首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein phosphokinase activity from the cytosol (105,000 X g soluble fraction) of testes from sexually mature rats has been resolved be DEAE-cellulose chromatography in three forms of protein kinase, cAMP-dependent protein kinases I and II and cAMP-independent protein kinase III. Adenosine 3':5'-monophosphate-binding activity (cAMP-binding activity) was associated with protein kinases I and II but not with protein kinase III. Protein kinases I, II, and III exhibited different pH optima, cyclic nucleotide dependency, and relative substrate specificity. Protein kinases I and II were inhibited by a heat-stable protein inhibitor from rat skeletal muscle, whereas protein kinase III was not inhibited. According to previously established criteria (Traugh, J. A., Ashby, C.D., and Walsh D. A. (1974) Methods Enzymol. 38, 290-299) protein kinases I and II can be classified as cAMP-dependent holoenzymes consisting of regulatory and catalytic subunits. Protein kinase III is a cAMP-independent protein kinase.  相似文献   

2.
Studies from a wide array of different fields using Saccharomyces cerevisiae as an experimental organism have uncovered protein phosphorylation as a recurrent theme in the regulation of diverse cellular activities. Protein kinases in yeast regulate a variety of processes; this article discusses several genetically identified protein kinases and the roles that these kinases play in cell growth and development.  相似文献   

3.
Regulation of protein kinase cascades by protein phosphatase 2A.   总被引:23,自引:0,他引:23  
Many protein kinases themselves are regulated by reversible phosphorylation. Upon cell stimulation, specific kinases are transiently phosphorylated and activated. Several of these protein kinases are substrates for protein phosphatase 2A (PP2A), and PP2A appears to be the major kinase phosphatase in eukaryotic cells that downregulates activated protein kinases. This idea is substantiated by the observation that some viral proteins and naturally occurring toxins target PP2A and modulate its activity. There is increasing evidence that PP2A activity is regulated by extracellular signals and during the cell cycle. Thus, PP2A is likely to play an important role in determining the activation kinetics of protein kinase cascades.  相似文献   

4.
Serine/threonine kinases in the nervous system.   总被引:2,自引:0,他引:2  
Three principal serine/threonine kinases that catalyze protein phosphorylation in response to second messengers are: cAMP-dependent protein kinase, multifunctional Ca2+/calmodulin-dependent protein kinase, and protein kinase C. Studies are now focusing on the distinct isoforms of these kinases that may subserve specific functions in some systems, and on providing a more molecular understanding of kinase functions. Combined genetic and biochemical approaches are beginning to be used to define unique roles for these kinases.  相似文献   

5.
Three protein kinases were distinguished in Trypanosoma gambiense extract. The enzymes preferred phosvitin, histone, and protamine as acceptor proteins, respectively. The amino acid residues of the acceptor proteins which were phosphorylated by these protein-kinase activities were serine and- to less extent- threonine. The protein kinase activities were neither affected by cyclic nucleotides nor by cyclic AMP receptors. The molecular weights of these protein kinases were determined to be greater than 200,000, 95000 and 37000, respectively. The activities of all three protein kinases were affected to varying degrees by nucleotides and nucleosides.  相似文献   

6.
Protein kinases in wild-type CHO cells have been characterized. Cells cultured on MEM were collected, homogenized and the extract assayed for protein kinase activity. DEAE cellulose chromatography of 30.000xg extract yields 2 peaks of protein kinases activity, PKI and PKII. The two peaks when analyzed for the binding of 8-N3-(32P)cAMP show two subunits RI and RII and a RI not associated with the enzymatic activity, named RF. This characterization allows us to discuss the meaning of protein kinases in the modulation of the growth regulating effects of cAMP.  相似文献   

