首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 617 毫秒
1.
Both cytosolic PLA(2) (cPLA(2)) and secretory PLA(2) (sPLA(2)) have been implicated in pathology of cerebral ischemia. However, which of PLA(2) isoforms in astrocytes is responsible for arachidonic acid (AA) release contributing to their ischemic injury remains to be determined. The aim of the present study was to investigate the time-dependent activation of cPLA(2) and sPLA(2) in astrocytes exposed to combined oxygen glucose deprivation (OGD) as well as to evaluate the effectiveness of their pharmacological blockage as a method of preventing ischemic damage of the glial cells. It was shown that exposure of cultured astrocytes to OGD (0.5-24h) causes an increase in cPLA(2) and sPLA(2) expression and activity. The role of AA liberated mainly by cPLA(2) in the process of apoptosis was also demonstrated. To confirm the specific role of cPLA(2) and sPLA(2) in the mechanism of cells injury by OGD exposure, the effect of AACOCF(3) as cPLA(2) inhibitor and 12-epi-scalaradial as sPLA(2) inhibitor on AA release was examined. It was proved that simultaneous pharmacological blockade of enzymatic activity of cPLA(2) and sPLA(2) during OGD by AACOCF(3) and 12-epi-scalaradial substantially improves survival of ischemic injured glial cells.  相似文献   

2.
The importance of lipids in cell signaling and tissue physiology is demonstrated by the many CNS pathologies involving deregulated lipid metabolism. One such critical metabolic event is the activation of phospholipase A(2) (PLA(2)), which results in the hydrolysis of membrane phospholipids and the release of free fatty acids, including arachidonic acid, a precursor for essential cell-signaling eicosanoids. Reactive oxygen species (ROS, a product of arachidonic acid metabolism) react with cellular lipids to generate lipid peroxides, which are degraded to reactive aldehydes (oxidized phospholipid, 4-hydroxynonenal, and acrolein) that bind covalently to proteins, thereby altering their function and inducing cellular damage. Dissecting the contribution of PLA(2) to lipid peroxidation in CNS injury and disorders is a challenging proposition due to the multiple forms of PLA(2), the diverse sources of ROS, and the lack of specific PLA(2) inhibitors. In this review, we summarize the role of PLA(2) in CNS pathologies, including stroke, spinal cord injury, Alzheimer's, Parkinson's, Multiple sclerosis-Experimental autoimmune encephalomyelitis and Wallerian degeneration.  相似文献   

3.
Phospholipase A2   总被引:7,自引:0,他引:7  
Phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 position of membrane glycerophospholipids to liberate arachidonic acid (AA), a precursor of eicosanoids including prostaglandins (PGs) and leukotrienes (LTs). The same reaction also produces lysophosholipids, which represent another class of lipid mediators. So far, at least 19 enzymes that possess PLA2 activity have been identified in mammals. The secretory PLA2 (sPLA2) family, in which 10 isozymes have been identified, consists of low-molecular-weight, Ca2+-requiring, secretory enzymes that have been implicated in a number of biological processes, such as modification of eicosanoid generation, inflammation, host defense, and atherosclerosis. The cytosolic PLA2 (cPLA2) family consists of 3 enzymes, among which cPLA2alpha plays an essential role in the initiation of AA metabolism. Intracellular activation of cPLA2alpha is tightly regulated by Ca2+ and phosphorylation. The Ca2+-independent PLA2 (iPLA2) family contains 2 enzymes and may play a major role in membrane phospholipid remodeling. The platelet-activating factor (PAF) acetylhydrolase (PAF-AH) family represents a unique group of PLA2 that contains 4 enzymes exhibiting unusual substrate specificity toward PAF and/or oxidized phospholipids. In this review, we will overview current understanding of the properties and functions of each enzyme belonging to the sPLA2, cPLA2, and iPLA2 families, which have been implicated in signal transduction.  相似文献   

