首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 147 毫秒
1.
A thermostable archaeal l -aminoacylase from Thermococcus litoralis has been used in immobilisation trials to optimise its application in industrial biotransformation reactions. Immobilisation techniques used included direct adsorption and crosslinking of the enzyme onto solid supports, bioencapsulation, and covalent bonding onto a variety of activated matrices. The most successful immobilisation methods were covalent binding of the enzyme onto glyoxyl-Sepharose and Amberlite XAD7. These methods yielded an average of 15 and 80 mg of protein bound per gram of support (wet weight for glyoxyl-Sepharose), respectively, with nearly 80% activity recovery in both cases. Enzyme immobilised onto glyoxyl-agarose was stabilised 106-fold under aqueous conditions and 142-fold in 100% acetonitrile when activity was measured after 24 h at 90°C. A column bioreactor containing the recombinant l -aminoacylase immobilised onto Sepharose beads was constructed with the substrate, N -acetyl- dl -Trp, continuously flowing at 60°C for 10 days. No loss of activity was detected over five days, with 32% activity remaining after 40 days at 60°C. These results show the potential of the use of immobilised l -aminoacylase in biotransformation reactions for the production of fine chemicals.  相似文献   

2.
We conducted a systematic study of covalent immobilisation of Agaricus bisporus tyrosinase onto typical enzyme carriers. Acrylic beads, two commercial silica gels with different pore structures and mesoporous silica foam (MCFs) beads functionalised using different organosilanes showed that only aminated MCFs offer active preparations with immobilisation efficiencies greater than 100% and a similar ratio of diphenolase (L-DOPA) to monophenolase (L-tyrosine) activities as the free enzyme. The native enzyme was entirely inactivated during incubation at 55°C for 30 min, whereas the enzyme immobilised on acrylic carrier or MCF retained 46 and 35%, respectively, of the initial activity after similar treatment. Susceptibility of native and immobilised tyrosinase to suicide inactivation in the presence of L-tyrosine and L-DOPA was tested in repeated batch tests. However, none of the preparations obtained in the L-DOPA solution was operationally stable enough to be used for practical applications.  相似文献   

3.
The activity and stability of horseradish (Amoracia rusticana) peroxidase (HRP) free in solution and immobilised onto silica microparticles was studied in the presence of organic co-solvents.

The effect of several hydrophilic organic solvents, namely dimethyl sulfoxide, dimethylformamide, dioxan, acetonitrile and tetrahydrofuran, in the activity and stability of free HRP was studied. From the solvents tested, DMSO led to the highest activities and stabilities. After 2 h of incubation at 35°C, the remaining activity of the enzyme in the presence of 30% of each solvent was less than 30%, with exception of DMSO for which the enzyme remained fully active.

In order to increase stability, HRP was covalently immobilised onto silica microparticles. The half-life of the enzyme in buffer at 50°C increased from 2 to 52 h when the enzyme was immobilised. The stability of both free and immobilised HRP was also studied at 50°C in aqueous mixtures of 3.5, 20, 35 and 50% (v/v) DMSO. Free HRP stability was not affected by the presence of 3.5 and 20% DMSO, but higher contents lead to a more pronounced deactivation. Immobilised HRP stability increased with DMSO content up to 20%, decreasing for higher contents. The enzyme half-life increased more than 300% when changing from buffer to 20% DMSO.

The deactivation of free HRP was modelled using the simple exponential decay, and the deactivation of immobilised HRP was described by a two-step inactivation model.  相似文献   


4.
Manganese peroxidases (MnP) from Phanerochaete chrysosporium and Bjerkandera sp. BOS55 were immobilised in glutaraldehyde–agarose gels. Four different strategies were considered concerning the activation of the support (low or high density) and the ionic strength (low or high). In terms of immobilisation rate and yield, better results were obtained when low ionic strength conditions and high density activated support (75 μEq/ml) were used. Immobilisation proceeds initially with an ionic adsorption which facilitates the further covalent attachment of the enzyme to the support. An almost complete immobilisation has been attained in a very short period (0.5–2 h). Immobilisation maintained a high percentage of MnP activity for long periods of time (activity levels of 50–60% after more than 1 year at room temperature storage). Other desirable effects such as increased thermostability at 50–60 °C for MnP from Bjerkandera and higher resistance to high H2O2 concentrations for MnP for P. chrysosporium were also obtained. This latter is quite an interesting feature because it avoids the inactivation of the enzyme in the presence of an unbalanced concentration of H2O2. The improved characteristics of the immobilised MnP make its application in several fields such as the enzymatic oxidation of hardly degradable compounds more feasible.  相似文献   

