首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The epsilon-amino group of Lys-166 of Rhodospirillum rubrum ribulosebisphosphate carboxylase/oxygenase was postulated as the essential base which initiates catalysis by abstracting the proton at C-3 of ribulose 1,5-bisphosphate (Hartman, F. C., Soper, T. S., Niyogi, S. K., Mural, R. J., Foote, R. S., Mitra, S., Lee, E. H., Machanoff, R., and Larimer, F. W. (1987) J. Biol. Chem. 262, 3496-3501). To scrutinize this possibility, the site-directed Gly-166 mutant, totally devoid of ribulosebisphosphate carboxylase activity, was examined for its ability to catalyze each of three partial reactions. When carbamylated at Lys-191 (i.e. activated with CO2 and Mg2+), wild-type enzyme catalyzed the hydrolysis of 2-carboxy-3-keto-D-arabinitol 1,5-bisphosphate, the six-carbon reaction intermediate of the carboxylase reaction (Pierce, J., Andrews, T. J., and Lorimer, G. H. (1986a) J. Biol. Chem. 261, 10248-10256). Likewise, when carbamylated at Lys-191, the Gly-166 mutant also catalyzed the hydrolysis of this reaction intermediate. The carbamylated wild type catalyzed the enolization of ribulose 1,5-bisphosphate as indicated by the transfer of 3H radioactivity from [3-3H]ribulose, 1,5-bisphosphate to the medium. However, even when carbamylated at Lys-191, the mutant protein did not catalyze the enolization of ribulose 1,5-bisphosphate. Additionally, unlike the decarbamylated wild-type enzyme, which catalyzed the decarboxylation of 2-carboxy-3-keto-D-arabinitol 1,5-bisphosphate in the absence of Mg2+, the mutant protein was inactive in this partial reaction. These properties exclude the epsilon-amino group of Lys-166 as an obligatory participant in the hydrolysis of 2-carboxy-3-keto-D-arabinitol 1,5-bisphosphate. In contrast, these properties are consistent with the epsilon-amino group of Lys-166 functioning as an acid-base catalyst in the enolization of ribulose 1,5-bisphosphate (when the enzyme is carbamylated) and in the decarboxylation of 2-carboxy-3-keto-D-arabinitol 1,5-bisphosphate (when the enzyme is decarbamylated). Alternatively, Lys-166 may stabilize the transition states of these two partial reactions.  相似文献   

2.
The unusual chemical properties of active-site Lys-329 of ribulose bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have suggested that this residue is required for catalysis. To test this postulate Lys-329 was replaced with glycine, serine, alanine, cysteine, arginine, glutamic acid or glutamine by site-directed mutagenesis. These single amino acid substitutions do not appear to induce major conformational changes because (i) intersubunit interactions are unperturbed in that the purified mutant proteins are stable dimers like the wild-type enzyme and (ii) intrasubunit folding is normal in that the mutant proteins bind the competitive inhibitor 6-phosphogluconate with an affinity similar to that of wild-type enzyme. In contrast, all of the mutant proteins are severely deficient in carboxylase activity (less than 0.01% of wild-type) and are unable to form the exchange-inert complex, characteristic of the wild-type enzyme, with the transition-state analogue carboxyarabinitol bisphosphate. These results underscore the stringency of the requirement for a lysyl side-chain at position 329 and imply that Lys-329 is involved in catalysis, perhaps stabilizing a transition state in the overall reaction pathway.  相似文献   

3.
Both activities of ribulose bisphosphate carboxylase/oxygenase are dependent on carbamylation by CO2 of a specific lysyl epsilon-amino group (Lys-191 of the enzyme from Rhodospirillum rubrum). To examine the stringency of the requirement for this lysyl side chain, Lys-191 was converted to an aminoethylcysteinyl residue (net replacement of a gamma-methylene group by a sulfur atom) by a combination of site-directed mutagenesis and subsequent chemical modification. The purified Cys-191 mutant was totally devoid of both carboxylase and oxygenase activities. However, this mutant protein exhibited tight-binding of the transition-state analogue, 2-carboxyarabinitol bisphosphate, a property heretofore ascribed solely to the carbamylated form of the carboxylase. Treatment of the mutant protein with ethylene imine restored catalytic activity to 4-7% of the wild-type level. The carboxylase:oxygenase activity ratio of the aminoethylated protein was unperturbed relative to that of wild-type enzyme.  相似文献   