4.
T Kambe  M Murakami  I Kudo 《FEBS letters》1999,453(1-2):81-84
By analyzing human embryonic kidney 293 cell transfectants stably overexpressing various types of phospholipase A2 (PLA2), we have shown that polyunsaturated fatty acids (PUFAs) preferentially activate type IIA secretory PLA2 (sPLA2-IIA)-mediated arachidonic acid (AA) release from interleukin-1 (IL-1)-stimulated cells. When 293 cells prelabeled with 13H]AA were incubated with exogenous PUFAs in the presence of IL-1 and serum, there was a significant increase in [3H]AA release (in the order AA > linoleic acid > oleic acid), which was augmented markedly by sPLA2-IIA and modestly by type IV cytosolic PLA2 (cPLA2), but only minimally by type VI Ca2(+)-independent PLA2, overexpression. Transfection of cPLA2 into sPLA2-IIA-expressing cells produced a synergistic increase in IL-1-dependent [3H]AA release and subsequent prostaglandin production. Our results support the proposal that prior production of AA by cPLA2 in cytokine-stimulated cells destabilizes the cellular membranes, thereby rendering them more susceptible to subsequent hydrolysis by sPLA2-IIA.  相似文献   

5.
Phospholipases A2 (PLA2) and cyclooxygenases (COX) are important enzymes responsible for production of potent lipid mediators, including prostaglandins (PG) and thromboxane A2. We investigated coupling between PLA2 and COX isoforms by using transient transfection in COS-1 cells. Untransfected cells, incubated with or without phorbol ester + the Ca2+ ionophore ionomycin, generated trivial amounts of PGE2. In cells co-transfected with cytosolic PLA2 (cPLA2) and COX-1 or COX-2, phorbol ester + ionomycin markedly stimulated PGE2 production. There was no preferential coupling of cPLA2 to either of the COX isoforms. In contrast, group IIA secretory PLA2 (sPLA2) co-transfected with COX-1 or COX-2 did not lead to an increase in PGE2 production, despite high levels of sPLA2 enzymatic activity. Transfection of cPLA2 did not affect basal free arachidonic acid (AA) levels. Phorbol ester + ionomycin stimulated release of AA in cPLA2-transfected COS-1 cells, but not in untransfected cells, whereas sPLA2 transfection (without stimulation) led to high basal free AA. Thus, AA released by cPLA2 is accessible to both COX isoforms for metabolism to PG, whereas AA released by sPLA2 is not metabolized by COX.  相似文献   

6.
Previous studies have shown that reactive oxygen species (ROS) enhance arachidonic acid (AA) release and the subsequent AA metabolism in macrophages. The purpose of this study was determined the implication of phospholipases A2 (PLA2s) in these events. Our results show that oxidative stress induced by exogenous adding of hydrogen peroxide or superoxide anion in macrophage RAW 264.7 and mouse peritoneal macrophage cultures caused a marked enhancement of calcium-independent PLA2 (iPLA2) activity,whereas the increment of secreted PLA2 (sPLA2) and calcium-dependent cytosolic PLA2 (cPLA2) activities were slight. This increase of iPLA2 activity by ROS was rapid and dose-dependent. ROS also induced a significant [3H] arachidonic acid (AA) release. The iPLA2 selective inhibitor, bromoenol lactone, almost completely suppressed the mobilization of [3H]AA induced by ROS whereas antisense oligonucleotide against cPLA2 did not have any appreciable effect. Thus, our data show that iPLA2 activity is involved in the mechanism by which ROS increases the availability of free AA in macrophages RAW 264.7. Moreover, the protein kinase C (PKC) inhibitor, calphostin C, and calcium chelators had no effect on the [3H]AA release induced by ROS, suggesting this is a regulatory role of iPLA2.  相似文献   

