.  相似文献   

18.
A class of proteins from mouse mammary epithelial cells has been isolated which, like the calcium-binding protein calmodulin (CaM), binds to phenothiazine in a calcium-dependent manner. These proteins do not bind to phenothiazine through binding to CaM; we infer that they are calcium-binding proteins, and that they may be related to the similarly isolated 'calcimedins' of Moore, P D & Dedman, J, J biol chem 257 (1982) 9663 [8]. In primary cultures of mouse mammary cells on collagen gels, synthesis of certain of these proteins is associated with the spreading of cells to form monolayers; failure of cells to spread and differentiate, through omission of serum from culture medium, results in the inhibition of calcium-binding protein synthesis, with the exception of CaM and a 15 kD species. The CaM/15 kD pair are prominent during all phases of culture, and are secreted during the secretory differentiation phase of culture (floating gels). We propose that these calcium-binding proteins play a specific role in the motility of mammary epithelial cells and that they may also be involved in mammary secretory differentiation.  相似文献   

19.
Parathyroid hormone-related protein (PTHrP) is a major cause of humoral hypercalcemia of malignancy, but has also been widely found in fetal and adult non-neoplastic tissues. Lactating mammary gland has been shown to produce large amounts of PTHrP, and high levels of PTHrP have been measured in milk. We have examined the influences of several substances on the secretion of two different forms of PTHrP by primary cultures of mammary cells isolated from lactating rats to examine the regulatory mechanisms of PTHrP production by mammary cells. Primary cultures of mammary cells seeded at a density of 10(5) cells per 35 mm culture dish were grown on collagen gels. First, after cells were left 24 hours for attachment and incubated in 2 % FCS containing medium with for 12 hours, PTHrP (1 - 87) secretions were measured in conditioned medium with hormone supplementation for 1, 24 and 48 hours. Progesterone (10(-7) - 10(-5) mol/l) significantly suppressed PTHrP (1 - 87) secretion in a dose-dependent manner (p < 0.01), while 17beta-estradiol had no influence on PTHrP (1 - 87) secretion. Prolactin, a known stimulator of PTHrP expression in vivo, had no effect in this in vitro model. Second, PTHrP (1 - 34) secretion levels from confluent lactating mammary cells for 24 hours were evaluated. The same results were obtained in the case of PTHrP (1 - 87) secretion from non-confluent cells. Furthermore, dexamethasone (10(-6) mol/l) significantly suppressed PTHrP (1 - 34) secretion (p < 0.01). These results suggest that PTHrP production from the lactating mammary gland is suppressed by progesterone as well as dexamethasone. Progesterone dramatically falls after delivery, thus possibly accelerating PTHrP production by lactating mammary glands and resulting in considerable amounts of PTHrP secreted into the milk.  相似文献   

20.
Epidermal growth factor (EGF) is known to stimulate mammary epithelial proliferation, has been identified in milk and is expressed in lactating mammary epithelia. This study examined hormonal control of EGF mRNA in mammary glands of mice. Prepro-EGF mRNA (4.7 kb) was detected during lactation (and increased significantly during this period), whereas a smaller EGF-like RNA (.5 kb) was at highest levels in mammary glands of virgin and pregnant mice. The 4.7 kb RNA was polyadenylated, whereas .5 kb RNA was not. In mammary gland organ cultures from steroid-primed mice, the combinations of insulin + hydrocortisone and insulin + prolactin + hydrocortisone increased both prepro-EGF and beta-casein mRNA expression. When hydrocortisone was present there was a decrease in mammary gland content of EGF-like RNA (.5 kb band). We conclude that prepro-EGF mRNA expression in mouse mammary tissue is under the control of the lactogenic hormones prolactin and hydrocortisone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号