7.
Nuclear and cytoplasmic protein kinases were measured during the traverse of synchronous CHO cultures through G1 into S phase. Cells were synchronized by selective detachment of cells blocked in metaphase using colcemid. Nuclei were isolated and the protein kinases extracted from the nuclear preparation with 0.6 M NaCl. This procedure solubilized greater than 90% of the total protein kinase activity present in the nuclear preparation. DEAE chromatography of this extract showed 5 apparently different ionic forms of nuclear protein kinases. The nuclear protein kinases preferred casein and phosvitin to histone as substrates and were cyclic AMP-independent. Nuclear protein kinase activities increased greater than two-fold, when expressed as units of activity per cell nucleus, during G1 phase traverse, concomitant with a 70% increase in nuclear non-histone proteins (those soluble in 0.6 M NaCl). This resulted in only a 40% increase in the specific activities (units/microgram protein in 0.6 M NaCl extractable nuclear fraction) of these enzymes as cells progressed through G1 into S phase. This was in contrast to cytoplasmic cyclic AMP-dependent protein kinase activities which also increased two-fold during progression through G1 phase while total cellular protein increased less than 20%. Activation of, as well as synthesis of, cyclic AMP-dependent cytoplasmic protein kinases during G1 phase suggests a regulatory mechanism for precise temporal phosphorylation, whereas the constant specific activity in nuclear kinases during cell cycle is more compatible with the maintenance of bulk phosphorylation processes in the nucleus.  相似文献   

8.
Since phosphorylation of chromosomal proteins by cyclic AMP-dependent protein kinases (EC 2.7.1.37) enhances template activity of adrenal medulla chromatin (9), we have studied the properties and regulation of protein kinases isolated from chromaffin cell cytosol and nuclei. DEAE-cellulose chromatography revealed three peaks of kinase activity in the nucleus (nPKI, nPKII, nPKIII) and two in the cytosol (cPKI, cPKII). The three nuclear enzymes, as well as cPKII, did not require cyclic AMP to express their catalytic activity. nPKI and nPKIII preferred acidic substrates as PO3-4 acceptors, while nPKII and the cytosol enzymes preferred basic PO3-4 acceptors. Enzyme recombination experiments using protein kinase regulatory subunits from cytosol suggested that cPKII was the catalytic subunit of cPKI. In contrast, the nuclear enzymes were not catalytic subunits of the cyclic AMP-dependent protein kinase in the cytosol (cPKI). Only the cytosol protein kinases could be inhibited by endogenous heat-stable protein kinase inhibitors. The nuclear and cytosol cyclic AMP-independent protein kinases were distinguishable on the basis of their sedimentation constants as well as Mc2+ and Mn2+ requirements.  相似文献   

9.
Sphingosine displays multiple biochemical and biological effects, in particular inhibition and activation of protein kinases. To determine the predominant interaction of sphingosine with cellular kinases, the effects of sphingosine on endogenous protein phosphorylation in Jurkat T lymphoblastic cells were investigated in vitro. Sphingosine was found to cause prominent phosphorylation of a number of cytosolic proteins ranging in molecular mass from 18 to 165 kDa. Phosphorylation was calcium-independent. Phosphorylation of substrates was increased in response to concentrations of sphingosine as low as 10 microM and peaked at concentrations of 20-200 microM. Multiple lines of evidence suggested that sphingosine activated more than one protein kinase: 1) the concentration dependence on sphingosine differed from substrate to substrate, 2) phosphorylation of one group of substrates required ATP as the phosphate donor, whereas a second group showed no preference between ATP and GTP, and 3) phosphorylation of some substrates was inhibited by heparin, whereas other substrates were resistant. Activation of these kinases demonstrated a very specific requirement for D-erythro-sphingoid bases. DL-erythro-dihydrosphingosine was partially active, whereas DL-threo-dihydrosphingosine was not. Other related molecules such as stearylamine, sphingomyelin, and C2-ceramide were not active. Sphingosine-activated kinase(s) were distinct from protein kinase C, cyclic nucleotide-activated kinases, and calcium-dependent kinases. These observations demonstrate the existence of multiple sphingosine-activated protein kinases with high specificity for D-erythro-sphingosine, suggesting physiologic regulation of protein phosphorylation by sphingosine.  相似文献   