7.
Both elevated iron concentrations and the resulting oxidative stress condition are common signs in retinas of patients with age-related macular degeneration (AMD). The role of phospholipase A(2) (PLA(2)) during iron-induced retinal toxicity was investigated. To this end, isolated retinas were exposed to increasing Fe(2+) concentrations (25, 200 or 800μM) or to the vehicle, and lipid peroxidation levels, mitochondrial function, and the activities of cytosolic PLA(2) (cPLA(2)) and calcium-independent PLA(2) (iPLA(2)) were studied. Incubation with Fe(2+) led to a time- and concentration-dependent increase in retinal lipid peroxidation levels whereas retinal cell viability was only affected after 60min of oxidative injury. A differential release of arachidonic acid (AA) and palmitic acid (PAL) catalyzed by cPLA(2) and iPLA(2) activities, respectively, was also observed in microsomal and cytosolic fractions obtained from retinas incubated with iron. AA release diminished as the association of cyclooxigenase-2 increased in microsomes from retinas exposed to iron. Retinal lipid peroxidation and cell viability were also analyzed in the presence of cPLA(2) inhibitor, arachidonoyl trifluoromethyl ketone (ATK), and in the presence of iPLA(2) inhibitor, bromoenol lactone (BEL). ATK decreased lipid peroxidation levels and also ERK1/2 activation without affecting cell viability. BEL showed the opposite effect on lipid peroxidation. Our results demonstrate that iPLA(2) and cPLA(2) are differentially regulated and that they selectively participate in retinal signaling in an experimental model resembling AMD.  相似文献   

8.
Reactive oxygen species (ROS) are produced in mammalian cells through enzymic and non-enzymic mechanisms. Although some ROS production pathways are needed for specific physiological functions, excessive production is detrimental and is regarded as the basis of numerous neurodegenerative diseases. Among enzymes producing superoxide anions, NADPH oxidase is widespread in mammalian cells and is an important source of ROS in mediating physiological and pathological processes in the cardiovascular and the CNS. ROS production is linked to the alteration of intracellular calcium homeostasis, activation of Ca(2+)-dependent enzymes, alteration of cytoskeletal proteins, and degradation of membrane glycerophospholipids. There is evolving evidence that ROS produced by NADPH oxidase regulate neuronal functions and degrade membrane phospholipids through activation of phospholipases A(2) (PLA(2)). This review is intended to cover recent studies describing ROS generation from NADPH oxidase in the CNS and its downstream activation of PLA(2), namely, the group IV cytosolic cPLA(2) and the group II secretory sPLA(2). A major focus is to elaborate the dual role of NADPH oxidase and PLA(2) in mediating the oxidative and inflammatory responses in neurodegenerative diseases, including cerebral ischemia and Alzheimer's disease. Elucidation of the signaling pathways linking NADPH oxidase with the multiple forms of PLA(2) will be important in understanding the oxidative and degradative mechanisms that underline neuronal damage and glial activation and will facilitate development of therapeutic intervention for prevention and treatment of these and other neurodegenerative diseases.  相似文献   

9.
Phospholipase A2 (PLA2) hydrolyzes cell membrane phospholipids (PL) to produce arachidonic acid and lyso-PL. The PLA2 enzymes include the secretory (sPLA2) and cytosolic (cPLA2) isoforms, which are assumed to act synergistically in production of eicosanoids that are involved in inflammatory processes. However, growing evidence raises the possibility that in airways and asthma-related inflammatory cells (eosinophils, basophils), the production of the bronchoconstrictor cysteinyl leukotrienes (CysLT) is linked exclusively to sPLA2, whereas the bronchodilator prostaglandin PGE2 is produced by cPLA2. It has been further reported that the capacity of airway epithelial cells to produce CysLT is inversely proportional to PGE2 production. This seems to suggest that sPLA2 and cPLA2 play opposing roles in asthma pathophysiology and the possibility of a negative feedback between the two isoenzymes. To test this hypothesis, we examined the effect of a cell-impermeable extracellular sPLA2 inhibitor on bronchoconstriction and PLA2 expression in rats with ovalbumin (OVA)-induced asthma. It was found that OVA-induced bronchoconstriction was associated with elevation of lung sPLA2 expression and CysLT production, concomitantly with suppression of cPLA2 expression and PGE2 production. These were reversed by treatment with the sPLA2 inhibitor, resulting in amelioration of bronchoconstriction and reduced CysLT production and sPLA2 expression, concomitantly with enhanced PGE2 production and cPLA2 expression. This study demonstrates, for the first time in vivo, a negative feedback between sPLA2 and cPLA2 and assigns opposing roles for these enzymes in asthma pathophysiology: sPLA2 activation induces production of the bronchoconstrictor CysLT and suppresses cPLA2 expression and the subsequent production of the bronchodilator PGE2.  相似文献   

