首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyrroline-5-carboxylate reductase, which required reduced pyridine nucleotide and Δ′-pyrroline-5-carboxylate for proline synthesis, was isolated from pumpkin cotyledons. The enzyme was found in the soluble fraction and had a 4.5-fold greater activity with NADH than NADPH. The enzyme was inhibited by NH2OH, NADP, ATP and slightly by proline. Glutathione or pyridoxal-5-phosphate had little effect on enzyme activity. The enzyme had a pH optimum between 7·0 and 7·6 and was not inhibited by high concentrations of NADH or Δ′-pyrroline-5-carboxylate.  相似文献   

2.
Crystal structure of human pyrroline-5-carboxylate reductase   总被引:2,自引:0,他引:2  
Pyrroline-5-carboxylate reductase (P5CR) is a universal housekeeping enzyme that catalyzes the reduction of Delta(1)-pyrroline-5-carboxylate (P5C) to proline using NAD(P)H as the cofactor. The enzymatic cycle between P5C and proline is very important for the regulation of amino acid metabolism, intracellular redox potential, and apoptosis. Here, we present the 2.8 Angstroms resolution structure of the P5CR apo enzyme, its 3.1 Angstroms resolution ternary complex with NAD(P)H and substrate-analog. The refined structures demonstrate a decameric architecture with five homodimer subunits and ten catalytic sites arranged around a peripheral circular groove. Mutagenesis and kinetic studies reveal the pivotal roles of the dinucleotide-binding Rossmann motif and residue Glu221 in the human enzyme. Human P5CR is thermostable and the crystals were grown at 37 degrees C. The enzyme is implicated in oxidation of the anti-tumor drug thioproline.  相似文献   

3.
Activity of proline dehydrogenase and pyrroline-5-carboxylate reductase was greatest after 5 and 7 days germination in green and etiolated cotyledons respectively of pumpkin (Cucurbita moschata Poir. cv. Dickinson Field). The ratio of pyrroline-5-carboxylate reductase to proline dehydrogenase activity was constant throughout germination. Both enzymes were purified 30-fold but the ratio pyrroline-5-carboxylate reductase—proline dehydrogenase activity was constant throughout purification. However, this ratio decreased with storage, especially in purified preparations. Both enzymes were stable at high temperature and the ratio pyrroline-5-carboxylate reductase—proline dehydrogenase remained unchanged on heating. Proline dehydrogenase and pyrroline-5-carboxylate reductase were inhibited by sodium bisulfite and cysteine. ATP, ADP and NADP caused inhibition of both enzymes. Proline dehydrogenase utilized NAD but not NADP. Pyrroline-5-carboxylate reductase had a 2.5-fold greater activity with NADH than NADPH. Most of the data presented suggest that proline dehydrogenase and pyrroline-5-carboxylate reductase activities occur on the same protein molecule.  相似文献   

4.
A possible alternative route for production of a small glutamate pool in brain is from proline or ornithine to 1-pyrroline-5-carboxylate (P5C) and thence to glutamate. The conversion from ornithine to P5C is catalyzed by ornithine delta-aminotransferase (OrnT) whereas that from proline is catalyzed by proline oxidase (PrO). The conversion of P5C to glutamate is catalyzed by 1-pyrroline-5-carboxylate dehydrogenase (PDH). Biochemical assays of PDH and PrO in various rat brain regions indicate no positive correlation between the two enzymes nor between either activity and high-affinity glutamate uptake or the regional distribution of OrnT. We have localized PDH and PrO histochemically by modifications of the Van Gelder [J. Neurochem. 12, 231-237, (1965)] method for gamma-aminobutyric acid (GABA) transaminase. The enzymes were found only in certain types of glial cells; the best stained were the Bergmann glial cells of the cerebellum but, for PDH, there was also good staining of astrocytes in the dentate area of the hippocampus. Since both these areas are believed to have heavy glutamate innervation and numerous GABA interneurons, these findings may reflect an alternative route of glutamate production in glial cells near some glutamate and/or GABA tracts but they do not support this as a possible route for glutamate formation in most brain regions. The findings do, however, provide further evidence for chemical specialization of glial cells.  相似文献   

