首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Plasmodium sporozoites suppress the respiratory burst and antigen presentation of Kupffer cells, which are regarded as the portal of invasion into hepatocytes. It is not known whether immune modulation of Kupffer cells can affect the liver stage. In the present study, we found that sporozoites inoculated into Wistar rats could be detected in the liver, spleen, and lung; however, most sporozoites were arrested in the liver. Sporozoites were captured by Kupffer cells lined with endothelial cells in the liver sinusoid before hepatocyte invasion. Pretreatment with TLR3 agonist poly(I:C) and TLR2 agonist BCG primarily activated Kupffer cells, inhibiting the sporozoite development into the exoerythrocytic form, whereas Kupffer cell antagonists dexamethasone and cyclophosphamide promoted development of the liver stage. Our data suggests that sporozoite development into its exoerythrocytic form may be associated with Kupffer cell functional status. Immune modulation of Kupffer cells could be a promising strategy to prevent malaria parasite infection.  相似文献   

2.
SYNOPSIS. Liver biopsies of white rates infected by Plasmodium berghei sporozoites were examined by electron microscopy. Intrahepatocytic schizont development was confirmed. In addition, at 60 and 70 h after sporozoite inoculation, exoerythrocytic merozoites were noted in Kupffer cells of liver sinusoids. Although it is theoretically possible that this observation may be of merozoite development in Kupffer cells, the authors suspect that this example of phagocytosis would be one of the host's natural defenses against sporozoite-transmitted malaria.  相似文献   

3.
Non-parenchymal cell suspensions were prepared from rat livers by three different methods based on a collagenase, a pronase and a combined collagenase-pronase treatment. The highest yield of Kupffer and endothelial cells was obtained with the pronase treatment. Attempts were made for a further purification of these cells by Metrizamide density gradient centrifugation after preferentially loading lysosomal structures in Kupffer cells with Triton WR 1339, Jectofer®, Neosilvol®, Zymosan or colloidal carbon. After loading with Triton WR 1339 or Jectofer®, highly purified endothelial cell suspensions were obtained, but the final Kupffer cell preparations were contaminated with about 20% of endothelial cells. Kupffer and endothelial cells purified in this way showed an altered ultrastructure and contained increased activities of the lysosomal enzymes acid phosphatase, arylsulphatase B and cathepsin D. As an alternative procedure for the purification of Kupffer and endothelial cells, a method based on centrifugal elutriation was employed. With this procedure, highly purified preparations of Kupffer or endothelial cells with a well preserved ultrastructure were obtained. Compared with endothelial cells, purified Kupffer cells had a three times higher cathepsin D activity, whereas the arylsulphatase B activity was three times higher in endothelial cells. The high cathepsin D activity in Kupffer cells could be nearly completely inhibited by the specific cathepsin D inhibitor pepstatin, which excludes a possible contribution to this activity by proteases endocytosed during the isolation of the cells.  相似文献   

4.
In order to investigate the role of the Kupffer cells in the regulation of the inflammatory reaction seen in alcoholic hepatitis, rat liver Kupffer cells were cultured and exposed to products of ethanol metabolism. The resultant supernatants were tested to study their ability to stimulate or inhibit polymorphonuclear cell chemotaxis. Kupffer cells produced increased chemokinetic activity for human polymorphonuclear leukocytes (84 +/- 6 vs. 61 +/- 4 randomly migrating cells per 5 high power fields; p less than 0.01); when incubated with soluble products of microsomal peroxidation, the Kupffer cells engendered more chemokinetic activity than that produced by untreated Kupffer cells (106 +/- 6 vs. 84 +/- 6 cells per 5 high power fields; p less than 0.05). When Kupffer cells were incubated with acetaldehyde, the chemokinetic activity that appeared in the supernatant did not differ from control (51 +/- 3 vs. 61 +/- 4 randomly migrating cells per 5 high power fields; p = NS). Chemotaxis of polymorphonuclear cells was not observed when the Kupffer cell supernatants were tested by checkerboard analysis. Kupffer cells released a factor which, at different concentrations, inhibited the response of polymorphonuclear cells to the synthetic polypeptide chemotactic factor f-met-leu-phe by 47% (p less than 0.001). This effect was unchanged when the cells were exposed to acetaldehyde or to soluble products of microsomal peroxidation. Our results demonstrate that Kupffer cells are capable of stimulating or inhibiting polymorphonuclear cell chemotaxis and that some of these effects may be influenced by the products of ethanol metabolism, suggesting that Kupffer cells may play an important role in the regulation of the inflammatory reaction seen in alcoholic hepatitis.  相似文献   

