首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bovine trypsin-catalyzed synthesis of N-alpha-benzoyl-DL-arginine esters from N-benzoyl-DL-arginine were studied in various organic solvents. Trypsin was immobilized to polyvinyl alcohol (PVA) by adsorption from its aqueous solutions. Immobilized enzyme showed higher catalytic activities than free enzyme for amino acid esterification in ethanol. The yield of ester is strongly dependent upon the PVA/trypsin ratio and water content in the reaction medium. The rate and equilibrium constant of the ester formation reaction are also dependent on water content.  相似文献   

2.
Organic solvent-soluble -chymotrypsin (CT) and subtilisin Carlsberg (SC) are effective catalysts for peptide synthesis in homogeneous organic solutions. The soluble enzymes have values of kcat/Km for the reaction of N-Bz-L-Tyr-OEt with L-Leu-NH2 to yield the dipeptide N-Bz-L-Tyr-L-Leu-NH2 that are over 3 orders of magnitude higher than their suspended counterparts in isooctane (containing 30% (v/v) tetrahydrofuran (THF) to aid in substrate solubility). Both enzymes are substantially more active in hydrophobic organic solvents than hydrophilic solvents. Adding small concentrations of water (<0.2% and 1% (v/v) in isooctane-THF and ethyl acetate, respectively) results in up to a 150-fold activation of -chymotrypsin-catalyzed peptide synthesis. Importantly, added water does not promote hydrolysis in either isooctane-THF or ethyl acetate; thus, -chymotrypsin is highly selective toward peptide synthesis in the nearly anhydrous organic solutions. Unlike CT, the activation of subtilisin Carlsberg upon partial hydration of isooctane-THF or ethyl acetate was not significant and actually resulted in substantial hydrolysis. Using -chymotrypsin, a variety of tripeptides were produced from dipeptide amino acid esters. Reactivity of D-amino acid amides as acyl acceptors and partially unblocked amino acid acyl donors further expands the generality of the use of organic solvent-soluble enzymes as peptide synthesis catalysts.  相似文献   

3.
The substrate specificities of alpha-chymotrypsin and subtilisins for peptide synthesis in hydrophilic organic solvents were investigated. Chymotrypsin exhibited high specificity to aromatic amino acids as acyl donors, while subtilisin Carlsberg and subtilisin BPN' were specific to aromatic and neutral aliphatic amino acids, in accordance with the S1 specificities of the enzymes for peptide hydrolysis in aqueous solutions. On the contrary, chymotrypsin exhibited higher specificities to hydrophilic amino acid amides as acyl acceptors (nucleophiles) for peptide synthesis with N-acetyl-L-tyrosine ethyl ester, in contrast to the S1' specificity for peptide hydrolysis and peptide synthesis in aqueous solutions. Furthermore, nucleophile specificity changed with the change in water-organic solvent composition; the increase in water content led to increase in relative reactivity of leucinamide to that of alaninamide. It was also found that protection of the carboxyl group of alanine by amidation is much preferable to protection by esterification in terms of reactivity as nucleophiles.  相似文献   

4.
The esterification of some N-benzyloxycarbonyl (Z)-dipeptides in ethanol-containing water was investigated using papain as a catalyst. The esterification took place in ethanol containing a samll amount of water (2% v/v, pH 9) with free papain at room temperature. The yield (after 24 h) of the ethyl ester was in the range of 25% to 50%. Any peptide bond cleavage of the substrates was not observed during esterification, indicating that the unfavorable amidase activity of papain was well depressed under these conditions. However, dipeptides having a D-amino amino acid (Z-valyl-D-alanine) or a bulky amino acid (Z-valylvaline) at the C-terminal position could not be esterified. It was found that the immobilization of papain on Amberlite XAD-8 increased the yield of the ester significantly as compared with free papain. In the esterification of Z-valylalanine using immobilized papain, the optimum water content, pH of an added buffer, and temperature were found to be 2% (v/v), 9, and 40 degrees C, respectively. The water content affected the yield of the product ester significantly.(c) 1993 John Wiley & Sons, Inc.  相似文献   