5.
Proline, the feedback inhibitor of bacterial glutamate kinase (GK) and plant pyrroline-5-carboxylate synthase (P5CS) enzymes, is a key regulator of the osmotic and redox balance of cells. Using kinetic assays, site-directed mutagenesis, structure-activity analyses, and docking calculations, we have identified the binding site of this metabolite in three-dimensional structures of Escherichia coli and Campylobacter jejuni GKs. The proline-binding cavity partially overlaps with the glutamate substrate site, and the interaction of both proline and glutamate with GK is modulated by a flexible, 16-residue loop linking β-sheet 4 and α-helix E in the active-center cavity. This loop is also critical for regulation of plant and human P5CSs. Furthermore, our results indicate that the functional unit of the E. coli enzyme is dimeric and contains an intermolecular hydrogen-bond network that interconnects the active-center cavities of the monomers and is important for substrate binding.  相似文献   

6.
Free proline content in Ragi (Eleusine coracana) leaves increased markedly (6 to 85 fold) as the degree of water stress, created by polyethylene gylcol treatment, was prolonged There was also a marginal increase in soluble proteins in the stressed leaves as compared to that in the controls. Water stress stimulated the activities of ornithine aminotransferase and pyrroline-5-carboxylate reductase, the enzymes of proline biosynthesis and markedly inhibited the enzymes involved in proline degradation viz., proline oxidase and pyrroline-5-carboxylate dehydrogenase. These results suggest that increase in free proline content of Ragi leaves could be due to enhanced activities of the enzymes synthesizing proline but more importantly due to severe inhibition of the enzymes degrading proline. These observations establish for the first time, the pathway of proline metabolism in plants by way of detection of the activities of all the enzymes involved and also highlight the role of these enzymes in proline accumulation during water stress.  相似文献   

7.
R J Smith 《Enzyme》1984,31(2):115-121
A radioisotopic assay is described for measuring the activity of delta 1-pyrroline-5-carboxylate synthase, the enzyme that catalyzes the formation of delta 1-pyrroline-5-carboxylic acid from glutamic acid. Pyrroline-5-carboxylic acid is a common intermediate in the pathways through which glutamic acid, proline, and ornithine are interconverted. To determine pyrroline-5-carboxylate synthase activity, cell homogenates are incubated with [14C]-glutamic acid, the products of the reaction are converted quantitatively to proline by sodium borohydride, and proline is isolated by cation-exchange column chromatography. Cofactor requirements have been defined, and the activity of pyrroline-5-carboxylate synthase in several different cultured fibroblast lines is reported.  相似文献   

8.
Mutant Chinese hamster lung fibroblasts were selected that are resistant to the proline analog L-azetidine-2-carboxylic acid. Resistance in the two mutant cell lines is associated with two distinct alterations in pyrroline-5-carboxylate synthase, the enzyme that catalyzes the proline biosynthetic step leading from glutamic acid to pyrroline-5-carboxylate. In one mutant cell line, pyrroline-5-carboxylate synthase specific activity is increased 30-fold over the level in control cells. In the other mutant line, pyrroline-5-carboxylate synthase activity is not increased, but the enzyme has become insensitive to inhibition by ornithine and proline.  相似文献   

9.
受NaCl、KCl或MsCl_2胁迫的小麦幼苗,当外部溶液的渗透势由—160 kPa下降到—900 kPa时,叶片吡咯—5—羧酸还原酶(PSC)活性增高;渗透势由—900 kPa降低到—1500kPa,酶活性下降;胁迫 1d和 2d的幼苗,还原酶活性显著增加;3~6d酶活性无大变化。游离脯氨酸含量随溶液渗透势下降和培养时间的延长而提高。胁迫解除后酶活性和脯氨酸含量均降低。受NcCl胁迫义在ABA影响下的幼苗,P5C还原酶活性和脯氨酸含量高于仅受NaCl胁迫的幼苗。  相似文献   