4.
Numerous candidates have been suggested according to chemical and structural criteria for the active site base of ribulose bisphosphate carboxylase/oxygenase that catalyzes substrate enolization. We evaluate the functional significance of two such candidates, His-321 and Ser-368 of the Rhodospirillum rubrum enzyme, by site-directed mutagenesis. Position 321 mutants retain 3-12% of wild-type rates of both overall carboxylation and the initial enolization, with little effect on Km for CO2 or ribulose bisphosphate. Position 368 mutants exhibit approximately 1% of wild-type carboxylation but 4-9% of enolization, also accompanied by little effect on Km values. The modest catalytic facilitations elicited by these residues are incompatible with either acting as the crucial base. The enhanced efficiency of the position 368 mutants in enolization versus carboxylation clearly indicates that Ser-368 effects catalysis preferentially beyond the point of proton abstraction. Both sets of mutants bind the reaction intermediate analogue, 2-carboxy-D-arabinitol bisphosphate, stoichiometrically. Ligand exchange from complexes with position 321 mutants is increased relative to wild type, whereas complexes with position 368 mutants are more exchange-inert. Therefore, His-321 may assist stabilization of the transition state mimicked by the analogue.  相似文献   

5.
The two active sites of homodimeric ribulose bisphosphate carboxylase/oxygenase fromRhodospirillum rubrum are constituted by interacting domains of adjacent subunits, in which residues from each are required for catalytic activity. Active-site residues include Lys-166 of one domain and Glu-48 of the interacting domain from the adjacent subunit. Whereas all substitutions for Lys-166, introduced by site-directed mutagenesis, abolished catalytic activity, only a negatively charged residue (e.g., aspartic acid) resulted in the disruption of the subunit interactions (Lee et al., 1987). This disruption could result from improper folding of the individual polypeptide chains or to more localized effects (e.g., charge-charge repulsion due to proximal negative charges of Asp-166 and Glu-48 of adjacent domains or conformational changes restricted to a single domain). To address these questions, we have examined the ability of the Asp-166 mutant subunit to associate with a mutant subunit in which the negatively charged Glu-48 has been replaced by the neutral glutaminyl residue. Coexpression inEscherichia coli of the genes for both mutant subunits results in formation of a catalytically active hybrid, despite the absence of activity when either gene is expressed individually. Isolation and characterization of the hybrid show that it is composed of one Asp-166 subunit and one Gln-48 subunit, presumably with only one functional active site per dimeric molecule. This association of dissimilar subunits shows that introduction of a negative charge at position 166 does not lead to overall distortion of subunit conformation. In contrast to the wild-type enzyme, the hybrid dissociates spontaneously at low protein concentration but is stablized by elevated ionic strengths or by glycerol.  相似文献   

6.
H B Smith  F C Hartman 《Biochemistry》1991,30(21):5172-5177
Ribulosebisphosphate carboxylase/oxygenase is reversibly activated by the reaction of CO2 with a specific lysyl residue (Lys191 of the Rhodospirillum rubrum enzyme) to form a carbamate that coordinates an essential Mg2+ cation. Surprisingly, the Lys191----Cys mutant protein, in the presence of CO2 and Mg2+, exhibits tight binding of the reaction intermediate analogue 2-carboxyarabinitol bisphosphate [Smith, H. B., Larimer, F. W., & Hartman, F. C. (1988) Biochem. Biophys. Res. Commun. 152, 579-584], a property normally equated with effective coordination of the Mg2+ by the carbamate. Catalytic ineptness of the Cys191 mutant protein, despite its ability to coordinate Mg2+ properly, might be due to the absence of the carbamate nitrogen. To investigate this possibility, we have evaluated the ability of exogenous amines to restore catalytic activity to the mutant protein. Significantly, the Cys191 protein manifests ribulose bisphosphate dependent fixation of 14CO2 when incubated with aminomethanesulfonate but not ethanesulfonate. This novel activity reflects a Km value for ribulose bisphosphate which is not markedly perturbed relative to wild-type enzyme, a Km for Mg2+ which is in fact decreased 10-fold, and rate saturation with respect to aminomethanesulfonate (Kd = 8 mM). Chromatographic and spectrophotometric analyses reveal the product of CO2 fixation to be D-3-phosphoglycerate, while turnover of [1-3H]ribulose bisphosphate into [3H]phosphoglycolate confirms oxygenase activity. We conclude that aminomethanesulfonate restored ribulosebisphosphate carboxylase/oxygenase activities to the Cys191 mutant protein by providing a nitrogenous function which satisfies a catalytic demand normally met by the carbamate nitrogen of Lys191.  相似文献   