5.
The peptide synthesis from N-acetyl-L-tyrosine ethyl ester and amino acid amides was realized using α-chymotrypsin as a catalyst in ethanol or acetonitrile containing small amounts of water. In these reaction systems, the precipitates of phosphate salt, which was used as a component of buffer solution, are considered to act as carriers of chymotrypsin. It was found that peptide formation is competitive with hydrolysis of the substrate ester, but the secondary synthesis of the peptide from the hydrolysate was also considered to proceed. The yield of the peptide after 24 h reaction was strongly dependent on the water concentration; maximum yields of the peptide were obtained at water concentrations below 10% (v/v). The addition of tertiary amines, such as triethyl amine, markedly increased the peptide yield, probably due to the increase in the concentration of the nucleophilic amine components by neutralization of hydrohalides of amino acid amides. The effect of reaction temperature and the reactions with CT immobilized on PVA, chitosan, or TEAE-cellulose are also described.  相似文献   

6.
We showed that modified proteases could catalyze synthesis of a wide variety of peptides of various lengths and structures both in solution and on solid phase in organic solvents. The following modified proteases were studied as catalysts for enzymatic peptide synthesis in polar organic solvents (acetonitrile, dimethylformamide, and ethanol): pepsin sorbed on celite, a noncovalent complex of subtilisin with sodium dodecylsulfate, and subtilisin or thermolysin covalently immobilized on a cryogel of polyvinyl alcohol. The use of the noncovalent complex of subtilisin with sodium dodecylsulfate and immobilized subtilisin is especially promising for the segment condensation of peptide fragments containing residues of trifunctional amino acids with unprotected ionogenic groups in side chains, such as Lys, Arg, His, Glu, and Asp.  相似文献   

7.
We showed that modified proteases could catalyze synthesis of a wide variety of peptides of various lengths and structures both in solution and on solid phase in organic solvents. The following modified proteases were studied as catalysts for enzymatic peptide synthesis in polar organic solvents (acetonitrile, dimethylformamide, and ethanol): pepsin sorbed on celite, a noncovalent complex of subtilisin with sodium dodecylsulfate, and subtilisin or thermolysin covalently immobilized on a cryogel of polyvinyl alcohol. The use of the noncovalent complex of subtilisin with sodium dodecylsulfate and immobilized subtilisin is especially promising for the segment condensation of peptide fragments containing residues of trifunctional amino acids with unprotected ionogenic groups in side chains, such as Lys, Arg, His, Glu, and Asp.  相似文献   

8.
N-(Benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl ester (Z-AspPheOMe), a precursor of the aspartame, and N-(benzyloxycarbonyl)-L-phenylalanyl-Lphenylalanine methyl ester (Z-PhePheOMe) were synthesized from the respective amino acid derivatives with an immobilized thermolysin (EC 3.4.24.4) in ethyl acetate. Various factors affecting the synthesis of these dipeptide precursors were clarified. The initial synthetic rate was the highest at the water content of 3.5% for both reactions. The substrate concentration dependencies of the initial synthetic rate of Z-AspkPheOMe and Z-PhePheOMe with the immobilized enzyme in ethyl acetate were different from those in an aqueous buffer solution saturated with ethyl acetate but similar to those in the aqueous/organic biphasic system using the free enzyme. Particularly, the initial synthetic rate of Z-AspPhOMe increased in order higher than first order with respect to the concentration of L-phenylalanine methyl ester (PheOMe), whereas it decreased sharply with the concentration of N-(benzyloxycarbonyl)-L-aspartic acid (Z-Asp). Such kinetic behavior could be explained by regarding the inside of the immobilized enzyme as being a biphasic mode composed from the organic phase and aqueous phase where the enzymatic reaction takes place. The reaction in the aqueous/organic biphasic system using the free enzyme could be simulated by taking into consideration the partition of the substrate and the initial rate of synthesis in the aqueous buffer saturated with ethyl acetate. Based on this analysis, the rate of reaction with the immobilized enzyme in ethyl acetate could also be predicted. Z-AsPheOMe and Z-PhePheOMe were synthesized by the fed-batch method where the acid component of the substrate was intermittently added during the course of reaction and by the batch method. In the synthesis of Z-AspPheOMe, the synthetic rate and maximum yield of reaction as well as the stability of the immobilized enzyme were higher in the fed-batch reaction than those in the batch reaction. In the synthesis of Z-PhePheOMe, the results obtained by both methods were similar. (c) 1994 John Wiley & Sons, Inc.  相似文献   