5.
Polyacrylonitrile (PAN) nanofibers could be fabricated by electrospinning with fiber diameter in the range of 150–300 nm, providing huge surface area for enzyme immobilization and catalytic reactions. Lipase from Candida rugosa was covalently immobilized onto PAN nanofibers by amidination reaction. Aggregates of enzyme molecules were found on nanofiber surface from field emission scanning electron microscopy and covalent bond formation between enzyme molecule and the nanofiber was confirmed from FTIR measurements. After 5 min activation and 60 min reaction with enzyme-containing solution, the protein loading efficiency was quantitative and the activity retention of the immobilized lipase was 81% that of free enzyme. The mechanical strength of the NFM improved after lipase immobilization where tensile stress at break and Young's modulus were almost doubled. The immobilized lipase retained >95% of its initial activity when stored in buffer at 30 °C for 20 days, whereas free lipase lost 80% of its initial activity. The immobilized lipase still retained 70% of its specific activity after 10 repeated batches of reaction. This lipase immobilization method shows the best performance among various immobilized lipase systems using the same source of lipase and substrate when considering protein loading, activity retention, and kinetic parameters.  相似文献   

6.
Characteristics of galactomannanase for degrading konjac gel   总被引:2,自引:0,他引:2  
Galactomannanase (Glmnase) is an enzyme product derived from Aspergillus niger. The activity of Glmnase degrading (hydrolyzing) the konjac gel were investigated. Significant loss in the enzyme activity was found when the temperature above 60 °C. Similar observations were obtained when the reaction pH above 5. Further increase in the pH value resulted in entirely loss of enzyme activity at the alkaline pH region (pH 8.0 and above). The optimal hydrolyzing temperature and pH were at 60 °C and 5.0, respectively. For the stability test, the purified Glmnase increased its thermostability up to 70 °C at pH 5.0, but it retained only about 60% activity after 60 min incubation at this temperature and its activity became zero after 20 min incubation at 80 °C. The Glmnase was stable at the pH range from 3.0 to 7.0 at room temperature and retained at least 80% activity for 60 min. For the storage temperature test, the lyophilized Glmnase still conserved about 90% activity during 7 days at 30 °C, and was higher than about 80% at 4 °C. The Km and Vmax, were 0.018 mg/ml konjac powder and 0.20 mg/ml reducing sugar per min, respectively.  相似文献   

7.
The kinetics of malolactic fermentation in Chardonnay wine by immobilised Lactobacillus casei cells has been studied. Calcium pectate gel and chemically modified chitosan beads were used as supports for immobilisation. Repeated batch fermentations were carried out with different wine samples, some of which were treated with sulfur dioxide (free 19–25 mg/litre and total 80–88 mg/litre), in shake flask at 36, 25 and 20°C without any loss of activity. The degradation of malic acid obtained using immobilised cells was twice as high as that obtained with free cells. At an initial pH 3·2, decrease of malic acid of about 30% was observed at 25°C in one hour using L. casei cells immobilised either in pectate gel or on chitosan. Among the physico-chemical parameters studied, temperature was the main factor affecting metabolism of the organic acids as well as the rate of the malolactic fermentation. Operational stability of calcium pectate gel beads and chemically modified chitosan beads was 6 months after eight fermentations and 2 months after five fermentations, respectively, which proved the possibility of industrial application of the chosen supports in wine making.  相似文献   

8.
Pseudomonas cepaciae lipase adsorbed onto non-porous structured fiber supports in the form of woven fabrics, was used to catalyze hydrolysis and transesterification reactions in the gas phase. The enzyme adsorbed onto carbon fiber support exhibited much higher catalytic activity compared to the enzyme immobilized onto glass fiber carrier. The effect of temperature and relative humidity on reactions catalyzed by P. cepaciae lipase adsorbed onto structured fiber carbon support was studied in the gas system. Under the conditions investigated (up to 60 °C and 80% relative humidity), the immobilized enzyme showed a high thermostability and could be efficiently used to catalyze hydrolytic and transesterification reactions in continuous mode. Structured fiber supports, with a high specific surface area and a high mechanical resistance, showed a low-pressure drop during the passage of reactants through a reactor. The approach proposed in this study could be suitable for immobilization of a wide variety of enzymes.  相似文献   