7.
Affinity labeling and comparative sequence analyses have placed Lys-166 of ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum at the active site. The unusual nucleophilicity and acidity of the epsilon-amino group of Lys 166 (pKa = 7.9) suggest its involvement in catalysis, perhaps as the base that enolizes ribulosebisphosphate (Hartman, F.C., Milanez, S., and Lee, E.H. (1985) J. Biol. Chem. 260, 13968-13975). In attempts to clarify the role of Lys-166 of the carboxylase, we have used site-directed mutagenesis to replace this lysyl residue with glycine, alanine, serine, glutamine, arginine, cysteine, or histidine. All seven of these mutant proteins, purified by immunoaffinity chromatography, are severely deficient in carboxylase activity; the serine mutant, which is the most active, has a kcat only 0.2% that of the wild-type enzyme. Although low, the carboxylase activity displayed by some of the mutant proteins proves that Lys-166 is not required for substrate binding and argues that the detrimental effects brought about by amino acid substitutions at position 166 do not reflect gross conformational changes. As demonstrated by their ability to tightly bind a transition-state analogue (2-carboxyarabinitol 1,5-bisphosphate) in the presence of CO2 and Mg2+, some of the mutant proteins undergo the carbamylation reaction that is required for activation of the wild-type enzyme. Since Lys-166 is required neither for activation (i.e. carbamylation by CO2) nor for substrate binding, it must be essential to catalysis. When viewed within the context of previous related studies, the results of site-directed mutagenesis are entirely consistent with Lys-166 functioning as the base that initiates catalysis by abstracting the C-3 proton from ribulosebisphosphate. An alternative possibility that Lys-166 acts to stabilize a transition state in the reaction pathway cannot be rigorously excluded.  相似文献   

8.
The active site of ribulose-bisphosphate carboxylase/oxygenase is constituted from domains of adjacent subunits and includes an intersubunit electrostatic interaction between Lys 168 and Glu48, which has been recently identified by x-ray crystallography (Andersson, I., Knight, S., Schneider, G., Lindqvist, Y., Lundqvist, T., Br?ndén, C.-I., and Lorimer, G.H. (1989) Nature 337, 229-234; Lundqvist, T., and Schneider, G. (1989) J. Biol. Chem. 264, 7078-7083). To examine the structural and functional requirements for this interaction, we have used site-directed mutagenesis to replace Lys168 of the homodimeric enzyme from Rhodospirillum rubrum with arginine, glutamine, or glutamic acid. All three substitutions result in mutant enzymes with less than or equal to 0.1% of wild-type activity. The nonconservative substitution of Lys168 with a glutamyl residue precludes the formation of a stable dimer, explaining the consequential abolition of enzymic activity. Both the Arg168 and Gln168 mutant proteins are isolated as stable dimers, even though the latter obviously lacks an electrostatic interaction present in the wild-type enzyme. Despite the absence of overall carboxylase activity, these two mutant proteins serve as catalysts for the enolization of ribulose bisphosphate, as measured by exchange of the C3 proton with solvent. These observations, as well as ligand-binding properties of the mutant proteins, are consistent with Lys168 facilitating a catalytic step subsequent to enolization.  相似文献   

9.
Oligonucleotide-directed mutagenesis of cloned Rhodospirillum rubrum ribulose bisphosphate carboxylase/oxygenase with a synthetic 13mer oligonucleotide primer was used to effect a change at Met-330 to Leu-330. The resultant enzyme was kinetically examined in some detail and the following changes were found. The Km(CO2) increased from 0.16 to 2.35 mM, the Km(ribulose bisphosphate) increased from 0.05 to 1.40 mM for the carboxylase reaction and by a similar amount for the oxygenase reaction. The Ki(O2) increased from 0.17 to 6.00 mM, but the ratio of carboxylase activity to oxygenase activity was scarcely affected by the change in amino acid. The binding of the transition state analogue 2-carboxyribitol 1,5-bisphosphate was reversible in the mutant and essentially irreversible in the wild type enzyme. Inhibition by fructose bisphosphate, competitive with ribulose bisphosphate, was slightly increased in the mutant enzyme. These data suggest that the change of the residue from methionine to leucine decreases the stability of the enediol reaction intermediate.  相似文献   