10.
Phospholipase A(2) isoforms: a perspective   总被引:7,自引:0,他引:7  
Several new PLA(2)s have been identified based on their nucleotide gene sequences. They were classified mainly into three groups: cytosolic PLA(2) (cPLA(2)), secretary PLA(2) (sPLA(2)), and intracellular PLA(2) (iPLA(2)). They differ from each other in terms of substrate specificity, Ca(2+) requirement and lipid modification. The questions that still remain to be addressed are the subcellular localization and differential regulation of the isoforms in various cell types and under different physiological conditions. It is required to identify the downstream events that occur upon PLA(2) activation, particularly target protein or metabolic pathway for liberated arachidonic acid or other fatty acids. Understanding the same will greatly help in the development of potent and specific pharmacological modulators that can be used for basic research and clinical applications.The information of the human and other genomes of PLA(2)s, combined with the use of proteomics and genetically manipulated mouse models of different diseases, will illuminate us about the specific and potentially overlapping roles of individual phospholipases as mediators of physiological and pathological processes. Hopefully, such understanding will enable the development of specific agents aimed at decreasing the potential contribution of individual secretary phospholipases to vascular diseases.The signaling cascades involved in the activation of cPLA(2) by mitogen activated protein kinases (MAPKs) is now evident. It has been demonstrated that p44 MAPK phosphorylates cPLA(2) and increases its activity in cells and tissues. The phosphorylation of cPLA(2) at ser505 occurs before the increase in intracellular Ca(2+) that facilitate the binding of the lipid binding domain of cPLA(2) to phospholipids, promoting its translocation to cellular membranes and AA release. Recently, a negative feed back loop for cPLA(2) activation by MAPK has been proposed. If PLA(2) activation in a given model depends on PKC, PKA, cAMP, or MAPK then inhibition of these phosphorylating enzymes may alter activities of PLA(2) isoforms during cellular injury. Understanding the signaling pathways involved in the activation/deactivation of PLA(2) during cellular injury will point to key events that can be used to prevent the cellular injury. Furthermore, to date, there is limited information available regarding the regulation of iPLA(2) or sPLA(2) by these pathways.  相似文献   

11.
The purpose of this study was to define the role of secretory phospholipase A2 (sPLA2), calcium-independent PLA2, and cytosolic PLA2 (cPLA2) in arachidonic acid (AA) release from fMLP-stimulated human neutrophils. While fMLP induced the release of extracellular sPLA2 activity and AA, 70% of sPLA2 activity remained associated with the cell. Treatment with the cell-impermeable sPLA2 inhibitors DTT or LY311-727, or the anti-sPLA2 Ab 3F10 all inactivated extracellular sPLA2 activity, but had minimal effect on neutrophil AA mass release. In contrast, coincubation of streptolysin-O toxin-permeabilized neutrophils with DTT, LY311-727, or 3F10 all decreased [3H8]AA release from [3H8]AA-labeled, fMLP-stimulated cells. Exposure to fMLP resulted in a decrease in the electrophoretic mobility of cPLA2, a finding consistent with cPLA2 phosphorylation, and stimulated the translocation of cPLA2 from cytosolic to microsomal and nuclear compartments. The role of cPLA2 was further evaluated with the cPLA2 inhibitor methyl arachidonyl fluorophosphonate, which attenuated cPLA2 activity in vitro and decreased fMLP-stimulated AA mass release by intact neutrophils, but had no effect on neutrophil sPLA2 activity. Inhibition of calcium-independent PLA2 with haloenol lactone suicide substrate had no effect on neutrophil cPLA2 activity or AA mass release. These results indicate a role for cPLA2 and an intracellular or cell-associated sPLA2 in the release of AA from fMLP-stimulated human neutrophils.  相似文献   