9.
The purified lipase from Burkholderia cepacia was immobilised on a porous polypropylene support and its biocatalytic properties were compared with those of the free enzyme in organic media. For both lipase preparations, the rate of p-nitrophenyl ester hydrolysis in n-heptane was not restricted by mass transfer limitations. The immobilisation changed neither the temperature at which the reaction rate was maximal, nor the activation energy of the reaction. The enzyme stability was slightly decreased (1.3-fold) upon immobilisation. Moreover, the immobilised enzyme displayed fewer variations of activity with fatty acid chain length. Interestingly, for all the different p-nitrophenyl esters used, the immobilised enzyme was more active (from 5.8- to 18.9-fold) than the free enzyme. Therefore, it would be very useful to use B. cepacia lipase immobilised onto porous polypropylene for applications in organic media, as it displayed high activities on a larger range of substrates. Received: 8 February 1999 / Received revision: 19 March 1999 / Accepted: 20 March 1999  相似文献   

10.
Two immobilisation methods for enterokinase were developed, which yielded high remaining activities for the cleavage of the fusion protein MUC1-IgG Fc. Different carrier materials were compared regarding remaining enzyme activity and storage stability. Immobilisation procedures involving support material activation using glutardialdehyde were found to result in low remaining activities. Applying less aggressive activation procedures, remaining activities of approximately 60% were received when immobilising enterokinase on either Estapor paramagnetic microspheres or hexamethylamino Sepabeads. In case of hexamethylamino Sepabeads we were able to increase the half-life time 4.3-fold at 23 degrees C and 3.8-fold at 4 degrees C compared to the free enzyme at the same temperatures. By immobilising the biocatalyst the downstream process is simplified allowing the easy removal of the enzyme from the reaction mixture. The immobilised enterokinase cleaves the fusion protein MUC1-IgG Fc in at least two repeated batches, proving the efficiency of the immobilisation method and the reusability of the biocatalyst.  相似文献   

11.
Purified RNase Rs, from Rhizopus stolonifer, when covalently coupled to aminoethyl (AE) Bio-Gel P-2, via its carbohydrate moiety, retained 35–40% activity of the soluble enzyme. Optimization of coupling conditions showed that the most active immobilized preparations are obtained when 400 units of 100 μM periodate oxidized enzyme are allowed to react with 1 ml (packed volume) of AE-Bio-Gel P-2 at 6±1°C for 15 h. Immobilization did not change the pH and temperature optima of the enzyme but it increased the temperature stability. Immobilization did not bring about a change in the Km but resulted in a 2·5-fold decrease in the Vmax. Substrate concentrations as high as 25 mg of RNA could be converted to more than 80% 2′,3′ cyclic nucleotides in 14 h, at pH 5·5 and 37°C. On repeated use, the bound enzyme retained 70% of its initial activity after six cycles of use. The bound enzyme could be stored in wet state for 60 days without any significant loss in its initial activity.  相似文献   

12.
Kerase, a serine protease from Streptomyces fradiae, was immobilized on porous glass (SIKUG®) by covalent attachment, through amino groups on the enzyme. Modifications of four lysine residues (44·4% of the accessible or superficial amino groups) results in a loss of 6·5% of the enzymic activity. After immobilization, the optimal reaction pH changed from a range of 7·5-8·5 to 9-10. The immobilized protease was stable in a broad pH range, 6-12, while the soluble protease was irreversibly denaturated at alkaline pHs (pH>8). The optimal reaction temperature was displaced from 55 to 65°C, showing a higher thermal stability of the immobilized enzyme. Kerase immobilized onto porous glass was stable for at least 28 days, working in a repeated-batch process of three cycles per day, with an activity loss of 22·1 ± 3·1%.  相似文献   