10.
Crystallographic studies of ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum suggest that active-site Asn111 interacts with Mg2+ and/or substrate (Lundqvist, T., and Schneider, G. (1991) J. Biol. Chem. 266, 12604-12611). To examine possible catalytic roles of Asn111, we have used site-directed mutagenesis to replace it with a glutaminyl, aspartyl, seryl, or lysyl residue. Although the mutant proteins are devoid of detectable carboxylase activity, their ability to form a quaternary complex comprised of CO2, Mg2+, and a reaction-intermediate analogue is indicative of competence in activation chemistry and substrate binding. The mutant proteins retain enolization activity, as measured by exchange of the C3 proton of ribulose bisphosphate with solvent, thereby demonstrating a preferential role of Asn111 in some later step of overall catalysis. The active sites of this homodimeric enzyme are formed by interactive domains from adjacent subunits (Larimer, F. W., Lee, E. H., Mural, R. J., Soper, T. S., and Hartman, F. C. (1987) J. Biol. Chem. 262, 15327-15329). Crystallography assigns Asn111 to the amino-terminal domain of the active site (Knight, S., Anderson, I., and Br?ndén, C.-I. (1990) J. Mol. Biol. 215, 113-160). The observed formation of enzymatically active heterodimers by the in vivo hybridization of an inactive position-111 mutant with inactive carboxyl-terminal domain mutants is consistent with this assignment.  相似文献   

11.
Previous reports provide indirect evidence for the presence of Glu-48 at the active site of ribulose bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. This possibility has been examined directly by replacement of Glu-48 with glutamine via site-directed mutagenesis. This single amino acid substitution does not prevent subunit association or ligand binding. However, the Glu-48 mutant is severely deficient in catalytic activity, exhibiting a kcat only 0.05% that of wild-type enzyme. These results demonstrate that Glu-48 is positioned at the active site and suggest that it serves a functional role. In conjunction with previous studies, the discovery of essentiality of Glu-48 argues that the active site is located at an interface between subunits.  相似文献   

12.
Further evidence for time-dependent interconversions between active and inactive states of ribulose 1,5-bisphosphate carboxylase is presented. It was found that ribulose bisphosphate oxygenase and ribulose bisphosphate carboxylase could be totally inactivated by excluding CO2 and Mg2+ during dialysis of the enzyme at 4 degrees C. When initially inactive enzyme was assayed, the rate of reaction continually increased with time, and the rate was inversely related to the ribulose bisphosphare concentration. The initial rate of fully activated enzyme showed normal Michaelis-Menten kinetics with respect to ribulose bisphosphate (Km = 10muM). Activation was shown to depend on both CO2 and Mg2+ concentrations, with equilibrium constants for activation of about 100muM and 1 mM respectively. In contrast with activation, catalysis appeared to be independent of Mg2+ concentration, but dependent on CO2 concentration, with a Km(CO2) of about 10muM. By studying activation and de-activation of ribulose bisphosphate carboxylase as a function of CO2 and Mg2+ concentrations, the values of the kinetic constants for these actions have been determined. We propose a model for activation and catalysis of ribulose bisphosphate carboxylase: (see book) where E represents free inactive enzyme; complex in parentheses, activated enzyme; R, ribulose bisphosphate; M, Mg2+; C, CO2; P, the product. We propose that ribulose bisphosphate can bind to both the active and inactive forms of the enzyme, and slow inter-conversion between the two states occurs.  相似文献   