9.
The couplings of N-protected amino acid esters with amino acid amides proved to be carried out in anhydrous acetonitrile in the presence of Bacillus licheniformis protease (subtilisin Carlsberg) immobilized on Celite. The maximal peptide yields were obtained with the immobilized enzyme prepared through lyophilization from a pH 10.7 buffer solution. A series of dipeptide syntheses and several segment condensations were achieved generally in high yields by the combined use of the immobilized enzyme prepared from this pH and the carbamoylmethyl ester as the acyl donor.  相似文献   

10.
Summary The couplings ofN-protected amino acid esters with amino acid amides proved to be carried out in anhydrous acetonitrile in the presence ofBacillus licheniformis protease (subtilisin Carlsberg) immobilized on Celite. The maximal peptide yields were obtained with the immobilized enzyme prepared through lyophilization from a pH 10.7 buffer solution. A series of dipeptide syntheses and several segment condensations were achieved generally in high yields by the combined use of the immobilized enzyme prepared from this pH and the carbamoylmethyl ester as the acyl donor.  相似文献   

11.
α-Chymotrypsin (CT) was lyophilized from an aqueous solution in the presence of hydroxypropyl-β-cyclodextrin (HP-β-CyD). The enzyme preparation was used as a catalyst for transesterification between N-acetyl-l-tyrosine ethyl ester and methanol in a mixed solvent of acetonitrile/water (97/3 (v/v)). The enzyme preparation had much higher catalytic activity than free CT. The activity increased with an increase of HP-β-CyD/CT ratio and reached a maximum activity at the weight ratio of 4. Also, the activity of HP-β-CyD/CT increased with an increase in water content in the reaction media, and the maximum activity was obtained at 5–10% water. The fluorescence spectroscopic analysis suggested that the co-lyophilization with HP-β-CyD increased the structural stability of CT in acetonitrile/water. Upon co-lyophilization with HP-β-CyD, the activity of CT increased in any of the solvents used, but the activity depended strongly on the nature of the organic solvents. The catalytic activity of subtilisin Carlsberg (STC) also increased by co-lyophilization with α-, β-, γ-CyD or tri-O-methyl-β-CyD. α-CyD gave the best result, while HP-β-CyD diminished the activity of STC.  相似文献   

12.
Summary Subtilisin Carlsberg and subtilisin BPN' (nagarse) catalyze peptide bond formation from aromatic amino acid esters and glycinamide in hydrophilic organic solvents. The activities of subtilisin and product compositions are different in several organic solvents; reactions in acetonitrile, tetrahydrofuran, and propylene carbonate gave the peptide in excellent yields, while in N,N-dimethylformamide and methanol the enzyme activity was largely retarded. The yield of the peptide is also dependent on water content in the reaction solutions. Optimum water contents are in the range from 3 to 7 %. The reaction is strongly specific for glycinamide as an amine component, and amides of alanine, valine, and leucine gave the corresponding peptides in poor yields.  相似文献   