13.
Glyptal, a polyester obtained from phthalic anhydride and glycerol, was used as a support for protein immobilisation. Hydrazide groups were introduced in the polymer and then converted to azide groups, through which protein was covalently immobilised. Amyloglucosidase was used as a model and an insoluble water derivative was synthesised retaining 24 % of the specific activity of the native enzyme. Some properties of this immobilised enzyme were studied: Km (4.54 g.l–1 using starch as substrate), optimal temperature (55°C) and half life (8 days). Furthermore, ferromagnetic-azide-glyptal derivative showed to be useful for the amyloglucosidase immobilisation.  相似文献   

14.
Lipase QL from Alcaligenes sp. is a quite thermostable enzyme. For example, it retains 75% of catalytic activity after incubation for 100 h at 55 °C and pH 7.0. Nevertheless, an improvement of the enzyme properties was intended via immobilization by covalent attachment to different activated supports and by adsorption on hydrophobic supports (octadecyl-sepabeads). This latter immobilization technique promotes the most interesting improvement of enzyme properties: (a) the enzyme is hyperactivated after immobilization: the immobilized preparation exhibits a 135% of catalytic activity for the hydrolysis of p-nitrophenyl propionate as compared to the soluble enzyme; (b) the thermal stability of the immobilized enzyme is highly improved: the immobilized preparation exhibits a half-life time of 12 h when incubated at 80 °C, pH 8.5 (a 25-fold stabilizing factor regarding to the soluble enzyme); (c) the optimal temperature was increased from 50 °C (soluble enzyme) up to 70 °C (hydrophobic support enzyme immobilized preparations); (d) the enantioselectivity of the enzyme for the hydrolysis of glycidyl butyrate and its dependence on the experimental conditions was significantly altered. Moreover, because the enzyme becomes reversibly but very strongly adsorbed on these highly hydrophobic supports, the lipase may be desorbed after its inactivation and the support may be reused. Very likely, adsorption occurs via interfacial activation of the lipase on the hydrophobic supports at very low ionic strength. On the other hand, all the covalent immobilization protocols used to immobilize the enzyme hardly improved the properties of the lipase.  相似文献   

15.
Trypsin (E.C. 3.4.21.4) was covalently immobilised onto a membrane of a cellulosic exopolysaccharide produced by Zoogloea sp. in sugarcane molasses. Carbonyl groups were introduced into the matrix by sodium metaperiodate oxidation and the enzyme was immobilised either directly or through bovine serum albumin (BSA) as a spacer. The trypsin-membrane and trypsin–BSA-membrane retained, respectively, 37.2% and 9.16% of the specific activity of the native enzyme acting on N-benzoil-dl-arginine-p-nitroanilide (BAPNA). No activity decrease was observed in both preparations after seven reutilisations as well as they showed to be more thermal stable than the native enzyme. The trypsin–BSA-membrane presented the same initial activity (99%) after 54 days stored in 0.1 M Tris–HCl buffer, pH 8.0, at 4 °C but the trypsin-membrane lost 15% of activity. Furthermore, the trypsin–BSA-membrane lost 31% of activity after reuse at 9 days interval during 54 days of storage at 4 °C whereas the trypsin-membrane lost 69% of activity under the same conditions. These results showed an additional application for this biofilm, namely, to act as a reusable matrix for trypsin immobilisation and the presence of BSA improved the derivative performance.  相似文献   

16.
A (+)-γ-lactamase was precipitated, cross-linked and the resulting solid crushed prior to immobilisation within a capillary column microreactor. The microreactor was subsequently used to study enzyme stability, activity, kinetics and substrate specificity. The thermophilic (+)-γ-lactamase retained 100% of its initial activity at the assay temperature, 80°C, for 6 h and retained 52% activity after 10 h, indicating the advantage of immobilisation. This high stability of the immobilised enzyme provided the advantage that it could be utilised to screen many compounds in the microreactor system. This advantage overcame the fact that the immobilisation process affected enzyme kinetics and activity, which was reduced (by 70%) compared to the free enzyme. In general, the enzyme displayed similar substrate specificity to that found in a previous study for the free enzyme; however, enhanced activity was seen towards one substrate, acrylamide. The system developed correlates well with the free enzyme in batch assay and indicates the suitability of the system for enzyme substrate screening, allowing a significant reduction in cost, due to the reduced amounts of enzyme, substrates and other assay constituents required.  相似文献   