5.
Clearance of carcinoembryonic antigen (CEA) from the circulation is by binding to Kupffer cells in the liver. We have shown that CEA binding to Kupffer cells occurs via a peptide sequence YPELPK representing amino acids 107-112 of the CEA sequence. This peptide sequence is located in the region between the N-terminal and the first immunoglobulin like loop domain. Using native CEA and peptides containing this sequence complexed with a heterobifunctional crosslinking agent and ligand blotting with biotinylated CEA and NCA we have shown binding to an 80kD protein on the Kupffer cell surface. This binding protein may be important in the development of hepatic metastases.  相似文献   

6.
The objective of this study was to identify the cellular source of the vascular oxidant stress in hepatic ischemia-reperfusion injury in male Fischer rats. Nonparenchymal cells (Kupffer cells, endothelial cells) and neutrophils were isolated from postischemic liver lobes by collagenase-pronase digestion followed by centrifugal elutriation. The spontaneous and stimulated generation of superoxide by these cells were subsequently quantified in vitro. Large Kupffer cells from the postischemic lobes spontaneously generated 300% more superoxide than similar cells from control animals. No difference in spontaneous superoxide formation was found when the small Kupffer cells were compared. No other cells isolated from the postischemic lobes or control liver including neutrophils released any detectable superoxide spontaneously. In contrast, small Kupffer cells and neutrophils from the postischemic liver generated significantly more superoxide after stimulation with phorbol ester or opsonized zymosan than the controls. The considerably higher response with zymosan stimulation compared to phorbol ester indicates a particular priming for a receptor-mediated signal transduction pathway during reperfusion. These studies demonstrate that Kupffer cells are the principal source of the oxidant stress during the initial reperfusion phase after hepatic ischcmia. The priming of neutrophils during this time may be an important factor for the later neutrophil-induced injury phase.  相似文献   

7.
In a previous publication, we were able to show that irradiation of Kupffer cells, the liver resident macrophages, leads to an increased TNF-alpha concentration in the culture medium. The pathomechanisms underlying this phenomenon, however, remained to be elucidated. Here, we show that following irradiation of Kupffer cells, the apoptosis rate increased drastically within 48 h. At the same time, the total TNF-alpha concentration in cell lysates of Kupffer cells attached to the culture plate decreased. However, normalization of the TNF-alpha concentration with respect to cell number revealed that TNF-alpha concentration per attached cell remained constant during the observation period. Western blot analysis showed that heat shock protein 27 (Hsp27) is strongly downregulated and bax is upregulated in irradiated Kupffer cells as compared to sham-irradiated cells. Overexpression of Hsp27 in Kupffer cells was shown to prevent the effect of irradiation on bax expression, apoptosis and, at the same time, on increase of TNF-alpha concentration in the Kupffer cell medium. We conclude that irradiation of Kupffer cells leads to apoptosis because of downregulation of Hsp27 and consecutive upregulation of bax expression. Furthermore, we suggest that apoptosis of Kupffer cells leads to an increase of TNF-alpha concentration in the culture medium which may be due to cell death rather than active release or synthesis.  相似文献   

8.
9.
Kupffer cells are a key source of mediators of alcohol-induced liver damage such as reactive oxygen species, chemokines, growth factors, and eicosanoids. Since diets rich in polyunsaturated fatty acids are a requirement for the development of alcoholic liver disease, we hypothesized that polyunsaturated fatty acids could synergize with ethanol to promote Kupffer cell activation and TNFα production, hence, contributing to liver injury. Primary Kupffer cells from control and from ethanol-fed rats incubated with arachidonic acid showed similar proliferation rates than nontreated cells; however, arachidonic acid induced phenotypic changes, lipid peroxidation, hydroperoxides, and superoxide radical generation. Similar effects occurred in human Kupffer cells. These events were greater in Kupffer cells from ethanol-fed rats, and antioxidants and inhibitors of arachidonic acid metabolism prevented them. Arachidonic acid treatment increased NADPH oxidase activity. Inhibitors of NADPH oxidase and of arachidonic acid metabolism partially prevented the increase in oxidant stress. Upon arachidonic acid stimulation, there was a rapid and sustained increase in TNFα, which was greater in Kupffer cells from ethanol-fed rats than in Kupffer cells from control rats. Arachidonic acid induced ERK1/2 phosphorylation and nuclear translocation of early growth response-1 (Egr1), and ethanol synergized with arachidonic acid to promote this effect. PD98059, a mitogen extracellular kinase 1/2 inhibitor, and curcumin, an Egr1 inhibitor, blocked the arachidonic acid-mediated upregulation of TNFα in Kupffer cells. This study unveils the mechanism whereby arachidonic acid and ethanol increase TNFα production in Kupffer cells, thus contributing to alcoholic liver disease.  相似文献   