13.
Enzymatic acrylation is a process of potentially strong interest to the chemical industry. Direct esterification involving acrylic acid is unfortunately rather slow, with inhibition phenomena appearing at high acid concentrations. In the present study the acrylation of 1-octanol catalyzed by immobilized Candida antarctica lipase B (Novozym 435) was shown to be as much as an order of magnitude faster when ethyl acrylate served as the donor of the acrylic group. Water activity is a key parameter for optimizing the rate of ester synthesis. The optimum water activity for the esterification of octanol by acrylic acid was found to be 0.75, that for its esterification by propionic acid to be 0.45 and the transesterification involving ethyl acrylate to be fastest at a water activity of 0.3. The reasons for these differences in optimum water activity are discussed in terms of enzyme specificity, substrate solvation, and mass transfer effects.  相似文献   

14.
The activity of two proteases in the esterification of N-acetyl-L-phenylalanine with ethanol was examined in the water-miscible ionic liquid, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([emim][Tf]). The activity of subtilisin was not only improved 9-fold by changing from a water-miscible organic solvent, acetonitrile, to [emim][Tf], but also was about three times greater than that in a water-immiscible organic solvent, octane. Likewise, the activity of alpha-chymotrypsin in [emim][Tf] was more effectively enhanced compared with that in a water-miscible or a water-immiscible organic solvent. The water content in [emim][Tf] affected the activity of subtilisin.  相似文献   

15.
Summary A purified alkaline thermo-tolerant bacterial lipase from Pseudomonas aeruginosa BTS-2 was immobilized on a poly (AAc-co-HPMA-cl-MBAm) hydrogel network. The hydrogel showed approximately 95% binding efficiency for lipase (specific activity 1.96 U mg−1). The immobilized enzyme achieved 65.1% conversion of ethanol and propionic acid (100 mM each) into ethyl propionate in n-nonane at 65 °C in 9 h. When alkane of C-chain length lower than n-nonane was used as the organic solvent, the conversion of ethanol and propionic acid into ethyl propionate decreased with a decrease in the log P value of alkanes. The immobilized lipase retained approximately 30% of its original catalytic activity after five cycles of reuse for esterification of ethanol and propionic acid into ethyl propionate at temperature 65 °C in 3 h. Addition of a molecular sieve (3 ?) to the reaction mixture enhanced the formation of ethyl propionate to 89.3%. Moreover, ethanol and propionic acid when taken a molar ratio of 3:1 further promoted the conversion rate to 94%. However, an increase in the molar ratio of propionic acid with respect to ethanol resulted in a decline of ethyl propionate synthesis.  相似文献   

16.
In this study porcine pancreatic lipase (PPL) was covalently immobilized on cross-linked polyvinyl alcohol (PVA) in organic media in the presence of fatty acid additives in order to improve its immobilized activity. The effects of fatty acid additions to the immobilization media were investigated choosing tributyrin hydrolysis in water and ester synthesis by immobilized PPL in n-hexane. Various fatty acids which are also the substrates of lipases in esterification reactions were used as active site protecting agents during the immobilization process in an organic solvent. The obtained results showed that covalent immobilization carried out in the presence of fatty acids as protective ligands improved the hydrolytic and esterification activity of immobilized enzyme. A remarkable increase in activity of the immobilized PPL was obtained when octanoic acid was used as an additive and the hydrolytic activity was increased from 5.2 to 19.2 μmol min−1 mg−1 as compared to the non-additive immobilization method. With the increase of hydrolytic activity of immobilized lipase in the presence of octanoic acid, in an analogous manner, the rate of esterification for the synthesis of butyl octanoate was also increased from 7.3 to 26.3 μmol min−1 g−1 immobilized protein using controlled thermodynamic water activities with saturated salt solutions. In addition, the immobilized PPL activity was maintained at levels representing 63% of its original activity value after 5 repeated uses. The proposed method could be adopted for a wide variety of other enzymes which have highly soluble substrates in organic solvent such as other lipases and esterases.  相似文献   