17.
In the present study, a combination of immobilisation processes was utilised to prepare robust biocatalysts. First, lipase from Candida rugosa was adsorbed on polyhydroxybutyrate (PHB) particles, followed by cross-linking with glutaraldehyde. Conditions for creating immobilised lipase involved the addition of 0.6 M glutaraldehyde and 45 U mL−1 lipase while mixing at 150 rpm (4 °C) for 30 min. These conditions produced the highest yield of immobilised lipase (92 %) and the highest levels of activity (1.94 mg g−1 support). At 40 °C and pH 9 the immobilised enzyme was optimally active with a Km and Vmaxat 1.2 mM and 2.5 × 10-3 mmol min−1, respectively. The use of immobilised lipase improved thermal stability, storage stability, and reusability.The immobilised lipase retained 80 % of its activity after incubation at 30–60 °C for 2 h and 4 °C for 30 d in 0.2 M sodium phosphate buffer (pH 7.0). Moreover, the immobilised enzyme retained 50 % of its activity after more than 14 cycles under optimal conditions. The immobilised lipase was used to produce monoacylglycerol MAG. The existence of a carbonyl group at 1,743 and 1,744 cm−1 was identified using attenuated total reflectance (ATR)-Fourier transformed infrared spectroscopy. Results showed that 48 % MAG was produced.  相似文献   

18.
Summary A thermostable esterase was immobilised to glyoxyl-agarose under conditions designed to generate limited-linkage and multi-point covalent derivatives. The multi-point derivative was 830-fold more thermostable than the limited-linkage derivative and retained more activity in the presence of sodium chloride and organic solvents. Medium chain (C8) aliphatic p-nitrophenyl ester substrates, which inactivate the soluble enzyme, were shown to be more readily hydrolysed. Together these data support the contention that multi-point covalent immobilisation results in a more rigid, less conformationally flexible protein structure.  相似文献   

19.
Highly stable and recoverable polianiline nanofibres are developed for enzyme immobilisation and recovery. Candida rugosa lipase (LP) was immobilised onto a polyaniline nanofibre with cross-linking for enzyme aggregation. The optimal LP loading was 5 mg LP/1 mg polyaniline. The stability of the immobilised LP was measured and shown to be high under vigorous shaking at room temperature. This polyaniline nanofibre LP was easily separable with low-speed centrifugation and repeatedly usable. LP immobilised on polyaniline nanofibre demonstrated high stereoselectivity in the kinetic resolution of racemic (R,S)-ibuprofen and improved the long-term stability as compared to that by the free enzyme, allowing the supported enzyme to be repeatedly used for a series of chiral resolution reactions. The conversion from racemic ibuprofen to a chirally selective compound, a prophilic ester of ibuprofen, was approximately 30% with free LP and approximately 10% with immobilised LP. The enantiomeric excess using immobilised LP after 96 h reaction was 0.884.  相似文献   

20.
Bacillus macerans cyclodextrin glycosyltransferase (CGTase) (EC 2.4.1.19) was covalently immobilised on Eupergit C and used in a packed-bed reactor to investigate the continuous production of long-carbohydrate-chain alkyl glycosides from α-cyclodextrin (α-CD) and n-dodecyl-(1,4)-β-maltopyranoside (C12G2β). The effects of buffer ion strength and pH, and enzyme loading on the immobilisation yield and the enzyme activity were evaluated. Approximately 98% of the protein and 33% of the total activity were immobilised. At pH 5.15, the enzymatic half-life was 132 min at 60 °C and 18 min at 70 °C. The immobilised enzyme maintained 60% of its initial activity after 28 days storage at 4 °C. The degree of conversion was controlled by simple regulation of the flow rate through the reactor, making it possible to optimise the product distribution. It was possible to achieve a yield of the primary coupling product n-dodecyl-(1,4)-β-maltooctaoside (C12G8β) of about 50%, with a ratio between the primary and the secondary coupling product of about 10. Thermoanaerobacter sp. CGTase (Toruzyme 3.0 L) immobilised on Eupergit C had good operational stability at 60 and 70 °C thus showing the advantages of using more thermostable enzymes in biocatalysis. However, this enzyme was unsuitable for the production of C12G8β due to extensive disproportionation reactions, giving a broad product range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号