10.
The product of oxidation of proline by pumpkin proline dehydrogenase reacted with o-aminobenzaldehyde to give a yellow compound that had an absorption spectrum similar to that obtained from chemically synthesized Δ1-pyrroline-5-carboxylate. The product of the proline dehydrogenase reaction and synthetic Δ1-pyrroline-5-carboxylate had identical Rf values. Both authentic Δ1-pyrroline-5-carboxylate and the product of the enzyme gave a pink colour with acid ninhydrin on paper chromatograms and both had identical elution patterns on Dowex 50(H+) columns. Neither synthetic Δ1-pyrroline-5-carboxylate nor the product of proline-dehydrogenase produced γ-amino butyrate with hydrogen peroxide.  相似文献   

11.
12.
The amino acid proline accumulates in many plant species under abiotic stress conditions, and various protective functions have been proposed. During cold stress, however, proline content in Arabidopsis thaliana does not correlate with freezing tolerance. Freezing sensitivity of a starchless plastidic phosphoglucomutase mutant (pgm) indicated that localization of proline in the cytosol might stabilize the plasma membrane during freeze–thaw events. Here, we show that re-allocation of proline from cytosol to vacuole was similar in the pyrroline-5-carboxylate synthase 2–1 (p5cs2–1) mutant and the pgm mutant and caused similar reduction of basal freezing tolerance. In contrast, the starch excess 1–1 mutant (sex1-1) had even lower freezing tolerance than pgm but did not affect sub-cellular localization of proline. Freezing sensitivity of sex1-1 mutants affected primarily the photosynthetic electron transport and was enhanced in a sex1-1::p5cs2–1 double mutant. These findings indicate that several independent factors determine basal freezing tolerance. In a pgm::p5cs2–1 double mutant, freezing sensitivity and proline allocation to the vacuole were the same as in the parental lines, indicating that the lack of cytosolic proline was the common cause of reduced basal freezing tolerance in both mutants. We conclude that cytosolic proline is an important factor in freezing tolerance of non-acclimated plants.  相似文献   

13.
The role of the δ-ornithine amino transferase (OAT) pathway in proline synthesis is still controversial and was assessed in leaves of cashew plants subjected to salinity. The activities of enzymes and the concentrations of metabolites involved in proline synthesis were examined in parallel with the capacity of exogenous ornithine and glutamate to induce proline accumulation. Proline accumulation was best correlated with OAT activity, which increased 4-fold and was paralleled by NADH oxidation coupled to the activities of OAT and Δ1-pyrroline-5-carboxylate reductase (P5CR), demonstrating the potential of proline synthesis via OAT/P5C. Overall, the activities of GS, GOGAT and aminating GDH remained practically unchanged under salinity. The activity of P5CR did not respond to NaCl whereas Δ1-pyrroline-5-carboxylate dehydrogenase was sharply repressed by salinity. We suggest that if the export of P5C from the mitochondria to the cytosol is possible, its subsequent conversion to proline by P5CR may be important. In a time-course experiment, proline accumulation was associated with disturbances in amino acid metabolism as indicated by large increases in the concentrations of ammonia, free amino acids, glutamine, arginine and ornithine. Conversely, glutamate concentrations increased moderately and only within the first 24 h. Exogenous feeding of ornithine as a precursor was very effective in inducing proline accumulation in intact plants and leaf discs, in which proline concentrations were several times higher than glutamate-fed or salt-treated plants. Our data suggest that proline accumulation might be a consequence of salt-induced increase in N recycling, resulting in increased levels of ornithine and other metabolites involved with proline synthesis and OAT activity. Under these metabolic circumstances the OAT pathway might contribute significantly to proline accumulation in salt-stressed cashew leaves.  相似文献   