10.
Bruton's tyrosine kinase (Btk) is tyrosine phosphorylated and enzymatically activated following ligation of the B-cell antigen receptor. These events are temporally regulated, and Btk activation follows that of various members of the Src family of protein tyrosine kinases, thus raising the possibility that Src kinases participate in the Btk activation process. We have evaluated the mechanism underlying Btk enzyme activation and have explored the potential regulatory relationship between Btk and Src protein kinases. We demonstrate in COS transient-expression assays that Btk can be activated through intramolecular autophosphorylation at tyrosine 551 and that Btk autophosphorylation is required for Btk catalytic functions. Coexpression of Btk with members of the Src family of protein tyrosine kinases, but not Syk, led to Btk tyrosine phosphorylation and activation. Using a series of point mutations in Blk (a representative Src protein kinase) and Btk, we show that Src kinases activate Btk through an indirect mechanism that requires membrane association of the Src enzymes as well as functional Btk SH3 and SH2 domains. Our results are compatible with the idea that Src protein tyrosine kinases contribute to Btk activation by indirectly stimulating Btk intramolecular autophosphorylation.  相似文献   

11.
Five Ca(2+)-independent protein kinases were rapidly activated by hypoosmotic stress, moderate or high hyperosmolarity induced by several osmolytes, sucrose, mannitol or NaCl. Three of these kinases, transiently activated by hypoosmolarity, recognised by anti-phosphorylated mitogen-activated protein (MAP) kinase antibodies, sensitive to a MAP kinase inhibitor and inactivated by the action of a tyrosine phosphatase, corresponded to MAP kinases. Using specific antibodies, two of the MAP kinases were identified as AtMPK6 and AtMPK3. The two other protein kinases, durably activated by high hyperosmolarity, did not belong to the MAP kinase family. Activation of AtMPK6 and AtMPK3 by hypoosmolarity depended on upstream protein kinases sensitive to staurosporine and on calcium influx. In contrast, these two transduction steps were not involved in the activation of the two protein kinases activated by high hyperosmolarity.  相似文献   

12.
M M Piras  A Horenstein  R Piras 《Enzyme》1977,22(4):219-229
The protein kinase activity of a 10,000 g supernatant of purified human lymphocytes can be resolved by DEAE-cellulose chromatography into six protein kinase fractions: three of them phosphorylate casein preferentially, and three histones. The same procedure with the corresponding nuclear fraction yields only two casein kinases. All these fractions, except one casein kinase of the cytosol, have been studied with respect to protein and nucleotide specificity, effect of salts and of cyclic nucleotides, sedimentation, etc. The results obtained indicate that the enzyme fractions of the cytosol have distinct characteristics, suggesting that they are different protein kinases, and that the nuclear kinases are similar to the two main casein kinases of the cytosol.  相似文献   

13.
Two Ca(2+)-calmodulin (CaM)-dependent protein kinases were purified from rat brain using as substrate a synthetic peptide based on site 1 (site 1 peptide) of the synaptic vesicle-associated protein, synapsin I. One of the purified enzymes was an approximately 89% pure protein of M(r) = 43,000 which bound CaM in a Ca(2+)-dependent fashion. The other purified enzyme was an apparently homogenous protein of M(r) = 39,000 accompanied by a small amount of a M(r) = 37,000 form which may represent a proteolytic product of the 39-kDa enzyme. The 39-kDa protein bound CaM in a Ca(2+)-dependent fashion. Gel filtration analysis indicated that both enzymes are monomers. The 43- and 39-kDa enzymes are named Ca(2+)-CaM-dependent protein kinases Ia and Ib (CaM kinases Ia, Ib), respectively. The specific activities of CaM kinases Ia and Ib were similar (5-8 mumol/min/mg protein). CaM kinase Ia (but not CaM kinase Ib) activity was enhanced by addition of a CaM-Sepharose column wash (non-binding) fraction suggesting the existence of an "activator" of CaM kinase Ia. Both kinases phosphorylated exogenous substrates (site 1 peptide and synapsin I) in a Ca(2+)-CaM-dependent fashion and both kinases underwent autophosphorylation. CaM kinase Ia autophosphorylation was Ca(2+)-CaM-dependent and occurred exclusively on threonine while CaM kinase Ib autophosphorylation showed Ca(2+)-CaM independence and occurred on both serine and threonine. Proteolytic digestion of autophosphorylated CaM kinases Ia and Ib yielded phosphopeptides of differing M(r). These characteristics, as well as enzymatic and regulatory properties (DeRemer, M. F., Saeli, R. J. Brautigen, D. L., and Edelman, A. M. (1992) J. Biol. Chem. 267, 13466-13471), indicate that CaM kinases Ia and Ib are distinct and possibly previously unrecognized enzymes.  相似文献   