13.
Substitutions for active-site lysyl residues at positions 166 and 329 in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been shown to abolish catalytic activity. Treatment of the Cys-166 and Cys-329 mutant proteins with 2-bromoethylamine partially restores enzyme activity, presumably as a consequence of selective aminoethylation of the thiol group unique to each protein. Amino acid analyses, slow inactivation of the wild-type carboxylase by bromoethylamine, and the failure of bromoethylamine to restore activity to the corresponding glycyl mutant proteins support this interpretation. The observed facile, selective aminoethylations may reflect an active site microenvironment not dissimilar to that of the native enzyme. Catalytic constants of these novel carboxylases, which contain a sulfur atom in place of a specific lysyl gamma-methylene group, are significantly lower than that of the wild-type enzyme. Furthermore, the aminoethylated mutant proteins form isolable complexes with a transition state analogue, but with compromised stabilities. These detrimental effects by such a modest structural change underscore the stringent requirement for lysyl side chains at positions 166 and 329. In contrast, the aminoethylated mutant proteins exhibit carboxylase/oxygenase activity ratios and Km values that are unperturbed relative to those for the native enzyme.  相似文献   

14.
The cell extract of Halobacterium mediterranei catalyses incorporation of 14CO2 into 3-phosphoglycerate in the presence of ribulose bisphosphate suggesting the existence of ribulose bisphosphate carboxylase activity in this halophilic archaebacterium.  相似文献   

15.
The activation kinetics of purified Rhodospirillum rubrum ribulose bisphosphate carboxylase were analysed. The equilibrium constant for activation by CO(2) was 600 micron and that for activation by Mg2+ was 90 micron, and the second-order activation constant for the reaction of CO(2) with inactive enzyme (k+1) was 0.25 X 10(-3)min-1 . micron-1. The latter value was considerably lower than the k+1 for higher-plant enzyme (7 X 10(-3)-10 X 10(-3)min-1 . micron-1). 6-Phosphogluconate had little effect on the active enzyme, and increased the extent of activation of inactive enzyme. Ribulose bisphosphate also increased the extent of activation and did not inhibit the rate of activation. This effect might have been mediated through a reaction product, 2-phosphoglycolic acid, which also stimulated the extent of activation of the enzyme. The active enzyme had a Km (CO2) of 300 micron-CO2, a Km (ribulose bisphosphate) of 11--18 micron-ribulose bisphosphate and a Vmax. of up to 3 mumol/min per mg of protein. These data are discussed in relation to the proposed model for activation and catalysis of ribulose bisphosphate carboxylase.  相似文献   

16.
Ribulose 1,5-bisphosphate in the chloroplast has been suggested to regulate the activity of the ribulose bisphosphate carboxylase/oxygenase. To generate high levels of ribulose bisphosphate, isolated and intact spinach chloroplasts were illuminated in the absence of CO2. Under these conditions, chloroplasts generate internally up to 300 nanomoles ribulose 1,5-bisphosphate per milligram chlorophyll if O2 is also absent. This is equivalent to 12 millimolar ribulose bisphosphate, while the enzyme, ribulose bisphosphate carboxylase, offers up to 3.0 millimolar binding sites for the bisphosphate in the chloroplast stroma. During illumination, the ribulose bisphosphate carboxylase is deactivated, due mostly to the absence of CO2 required for activation. The rate of deactivation of the ribulose bisphosphate carboxylase was not affected by the chloroplast ribulose bisphosphate levels. Upon addition of CO2, the carboxylase in the chloroplast was completely reactivated. Of interest, addition of 3-phosphoglycerate stopped deactivation of the carboxylase in the chloroplast while ribulose bisphosphate accumulated. With intact chloroplasts in light, no correlation between deactivation of the carboxylase and ribulose bisphosphate levels could be shown.  相似文献   

17.
The essential catalytic base at the active site of the glycolytic enzyme triosephosphate isomerase is the carboxylate group of Glu-165, which directly abstracts either the 1-pro-R proton of dihydroxyacetone phosphate or the 2-proton of (R)-glyceraldehyde 3-phosphate to yield the cis-enediol intermediate. Using the methods of site-directed mutagenesis, we have replaced Glu-165 by Asp. The three enzymes chicken isomerase from chicken muscle, wild-type chicken isomerase expressed in Escherichia coli, and mutant (Glu-165 to Asp) chicken isomerase expressed in E. coli have each been purified to homogeneity. The specific catalytic activities of the two wild-type isomerases are identical, while the specific activity of the mutant enzyme is reduced by a factor of about 1000. The observed kinetic differences do not derive from a change in mechanism in which the aspartate of the mutant enzyme acts as a general base through an intervening water molecule, because the D2O solvent isotope effects and the stoichiometries of inactivation with bromohydroxyacetone phosphate are identical for the wild-type and mutant enzymes. Using the range of isotopic experiments that were used to delineate the free-energy profile of the wild-type chicken enzyme, we here derive the complete energetics of the reaction catalyzed by the mutant protein. Comparison of the reaction energetics for the wild-type and mutant isomerases shows that only the free energies of the transition states for the two enolization steps have been seriously affected. Each of the proton abstraction steps is about 1000-fold slower in the mutant enzyme. Evidently, the excision of a methylene group from the side chain of the essential glutamate has little effect on the free energies of the intermediate states but dramatically reduces the stabilities of the transition states for the chemical steps in the catalyzed reaction.  相似文献   