12.
The current study examined the signal transduction steps involved in the selective release of arachidonic acid (AA) induced by the addition of secretory phospholipase A2 (sPLA2) isotypes to bone marrow-derived mast cells (BMMC). Overexpression of sPLA2 receptors caused a marked increase in AA and PGD2 release after stimulation of BMMC, implicating sPLA2 receptors in this process. The hypothesis that the release of AA by sPLA2 involved activation of cytosolic PLA2 (cPLA2) was next tested. Addition of group IB PLA2 to BMMC caused a transient increase in cPLA2 activity and translocation of this activity to membrane fractions. Western analyses revealed that these changes in cPLA2 were accompanied by a time-dependent gel shift of cPLA2 induced by phosphorylation of cPLA2 at various sites. A noncatalytic ligand of the sPLA2 receptor, p-amino-phenyl-alpha-D-mannopyranoside BSA, also induced an increase in cPLA2 activity in BMMC. sPLA2 receptor ligands induced the phosphorylation of p44/p42 mitogen-activated protein kinase. Additionally, an inhibitor of p44/p42 mitogen-activated protein kinase (PD98059) significantly inhibited sPLA2-induced cPLA2 activation and AA release. sPLA2 receptor ligands also increased Ras activation while an inhibitor of tyrosine phosphorylation (herbimycin) inhibited the increase in cPLA2 activation and AA release. Addition of partially purified sPLA2 from BMMC enhanced cPLA2 activity and AA release. Similarly, overexpression of mouse groups IIA or V PLA2 in BMMC induced an increase in AA release. These data suggest that sPLA2 mediate the selective release of AA by binding to cell surface receptors and then inducing signal transduction events that lead to cPLA2 activation.  相似文献   

13.
In macrophages and other major immunoinflammatory cells, two phospholipase A(2) (PLA(2)) enzymes act in concert to mobilize arachidonic acid (AA) for immediate PG synthesis, namely group IV cytosolic phospholipase A(2) (cPLA(2)) and a secreted phospholipase A(2) (sPLA(2)). In this study, the molecular mechanism underlying cross-talk between the two PLA(2)s during paracrine signaling has been investigated. U937 macrophage-like cells respond to Con A by releasing AA in a cPLA(2)-dependent manner, and addition of exogenous group V sPLA(2) to the activated cells increases the release. This sPLA(2) effect is abolished if the cells are pretreated with cPLA(2) inhibitors, but is restored by adding exogenous free AA. Inhibitors of cyclooxygenase and 5-lipoxygenase have no effect on the response to sPLA(2). In contrast, ebselen strongly blocks it. Reconstitution experiments conducted in pyrrophenone-treated cells to abolish cPLA(2) activity reveal that 12- and 15-hydroperoxyeicosatetraenoic acid (HPETE) are able to restore the sPLA(2) response to levels found in cells displaying normal cPLA(2) activity. Moreover, 12- and 15-HPETE are able to enhance sPLA(2) activity in vitro, using a natural membrane assay. Neither of these effects is mimicked by 12- or 15-hydroxyeicosatetraenoic acid, indicating that the hydroperoxy group of HPETE is responsible for its biological activity. Collectively, these results establish a role for 12/15-HPETE as an endogenous activator of sPLA(2)-mediated phospholipolysis during paracrine stimulation of macrophages and identify the mechanism that connects sPLA(2) with cPLA(2) for a full AA mobilization response.  相似文献   

14.
Abstract: Changes in the free fatty acid pool size and fatty acyl chain composition of mitochondrial membrane phospholipids and their relation to disruption of mitochondrial function were examined in rat brains after 30 min of cerebral ischemia (Pulsinelli-Brierley model) and 60 min of normoxic reoxygenation. During ischemia, significant hydrolysis of polyunsaturated molecular species from diacyl phosphatidylcholine, particularly fatty acyl 20:4 (arachidonic acid; 20% decrease) and 22:6 (docosahexaenoic acid; 15% decrease), was observed. Thirty minutes of ischemia caused a 16% loss of 18:2 (linoleic acid) from phosphatidylethanolamine. Recirculation for 60 min did not return the polyunsaturated fatty acid content of phospholipids to normal. Total content of free fatty acids increased during ischemia, particularly 18:2 and 22:6, which exhibited the most dramatic rise. The free fatty acid pool size continued to increase during 60 min of recirculation. The respiratory control ratio decreased significantly during 30 min of ischemia with no apparent recovery following 60 min of reoxygenation. The degree of free radical-mediated lipid peroxidation in mitochondria was significantly increased during ischemia and reperfusion. It was concluded that (a) 30 min of cerebral ischemia caused differential degradation in each of the phospholipid classes and preferential hydrolysis of the polyunsaturated molecular species and (b) 60 min of normoxic reperfusion failed to promote reacylation of the mitochondrial phospholipids and restoration of normal respiration.  相似文献   