10.
The nucleoti-e contents of isolated rat Kupffer cells were found to be smaller than those of hepatocytes. The rate of UDPGal formation from D-galactose was much lower in Kupffer cells than in hepatocytes. The viability of the former was checked by measuring the leakage of enzymes and the formation of UTP from uridine. Addition of GalN to isolated Kupffer cells did not decrease their UTP and UDPG contents as much as those of hepatocytes. The same results were obtained when cells were isolated from GalN-pretreated animals. The incorporation of labeled amino acids into protein after GalN addition was much less reduced in Kupffer cells than in hepatocytes. The data suggest that Kupffer cells do not contribute to GalN-induced liver injury as a result of uridylate trapping.  相似文献   

11.
Kupffer cells, expressing toll-like receptor 4 (TLR4), play a central role in hepatic ischemia/reperfusion (I/R) injury. Hyaluronic acid (HA) fragments, degradative products of high-molecular-weight HA (HMW-HA), acquire the ability to activate immune cells under inflammatory conditions. Here we investigated whether HA fragments could activate Kupffer cells and analyzed the underlying mechanism. Kupffer cells were isolated from wild-type mice (WT, C3H/HeN) and TLR4 mutant mice (C3H/HeJ) and HA fragments were produced by the methods of enzyme digestion and chromatography. Then Kupffer cells were stimulated by HA fragments or other control stimuli. The activation of Kupffer cells was estimated as the release of pro-inflammatory cytokines. The activation of p38 MAPK pathway of Kupffer cells was checked and blocking experiments were done as well. The results indicated that HA fragments acquired the ability to activate Kupffer cells in vitro, which was TLR4 dependent and not due to contamination of lipopolysaccharide. Experiments of p38 MAPK kinase inhibition by SB-203580 verified p38 MAPK was required in HA fragments induced Kupffer cells activation. This suggests that HA fragments, degradative products of one of the major glycosaminoglycans of the extracellular matrix, play critical roles in Kupffer cell activation mediated by TLR4 signaling pathway, which is, at least partially, dependent on p38 MAPK activation. These anthors contributed equally to this work Supported by the National Natural Science Foundation of China (Grant No. 30500487 and 30700792)  相似文献   

12.
Sinusoidal cells in the rat liver were studied in vivo and in vitro using the original vital staining with lithium carmine, which has contributed much to the development of the concept of the reticulo-endothelial system. Immunohistochemical and electron-microscopic studies revealed that the dye-incorporating cells were sinusoidal endothelial cells, Kupffer cells, and monocytes. The endothelial cells took up much more dye than did the Kupffer cells and bulged largely into the sinusoidal lumen. Electron microscopy revealed that small particles of lithium carmine were associated with coated vesicles of endothelial cells and ruffled membranes of Kupffer cells. In the endothelial cells, these particles were present in various concentrations within vacuolated structures and condensed in the lysosomes forming large aggregates of lithium carmine lumps. These lumps showed crystalline structures, within which the size of the individual particle was up to 30 nm in width and 50 nm in length. A few endothelial cells containing abundant dye underwent degeneration, and some were taken up by Kupffer cells. Liver endothelial cells isolated from lithium carmine-administered rats endocytosed fluorescence-labeled collagen. Isolated endothelial cells from normal rat liver, when cultured with lithium carmine, did not take up any dye, and their endocytosis of formaldehyde-treated albumin was inhibited dose-dependently. We conclude that in the liver, endothelial cells, but not Kupffer cells, predominantly take up lithium carmine. Furthermore, we propose the existence of a generalized cell system based on its vital staining capacity.  相似文献   

13.
Although various tissue macrophages possess high glucose-6-phosphate dehydrogenase (G6PD) activity, which is reported to be closely associated with their phagocytotic/bactericidal function, the fine subcellular localization of this enzyme in liver resident macrophages (Kupffer cells) has not been determined. We have investigated the subcellular localization of G6PD in Kupffer cells in rat liver, using a newly developed enzyme-cytochemical (copper-ferrocyanide) method. Electron-dense precipitates indicating G6PD activity were clearly visible in the cytoplasm and on the cytosolic side of the endoplasmic reticulum of Kupffer cells. Cytochemical controls ensured specific detection of the enzymatic activity. Rat Kupffer cells abundantly possessed enzyme-cytochemically detectable G6PD activity. Kupffer cell G6PD may play a role in liver defense by delivering NADPH to NADPH-dependent enzymes. G6PD enzyme-cytochemistry may be a useful tool for the study of Kupffer cell functions.  相似文献   