14.
Mitogen-activated protein (MAP) kinase kinases, intermediates in a growth factor-stimulated protein kinase cascade, are dual specificity protein kinases that specifically phosphorylate and activate MAP kinases in response to extracellular signals. Here, we report the cloning of two forms of cDNA that encode this protein from human T-cells. MKK1a encodes a protein with predicted molecular size of 43,439 Da. Overexpression of this clone in COS cells led to elevated levels of protein and phorbol ester-stimulated MAP kinase kinase activity, confirming that MKK1a encodes the predicted protein. MKK1b, which appears to be an alternatively spliced form of the MKK1a gene, encodes a protein with predicted molecular size of 40,745 Da. Northern analysis revealed that the MKK1 cDNA hybridizes with a single 2.6-kilobase mRNA species in all human tissues examined. Sequence comparison shows homology to a group of yeast kinases that participate in signal transduction and to subdomain XI of other dual specificity kinase.  相似文献   

15.
D L Cadena  G N Gill 《FASEB journal》1992,6(6):2332-2337
A major process through which environmental information is transmitted into cells is via activation of protein tyrosine kinases. Receptor tyrosine kinases contain extracellular ligand recognition, single membrane spanning, and cytoplasmic protein tyrosine kinase domains. The cytoplasmic kinase core is flanked by regulatory segments, which in some family members are also inserted into the core kinase domain. Ligand binding initiates receptor signaling from the cell surface. Activated receptors autophosphorylate to remove alternate substrate/inhibitory constraints and to provide loci for assembly of proteins that contain SRC homology regions. Information is transmitted and diffused by tyrosine phosphorylation of the assembled proteins and of cellular substrates that include protein kinases with specificity for serine/threonine residues. Signaling, which is strictly ligand-dependent, is attenuated by down-regulation of receptors and by feed-back inhibitory loops that involve receptor phosphorylation by cellular kinases. The tyrosine kinase receptors are essential for normal growth, development, and reparative processes. Mutations that remove normal regulatory constraints on the approximately 290 amino acid kinase core of these large proteins result in constitutive function and cell transformation.  相似文献   

16.
Spontaneously active tyrosine-specific protein kinases I and II (designated TyrK I and TyrK II) have been purified to electrophoretic homogeneity from a particulate fraction of porcine spleen based on an assay that used poly(4Tyr, Glu) as a substrate. SDS/polyacrylamide gels revealed a doublet of bands of about Mr 51,000 for TyrK I and two protein bands of Mr 55,000 and 54,000 for TyrK II. After incubation in the presence of [gamma-32P]ATP, the bands corresponding to both protein kinases contained phosphotyrosine. The two tyrosine protein kinases showed high activities with poly(Tyr, 4Glu) and poly(Tyr, 3Ala, 6Glu) as substrates and lower activity with angiotensin II. Neither histone, phosvitin, casein nor bovine serum albumin were phosphorylated. Both protein tyrosine kinases were activated by millimolar concentrations of Mg2+ whereas Mn2+ was less effective. The effects of various polyanionic and polycationic substances depended on the nature of the peptide substrate. With poly(Tyr, 4Glu) as a substrate, the substances either inhibited the activities of TyrK I and TyrK II or had no effect. However, activation was observed with angiotensin II as substrate in the presence of polylysine, polyornithine, protamine sulfate, and heparin as effectors. When angiotensin II was used as substrate, activation also occurred by autophosphorylation, in parallel to the phosphate incorporation into the protein kinases. Activation by autophosphorylation was not observed with the synthetic peptide substrates, poly(Tyr, 4Glu) and poly(Tyr, 3Ala, 6Glu).  相似文献   