18.
Toluene-permeabilized Rhodospirillum rubrum cells were used to study activation of and catalysis by the dual-function enzyme ribulose bisphosphate carboxylase/oxygenase. Incubation with CO2 provided as HCO3-, followed by rapid removal of CO2 at 2 degrees C and subsequent incubation at 30 degrees C before assay, enabled a determination of decay rates of the carboxylase and the oxygenase. Half-times at 30 degrees C with 20 mM-Mg2+ were 10.8 and 3.7 min respectively. Additionally, the concentrations of CO2 required for half-maximal activation were 56 and 72 microM for the oxygenase and the carboxylase respectively. After activation and CO2 removal, inactivation of ribulose bisphosphate oxygenase in the presence of 1 mM- or 20mM-Mn2+ was slower than that with the same concentrations of Co2+ or Mg2+. Only the addition of Mg2+ supported ribulose bisphosphate carboxylase activity, as Mn2+, Co2+ and Ni2+ had no effect. A pH increase after activation in the range 6.8-8.0 decreased the stability of the carboxylase but in the range 7.2-8.0 increased the stability of the oxygenase. With regard to catalysis. Km values for ribulose 1,5-bisphosphate4- were 1.5 and 67 microM for the oxygenase and the carboxylase respectively, and 125 microM for O2. Over a broad range of CO2 concentrations in the activation mixture, the pH optima were 7.8 and 8-9.2 for the carboxylase and the oxygenase respectively. The ratio of specific activities was constant (9:1 for the carboxylase/oxygenase) of ribulose bisphosphate carboxylase/oxygenase in toluene-treated Rsp. rubrum. Below concentrations of 10 microM-CO2 in the activation mixture, this ratio increased.  相似文献   

19.
In free-living Rhizobium japonicum cultures, the stimulatory effect of CO2 on nitrogenase (acetylene reduction) activity was mediated through ribulose bisphosphate carboxylase activity. Two mutant strains (CJ5 and CJ6) of R. japonicum defective in CO2 fixation were isolated by mitomycin C treatment. No ribulose bisphosphate carboxylase activity could be detected in strain CJ6, but a low level of enzyme activity was present in strain CJ5. Mutant strain CJ5 also exhibited pleiotropic effects on carbon metabolism. The mutant strains possessed reduced levels of hydrogen uptake, formate dehydrogenase, and phosphoribulokinase activities, which indicated a regulatory relationship between these enzymes. The CO2-dependent stimulation of nitrogenase activity was not observed in the mutant strains. Both mutant strains nodulated soybean plants and fixed nitrogen at rates comparable to that of the wild-type strain.  相似文献   

20.
Purification of ribulose-1,5-bisphosphate carboxylase from primary leaves of Phaseolus vulgaris var. Red Kidney with ammonium sulfate precipitation, ion exchange chromatography, and gel filtration resulted in the complete loss of detectable oxygenase activity and the retention of a low velocity and a high K(m) form of both the carboxylase and oxygenase. The polyethylene glycol-6000-purified ribulose-1, 5-bisphosphate oxygenase displayed a broad pH optimum (7.9-9.4) and a high K(m) for O(2) and ribulose 1,5-bisphosphate (0.90 mm and 0.25 mm, respectively). Initiation of the oxygenase reaction with protein rather than ribulose 1,5-bisphosphate resulted in reduced activity. The enzymes prepared by the two purification procedures were electrophoretically different.Etiolated primary leaf tissue exhibited low rates of both carboxylase and oxygenase. Similar developmental kinetic activity was observed for both reactions during greening. Photosynthetic (14)CO(2) fixation was inhibited 95% by 100% N(2) gas during the first 24 hours of greening, but the inhibition was rapidly overcome by 48 to 72 hours of light exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号