15.
The first step in prostacyclin (PGI(2)) synthesis involves the generation of arachidonic acid (AA) from membrane phospholipids mediated by the 85 kDa cytosolic phospholipase A(2) (cPLA(2)alpha). The current study examined the effects of secretory PLA(2)s (sPLA(2)s) on PGI(2) production by human umbilical vein endothelial cells (HUVEC). We demonstrate that exposure of HUVEC to sPLA(2) dose- and time-dependently enhances AA release and PGI(2) generation. sPLA(2)-stimulated AA mobilisation was blocked by AACOCF(3), an inhibitor of cPLA(2)alpha, suggesting cross-talk between the two classes of PLA(2). sPLA(2) induced the phosphorylation of cPLA(2)alpha and enhanced the phosphorylation states of p42/44(mapk), p38(mapk), and JNK, concomitant with elevated AA and PGI(2) release. The MEK inhibitor PD98059 attenuated sPLA(2)-stimulated cPLA(2)alpha phosphorylation and PGI(2) release. These data show that sPLA(2) cooperates with cPLA(2)alpha in a MAPK-dependent manner to regulate PGI(2) generation and suggests that cross-talk between sPLA(2) and cPLA(2)alpha is a physiologically important mechanism for enhancing prostanoid production in endothelial cells.  相似文献   

16.
Phospholipase A(2) (PLA(2)) enzymes participate in a potent inflammatory pathway through the liberation of arachidonic acid upon hydrolysis of membrane glycerophospholipids. The presence of implanted polycarbonate-urethane (PCNU) materials, used in several medical applications, has the ability to influence inflammatory responses of human macrophages that are recruited to a tissue-material interface; however, the specific inflammatory pathways that are activated upon macrophage attachment to PCNU are largely unknown. Previous studies suggested the participation of PLA(2) pathways in material degradation with the use of chemical inhibitors, such as aristolochic acid (ARIST), however not accurately defining the specific PLA(2) enzymes involved. The current study aimed to establish specific groups of PLA(2) involved in the macrophage foreign body response to PCNU. ARIST was assessed for specific effects on secretory PLA(2) (sPLA(2)) protein expression and non-specific effects on key proteins, beta-actin and monocyte-specific esterase, implicated in the macrophage attack on PCNU materials. Macrophage attachment to PCNU materials induced increased intracellular expression of cytosolic PLA(2) (cPLA(2)), but not sPLA(2), relative to tissue culture polystyrene (TCPS) as detected by immunoblot analysis, demonstrating an early and delayed stimulation during the time course of increased cPLA(2) protein expression. Laser scanning confocal microscopy images indicated a change in location of cPLA(2) in macrophages adherent to PCNU surfaces compared to TCPS. This study has illustrated changes in macrophage cPLA(2) expression in response to cell-attachment to PCNU surfaces, demonstrating that the macrophage foreign body response to biomaterials induces a potent inflammatory pathway, which may lead to tissue damage near the site of material implantation.  相似文献   