17.
Effect of organic solvents on enantioselectivity of protease catalysis   总被引:1,自引:0,他引:1  
The protease-catalyzed transesterifications between N-trifluoroacetyl-DL-phenylalanine 2,2,2-trifluoroethyl ester and 1-propanol were studied in a variety of anhydrous organic solvents at 30 degrees C. The protease preparations lyophilized from phosphate buffer solutions (pH 8.0) were used as catalysts. The organic solvent affected both rate of reaction and enantioselectivity differently. Proteases such as Aspergillus oryzae protease, subtilisin Carlsberg, and subtilisin BPN' always preferred the L-enantiomer in both hydrophilic and hydrophobic solvents, indicating no inversion of the L-specificity in hydrophobic solvents such as toluene. However, enantioselectivity was rather poor, with E (enantiomeric ratio) values not exceeding even one order of magnitude except for acetonitrile. There was a weak inverse correlation between E values of subtilisin Carlsberg and solvent hydrophobicity (logP). Acetonitrile was a preferable solvent in terms of both rate of reaction and enantioselectivity (E= 15 to 25) for processing L-amino acid derivatives in organic media. Organic solvents generally have potential advantages of processing D-amino acid derivatives. (c) 1997 John Wiley & Sons, Inc.  相似文献   

18.
Chloroformates with simplest alkyls, i.e. methyl, ethyl or isobutyl, already known as favourable reagents for treating amino groups in gas chromatography for years, were revealed randomly as exceptionally rapid esterification agents. Unlike the rather poor results achieved with chloroformate-mediated ester formation in organic chemistry, the pyridine-catalyzed esterification of carboxylic acids appeared to proceed at the analytical microscale smoothly. Along with the catalyzer, an alcohol should also be present in the medium, accompanied by acetonitrile or water, according to the character of the compounds treated. Reaction conditions were optimized for various classes of carboxylic acids and a uniquely rapid derivatization of amino acids in aqueous ethanol was shown to be possible. Most of the analytes, e.g. acidic metabolites in physiological fluids, could be treated directly in the aqueous matrix. A simultaneous analysis of, e.g., amino and fatty acids or amines and their acidic catabolytes was proven to be possible. Along with the low-molecular-mass reagents, still some others, i.e. the hexyl, menthyl or pentafluorobenzyl ones, found their application fields. Results of optimized reaction conditions and a wide range of applications of chloroformate-mediated derivatization in various disciplines have been summarized in this review.  相似文献   

19.
The esterification rates (ratio of the concentration of an acid in the neutral ethyl ester form to total concentration of the acid) of main organic acids in wines were determined to study the extent of ethyl ester formation of organic acids. The esterification rates ranged from zero to 24.6%. The averaged values of table wines were from 6 to 16% for acetic and lactic acid, from 0.3 to 3.6% for succinic and malic acid, and from zero to 0.1% for tartaric acid. Sherries had higher esterification rates, about 1.6 to 6 times larger, than table wines. It was found that storage time and temperature influence the formation of ethyl esters, and it was suggested that the aging period required for the ester equilibrium is about one year for acetic and lactic acid, and more than two years for succinic, malic and tartaric acid. The possibility and the procedure to control wine quality during the aging process were discussed.  相似文献   

20.
11 amino acid derivatives were tested as alpha-chymotrypsin substrates in the esterification reaction with methanol in organic media. The reactions were carried out in water-saturated ethyl acetate and in acetonitrile containing 4% water. alpha-Chymotrypsin adsorbed on Celite was used as a catalyst. From initial reaction rate measurements, the Michaelis-Menten parameters Vmax and KM were determined. All the amino acid derivatives tested were esterified, and the highest values of kcat/KM were obtained with the N-acylated aromatic amino acids. Correlations between Michaelis-Menten parameters and physical properties of the substrates such as molar refractivity (MR) and log P were deduced. The results show that the specificity of the alpha-chymotrypsin towards the side chain of the amino acids in organic media is the same as that in aqueous media. However, the specificity towards the N-protecting group is opposite to that in water, so the reaction medium affects the interaction of this part of the molecule with the enzyme to a large extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号