14.
Metabolic implications of stress-induced proline accumulation in plants   总被引:35,自引:0,他引:35  
In many plants, free proline accumulates in response to the imposition of a wide range of biotic and abiotic stresses. Controversy has surrounded the extent to which this shift in nitrogen metabolism benefits plants under adverse environmental conditions. Most attempts to account for the phenomenon have focused on the ability of proline to mediate osmotic adjustment, stabilise subcellular structures and scavenge free radicals. However, often the cytoplasmic pool of free proline even after the imposition of stress is insufficient size to account for pronounced biophysical effects.Alternatively, selective preservation of this stress-induced response may relate to endpoints other than simply augmenting the cellular pool of free proline. Proline accumulation may reduce stress-induced cellular acidification or prime oxidative respiration to provide energy needed for recovery. High levels of proline synthesis during stress may maintain NAD(P)+/NAD(P)H ratios at values compatible with metabolism under normal conditions. Consideration of the cofactor preference of plant 1-pyrroline-5-carboxylate (P5C) reductase as well as the in vivo concentrations of the two pyridine nucleotide cofactors and their respective redox ratios suggests that even a small increase in proline biosynthesis might have a large impact on the level of reduction of the cellular NADP pool. The increased NADP+/NADPH ratio mediated by proline biosynthesis is likely to enhance activity of the oxidative pentose phosphate pathway. This would provide precursors to support the demand for increased secondary metabolite production during stress as well as nucleotide synthesis accompanying the accelerated rate of cell division upon relief from stress, when oxidation of proline is likely to provide an important energy source for ADP phosphorylation. Thus, the extreme sensitivity of the metabolic processes of proline synthesis and degradation themselves may be of benefit by regulating metabolic processes adversely affected by stress. This viewpoint is supported by consideration of other physiological phenomena not directly related to stress responses, but in which proline metabolism may also play a regulatory role.A mechanism is proposed whereby the interconversions of proline and P5C in different cell types and the associated transfer of redox potential between tissues may constitute a form of metabolic signalling within higher plants. Stress-related alterations in proline metabolism may impinge on systems of redox control of plant gene expression.  相似文献   

15.
We describe a radioisotopic assay for Δ1-pyrroline-5-carboxylate reductase. In this assay we use Δ1-pyrroline-5-carboxylate[U-14C] and isolate product l-[U-14C]proline by cation-exchange column chromatography.  相似文献   

16.
Cells of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 supplemented with micromolar concentrations of L-[(14)C]arginine took up, concentrated, and catabolized this amino acid. Metabolism of L-[(14)C]arginine generated a set of labeled amino acids that included argininosuccinate, citrulline, glutamate, glutamine, ornithine, and proline. Production of [(14)C]ornithine preceded that of [(14)C]citrulline, and the patterns of labeled amino acids were similar in cells incubated with L-[(14)C]ornithine, suggesting that the reaction of arginase, rendering ornithine and urea, is the main initial step in arginine catabolism. Ornithine followed two metabolic pathways: (i) conversion into citrulline, catalyzed by ornithine carbamoyltransferase, and then, with incorporation of aspartate, conversion into argininosuccinate, in a sort of urea cycle, and (ii) a sort of arginase pathway rendering glutamate (and glutamine) via Delta(1)pyrroline-5-carboxylate and proline. Consistently with the proposed metabolic scheme (i) an argF (ornithine carbamoyltransferase) insertional mutant was impaired in the production of [(14)C]citrulline from [(14)C]arginine; (ii) a proC (Delta(1)pyrroline-5-carboxylate reductase) insertional mutant was impaired in the production of [(14)C]proline, [(14)C]glutamate, and [(14)C]glutamine from [(14)C]arginine or [(14)C]ornithine; and (iii) a putA (proline oxidase) insertional mutant did not produce [(14)C]glutamate from L-[(14)C]arginine, L-[(14)C]ornithine, or L-[(14)C]proline. Mutation of two open reading frames (sll0228 and sll1077) putatively encoding proteins homologous to arginase indicated, however, that none of these proteins was responsible for the arginase activity detected in this cyanobacterium, and mutation of argD (N-acetylornithine aminotransferase) suggested that this transaminase is not important in the production of Delta(1)pyrroline-5-carboxylate from ornithine. The metabolic pathways proposed to explain [(14)C]arginine catabolism also provide a rationale for understanding how nitrogen is made available to the cell after mobilization of cyanophycin [multi-L-arginyl-poly(L-aspartic acid)], a reserve material unique to cyanobacteria.  相似文献   