17.
Cyclic AMP-dependent and cyclic GMP-dependent protein kinases (protein kinases A and G, respectively) utilize the same phosphate acceptor proteins when assayed in in vitro systems. Nevertheless, protein kinase A phosphorylates preferentially free histone, whereas protein kinase G greatly favors the histone which is associated with polydeoxyribonucleotide. On the other hand, when cytoplasmic soluble substrates such as phosphorylase kinase are used, the reactions are always more favorable for protein kinase A rather than for protein kinase G. Available evidence implies that the topographic relationship between enzyme and substrate may be an important determining factor for the functional specificities of these two classes of protein kinases.  相似文献   

18.
Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C) is able to catalyze the phosphorylation of phospholamban in a canine cardiac sarcoplasmic reticulum preparation. This phosphorylation is associated with a 2-fold stimulation of Ca2+ uptake by cardiac sarcoplasmic reticulum similar to that seen following phosphorylation of phospholamban by an endogenous calmodulin-dependent protein kinase or by the catalytic subunit of cAMP-dependent protein kinase. Two-dimensional peptide maps of the tryptic fragments of phospholamban indicate that the three protein kinases differ in their selectivity for sites of phosphorylation. However, one common peptide appears to be phosphorylated by all three protein kinases. These findings suggest that protein kinase C may play a role similar to those played by cAMP- and calmodulin-dependent protein kinases in the regulation of Ca2+ uptake by cardiac sarcoplasmic reticulum, and raise the possibility that the effects of all three protein kinases are mediated through phosphorylation of a common peptide in phospholamban.  相似文献   

19.
The trichothecene family of mycotoxins inhibit protein synthesis by binding to the ribosomal peptidyltransferase site. Inhibitors of the peptidyltransferase reaction (e.g. anisomycin) can trigger a ribotoxic stress response that activates c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinases, components of a signaling cascade that regulates cell survival in response to stress. We have found that selected trichothecenes strongly activate JNK/p38 kinases and induce rapid apoptosis in Jurkat T cells. Although the ability of individual trichothecenes to inhibit protein synthesis and activate JNK/p38 kinases are dissociable, both effects contribute to the induction of apoptosis. Among trichothecenes that strongly activate JNK/p38 kinases, induction of apoptosis increases linearly with inhibition of protein synthesis. Among trichothecenes that strongly inhibit protein synthesis, induction of apoptosis increases linearly with activation of JNK/p38 kinases. Trichothecenes that inhibit protein synthesis without activating JNK/p38 kinases inhibit the function (i.e. activation of JNK/p38 kinases and induction of apoptosis) of apoptotic trichothecenes and anisomycin. Harringtonine, a structurally unrelated protein synthesis inhibitor that competes with trichothecenes (and anisomycin) for ribosome binding, also inhibits the activation of JNK/p38 kinases and induction of apoptosis by trichothecenes and anisomycin. Taken together, these results implicate the peptidyltransferase site as a regulator of both JNK/p38 kinase activation and apoptosis.  相似文献   

20.
We have developed a method to study the primary sequence specificities of protein kinases by using an oriented degenerate peptide library. We report here the substrate specificities of eight protein Ser/Thr kinases. All of the kinases studied selected distinct optimal substrates. The identified substrate specificities of these kinases, together with known crystal structures of protein kinase A, CDK2, Erk2, twitchin, and casein kinase I, provide a structural basis for the substrate recognition of protein Ser/Thr kinases. In particular, the specific selection of amino acids at the +1 and -3 positions to the substrate serine/threonine can be rationalized on the basis of sequences of protein kinases. The identification of optimal peptide substrates of CDK5, casein kinases I and II, NIMA, calmodulin-dependent kinases, Erk1, and phosphorylase kinase makes it possible to predict the potential in vivo targets of these kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号