14.
It was the purpose of this study to determine the effects of the in vivo administration of endotoxin on certain in vitro hepatocyte and Kupffer cell functions. An Alzet osmotic pump that contained endotoxin (LPS, 2.5 mg/100g) was implanted into the peritoneal cavity of 300g guinea pigs and delivered the endotoxin over a period of four days. In vivo administration of LPS did not cause a change in the in vitro release of albumin by isolated hepatocytes. However, when hepatocytes were co-cultured with Kupffer cells there was a significant decrease in albumin release for both control and LPS-treated animals. There was no difference between control and LPS-treated animals in the release of C3 by hepatocytes. However, there was a significant increase over the control group in C3 release by Kupffer cells from LPS-treated animals. When hepatocytes and Kupffer cells were cultured together, their release of C3 was not additive. Kupffer cells from LPS-treated animals released significantly greater amounts of PGE2 than control animals when stimulated in vitro with LPS. Thus, these Kupffer cells appeared to be primed to respond to an in vitro challenge of LPS. Kupffer cells from LPS-treated animals had significantly depressed antibody dependent cellular cytotoxicity (ADCC). This endotoxin model is useful for determining the in vivo effects of endotoxin on cellular function and gives some indirect evidence for the detrimental effects of LPS on the immune system and host defense.  相似文献   

15.
The interaction of apolipoprotein (apo) E-free high-density lipoprotein (HDL) with parenchymal, endothelial and Kupffer cells from liver was characterized. At 10 min after injection of radiolabelled HDL into rats, 1.0 +/- 0.1% of the radioactivity was associated with the liver. Subfractionation of the liver into parenchymal, endothelial and Kupffer cells, by a low-temperature cell-isolation procedure, indicated that 77.8 +/- 2.4% of the total liver-associated radioactivity was recovered with parenchymal cells, 10.8 +/- 0.8% with endothelial cells and 11.3 +/- 1.7% with Kupffer cells. It can be concluded that inside the liver a substantial part of HDL becomes associated with endothelial and Kupffer cells in addition to parenchymal cells. With freshly isolated parenchymal, endothelial and Kupffer cells the binding properties for apo E-free HDL were determined. For parenchymal, endothelial and Kupffer cells, evidence was obtained for a saturable, specific, high-affinity binding site with Kd and Bmax. values respectively in the ranges 10-20 micrograms of HDL/ml and 25-50 ng of HDL/mg of cell protein. In all three cell types nitrosylated HDL and low-density lipoproteins did not compete for the binding of native HDL, indicating that lipids and apo B are not involved in specific apo E-free HDL binding. Very-low-density lipoproteins (VLDL), however, did compete for HDL binding. The competition of VLDL with apo E-free HDL could not be explained by label exchange or by transfer of radioactive lipids or apolipoproteins between HDL and VLDL, and it is therefore suggested that competition is exerted by the presence of apo Cs in VLDL. The results presented here provide evidence for a high-affinity recognition site for HDL on parenchymal, liver endothelial and Kupffer cells, with identical recognition properties on the three cell types. HDL is expected to deliver cholesterol from peripheral cells, including endothelial and Kupffer cells, to the liver hepatocytes, where cholesterol can be converted into bile acids and thereby irreversibly removed from the circulation. The observed identical recognition properties of the HDL high-affinity site on liver parenchymal, endothelial and Kupffer cells suggest that one receptor may mediate both cholesterol efflux and cholesterol influx, and that the regulation of this bidirectional cholesterol (ester) flux lies beyond the initial binding of HDL to the receptor.  相似文献   

16.
Nonalcoholic steatohepatitis (NASH), characterized by lipid deposits within hepatocytes (steatosis), is associated with hepatic injury and inflammation and leads to the development of fibrosis, cirrhosis, and hepatocarcinoma. However, the pathogenic mechanism of NASH is not well understood. To determine the role of distinct innate myeloid subsets in the development of NASH, we examined the contribution of liver resident macrophages (i.e. Kupffer cells) and blood-derived monocytes in triggering liver inflammation and hepatic damage. Employing a murine model of NASH, we discovered a previously unappreciated role for TNFα and Kupffer cells in the initiation and progression of NASH. Sequential depletion of Kupffer cells reduced the incidence of liver injury, steatosis, and proinflammatory monocyte infiltration. Furthermore, our data show a differential contribution of Kupffer cells and blood monocytes during the development of NASH; Kupffer cells increased their production of TNFα, followed by infiltration of CD11bintLy6Chi monocytes, 2 and 10 days, respectively, after starting the methionine/choline-deficient (MCD) diet. Importantly, targeted knockdown of TNFα expression in myeloid cells decreased the incidence of NASH development by decreasing steatosis, liver damage, monocyte infiltration, and the production of inflammatory chemokines. Our findings suggest that the increase of TNFα-producing Kupffer cells in the liver is crucial for the early phase of NASH development by promoting blood monocyte infiltration through the production of IP-10 and MCP-1.  相似文献   