17.
P388D(1) cells exposed to bacterial lipopolysaccharide (LPS) mobilize arachidonic acid (AA) for prostaglandin synthesis in two temporally distinct pathways. The "immediate pathway" is triggered within minutes by receptor agonists such as platelet-activating factor (PAF) but only if the cells have previously been primed with LPS for 1 h. The "delayed pathway" occurs in response to LPS alone over the course of several hours. We have now investigated the subcellular localization of both the Group IV cytosolic phospholipase A(2) (cPLA(2)) and the Group V secreted PLA(2) (sPLA(2)) during these two temporally distinct routes of AA release. We have prepared cells overexpressing fusion proteins of sPLA(2)-GFP and cPLA(2)-RFP. In the resting cells, cPLA(2)-RFP was uniformly located throughout the cytoplasm, and short-term treatment with LPS did not induce translocation to perinuclear and/or Golgi membranes. However, such a translocation occurred almost immediately after the addition of PAF to the cells. Long-term exposure of the cells to LPS led to the translocation of cPLA(2)-RFP to intracellular membranes after 3 h, and correlates with a significant release of AA in a cPLA(2)-dependent manner. At the same time period that the delayed association of cPLA(2) with perinuclear membranes is detected, an intense fluorescence arising from the sPLA(2)-GFP was found around the nucleus in the sPLA(2)-GFP stably transfected cells. In parallel with these changes, significant AA release was detected from the sPLA(2)-GFP transfectants in a cPLA(2)-dependent manner, which may reflect cross-talk between sPLA(2) and cPLA(2). The subcellular localization of the Group VIA Ca(2+)-independent PLA(2) (iPLA(2)) was also investigated. Cells overexpressing iPLA(2)-GFP showed no fluorescence changes under any activation condition. However, the iPLA(2)-GFP-expressing cells showed relatively high basal AA release, confirming a role for iPLA(2) in basal deacylation reactions. These new data illustrate the subcellular localization changes that accompany the distinct roles that each of the three kinds of PLA(2) present in P388D(1) macrophages play in AA mobilization.  相似文献   

18.
19.
Although it has been proposed that arachidonate release by several secretory phospholipase A2 (sPLA2) isozymes is modulated by cytosolic PLA2 (cPLA2), the cellular component(s) that intermediates between these two signaling PLA2s remains unknown. Here we provide evidence that 12- or 15-lipoxygenase (12/15-LOX), which lies downstream of cPLA2, plays a pivotal role in cytokine-induced gene expression and function of sPLA2-IIA. The sPLA2-IIA expression and associated PGE2 generation induced by cytokines in rat fibroblastic 3Y1 cells were markedly attenuated by antioxidants that possess 12/15-LOX inhibitory activity. 3Y1 cells expressed 12/15-LOX endogenously, and forcible overexpression of 12/15-LOX in these cells greatly enhanced cytokine-induced expression of sPLA2-IIA, with a concomitant increase in delayed PG generation. Moreover, studies using 293 cells stably transfected with sPLA2-IIA revealed that stimulus-dependent hydrolysis of membrane phospholipids by sPLA2-IIA was enhanced by overexpression of 12/15-LOX. These results indicate that the product(s) generated by the cPLA2-12/15-LOX pathway following cell activation may play two roles: enhancement of sPLA2-IIA gene expression and membrane sensitization that leads to accelerated sPLA2-IIA-mediated hydrolysis.  相似文献   

20.
Lipopolysaccharide (LPS) induces a delayed release (lag phase of 2-4 h) of arachidonic acid (AA) and prostaglandin (PG) D2 in rat liver macrophages. Group IV cytosolic phospholipase A2 (cPLA2) becomes phosphorylated within minutes after the addition of LPS. The phosphorylated form of cPLA2 shows an enhanced in vitro activity. The Ca2+ dependence of cPLA2 activity is not affected by phosphorylation of the enzyme. In addition, LPS induces an enhanced expression of cPLA2 mRNA (after 2-4 h) and an enhanced expression of cPLA2 protein (after 8 h). The cellular cPLA2 activity is enhanced about twofold 24 h after LPS treatment. Liver macrophages constitutively express mRNAs encoding Groups V and IIA secretory PLA2 (sPLA2). LPS has no effect on the levels of Groups V and IIA sPLA2 mRNA expression. Despite mRNA expression, Groups V and IIA sPLA2 protein and sPLA2 activity are not detectable in unstimulated or LPS-stimulated liver macrophages. Collectively, these and earlier [Mediators Inflammation 8 (1999) 295.] results suggest that in liver macrophages the LPS-induced delayed release of AA and prostanoids is mediated by phosphorylation and an enhanced expression of cPLA2, a de novo expression of cyclooxygenase (COX)-2, but not by the actions of Group V or Group IIA sPLA2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号