17.
Ornithine aminotransferase (OAT), proline oxidase (PO), Delta 1-pyrroline-5-carboxylate reductase (P5CR), and Delta 1-pyrroline-5-carboxylate dehydrogenase (P5CD) were assessed in Fasciola gigantica. All enzymes are involved in the conversion of ornithine into glutamate and proline. High levels of P5CD suggest that the direction of the metabolic flow from ornithine is more toward glutamate than proline. F. gigantica P5CD1 and P5CD2 were separated from the majority of contaminating proteins in crude homogenate using a CM-cellulose column. A Sephacryl S-200 column was employed for P5CD2 to obtain pure enzyme with increased specific activity. The molecular mass of P5CD2 was estimated to be 50kDa using a Sephacryl S-200 column and SDS-PAGE. It migrated as a single band on SDS-PAGE, indicating a monomeric enzyme. P5CD2 had Km values of 1.44mM and 0.37mM for NAD and P5C, respectively. P5CD2 oxidized a number of aliphatic and aromatic aldehydes, where the aromatic compounds had higher affinity toward the enzyme. All amino acids examined had partial inhibitory effects on the enzyme. While 3mM AMP caused 31% activation of enzyme, 3mM ADP and ATP inhibited activity by 18% and 23%, respectively. Apart from Cu2+, the divalent cations that were studied caused partial inhibitory effects on the enzyme.  相似文献   

18.
The magnitude of the effect of salt stress on proline content, pyrroline-5-carboxylate (P5C) reductase activity and water relations was found to be leaf position dependent in an advance generation (R4) of twoBrassica juncea L. somaclones (SR-2 and SR-3) selected in vitro for NaCl-tolerance and the parent cv. Prakash. Free proline content and P5C reductase activity increased with increase in salt stress in all the lines but at different rates; the maximum increase being in the SR-3 derived somaclonal line. At 100 mM NaCl, SR-3 showed a nearly 19 fold increase in proline content compared to a 4–5 fold increase in the other two genotypes. The proline level and P5C reductase activity of the first (youngest) leaf was higher than in the other leaves and decreased linearly with increase in age of the leaf in all the lines. The relationship between relative water content and osmotic potential of the leaves at different positions also varied. The results indicate that a significant effect of salt may appear non-significant if the position of the leaves is not taken into account while sampling.  相似文献   

19.
Drought is the most important abiotic stress, challenging sustainable agriculture globally. For desiccation being the multigenic trait, a combination of identified genes from the appropriate organism may render crop tolerant to the water stress. Among the compatible solutes, proline plays multifaceted role in counteracting such stress. The genes encoding proline biosynthesizing enzymes, glutamate 5-kinase (G5K), and pyrroline-5-carboxylate reductase (P5CR) from the low-desiccation-tolerant cyanobacterium Anabaena sp. PCC 7120, were cloned and overexpressed in Escherichia coli BL21(DE3) individually. The recombinant E. coli cells harboring G5K, failed to exhibit enhanced desiccation tolerance relative to those with P5CR that showed increased growth/survival over the wild type. This may be ascribed to the overexpression of the reductase gene. Multiple sequence alignment showed P5CR to be conserved in all the organisms. We hypothesize that P5CR gene from high-desiccation-tolerant cyanobacteria may be adopted as the candidate for making transgenic N2-fixing cyanobacterium for paddy fields and/or crop development in future.  相似文献   

20.
A fully functional ornithine–glutamate–proline pathway was detected in L3 and adult Haemonchus contortus and Teladorsagia circumcincta, making the parasites capable of interconversion of these amino acids. Ornithine aminotransferase (OAT) (E.C. 2.6.1.13) was a reversible pyridoxal-5-phosphate (PLP)-dependent enzyme with an optimum pH 8.5. Hydroxylamine completely inhibited OAT activity in both parasites. For all five enzymes, substrate affinity was similar for each species and life cycle stage, the notable exceptions being the nearly 10-fold lower affinity for Δ1-pyrroline-5-carboxylate (P5C) of P5C reductase (E.C. 1.5.1.2) in adult T. circumcincta and about half for P5C for L3 H. contortus P5C dehydrogenase (E.C. 1.5.1.12). P5C synthase (E.C. 1.2.1.41) activity was similar with either NADPH or NADH as co-factor. Proline oxidase (E.C. 1.5.99.8) was a co-factor independent enzyme with an optimal pH 8.5. Despite similarities to those in the host, enzymes of this pathway may still be useful as control targets if they differ antigenically, as a supply of proline is necessary for cuticle formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号