17.
Electron microscopic studies were conducted to access ultrastructural alterations in Kupffer cells and other cells lining the hepatic sinusoids at the peak of mediator release two hours after challenge with low doses of endotoxin under various conditions including reticuloendothelial system (RES) expansion and activation with BCG. BCG is known to sensitize animals to endotoxin rendering normally innocuous, low doses of endotoxin lethal. Low non-lethal doses (5 micrograms) of endotoxin activated Kupffer cells as well as caused isolated foci of cellular injury. However, animals which were treated with BCG had a highly activated and expanded RES system as evidenced by enlarged Kupffer cells with many extended cellular processes. Granulomas were prevalent and many reactive cells were present. After two hours marked cellular injury occurred to sinusoid lining and parenchymal cells when BCG treated animals were challenged with these same low doses of endotoxin. Cellular debris, fibrin, and platelets were observed in sinusoids often associated with Kupffer cells. These results suggest that the functional state of Kupffer cells is an important determinant in the host response to endotoxin. While there appears to be an effective clearance of endotoxin; the release of mediators by the highly activated Kupffer cells can be toxic causing hepatocellular injury.  相似文献   

18.
The ability of murine Kupffer cells to function in several in vitro immunologic systems was investigated. These cells have been shown previously to function as accessory cells in antigen-stimulated T cell proliferation in response to protein antigens. In the present study it has been demonstrated that murine Kupffer cells also are competent as accessory cells in in vitro primary antibody responses to TNP-KLH and for T cell proliferative responses to concanavalin A. In addition, murine Kupffer cells were found to be potent stimulators of mixed lymphocyte responses. These studies extend previous observations by demonstrating that Kupffer cells are competent accessory cells in several distinct in vitro correlates of in vivo immune responses. The role of Kupffer cells in in vivo immune responses, particularly those to enterically derived antigens, may require re-evaluation in the light of these findings.  相似文献   

19.
Summary The ability of Kupffer cells, spleen macrophages, pulmonary macrophages, and peritoneal macrophages (PM) to produce cytotoxic factor (CTF) was investigated in vitro. The production of CTF by Kupffer cells elicited with Corynebacterium parvum (CP) or Lactobacillus casei YIT9018 (LC9018) was higher than that of spleen, pulmonary macrophages, or PM. In addition, oxygen radical (OR) production by Kupffer cells or PM was measured. The production of OR by Kupffer cells or PM was significantly augmented by i.v. or i.p. injection of LC9018 or CP. No significant correlation was observed between the increase in OR production by Kupffer cells or PM and CTF production by Kupffer cells or PM elicited with either organism. It was suggested that activated Kupffer cells may be one important source of CTF production in serum and that the CTF-producing macrophages may be different from the OR-producing macrophages.  相似文献   

20.
Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in Kupffer cell function, especially in phagocytosis activity. Although it was suggested that Kupffer G6PD may be upregulated in Kupffer phagocytosis/activation, direct morphological evidence has been lacking. Acid phosphatase (ACP), a representative lysosomal enzyme, can be used as a cytochemical marker for phagocyte activation. Using an ultrastructural enzyme-cytochemical dual staining method, I simultaneously localized G6PD and ACP activity in mouse Kupffer cells on a cell-by-cell basis, and examined whether or not cytochemically detectable G6PD activity increases in phagocytosing/activated mouse Kupffer cells. Glucose-6-phosphate dehydrogenase labelings were observed in the cytoplasm and on the cytosolic side of the endoplasmic reticulum, and ACP labelings were seen in the lysosomes. In phagocytosing Kupffer cells, in which ACP deposits were observed not only in the lysosomes but also on the phagosomal membranes and phagosomal contents, G6PD labelings were denser than dormant Kupffer cells. Enzyme-cytochemically detectable G6PD activity increases in phagocytosing/activated mouse Kupffer cells. Kupffer cell G6PD, activated in phagocytosing Kupffer cells, may play an important role not only in liver defense but also in liver disease pathogenesis/pathophysiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号